Chapter 3: Application Overview

Helmut Simonis

Cork Constraint Computation Centre Computer Science Department University College Cork Ireland

ECLiPSe ELearning Overview

Constraint Computation Centre

1

Helmut Simonis

Application Overview

This work is licensed under the Creative Commons Attribution-Noncommercial-Share Alike 3.0 Unported License. To view a copy of this license, visit http: //creativecommons.org/licenses/by-nc-sa/3.0/ or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA.

3

Helmut Simonis App

Application Overview

What is the common element amongst

- The production of Mirage 2000 fighter aircraft
- The personnel planning for the guards in all French jails
- The production of Belgian chocolates
- The selection of the music programme of a pop music radio station
- The design of advanced signal processing chips
- The print engine controller in Xerox copiers

They all use constraint programming!

Constraint Computation Centre

Constraint Programming - in a nutshell

- Declarative description of problems with
 - Variables which range over (finite) sets of values
 - Constraints over subsets of variables which restrict possible value combinations
 - A solution is a value assignment which satisfies all constraints
- Constraint propagation/reasoning
 - Removing inconsistent values for variables
 - Detect failure if constraint can not be satisfied
 - Interaction of constraints via shared variables
 - Incomplete
- Search
 - User controlled assignment of values to variables
 - Each step triggers constraint propagation
- Different domains require/allow different methods

Helmut Simonis Applica

Application Overview

Constraint Satisfaction Problems (CSP)

- Different problems with common aspects
 - Planning
 - Scheduling
 - Resource allocation
 - Assignment
 - Placement
 - Logistics
 - Financial decision making
 - VLSI design

- There are no general methods or algorithms
 - NP-completeness
 - Different strategies and heuristics have to be tested.
- Requirements are quickly changing:
 - Programs should be flexible enough to adapt to these changes rapidly.
- Decision support required
 - Co-operate with user
 - Friendly interfaces

Helmut Simonis App

Application Overview

7

Benefits of CLP approach

- Short development time
 - Fast prototyping
 - Refining of modelling
 - Same tool used for prototyping/production
- Compact code size
 - Ease of understanding
 - Maintenance
- Simple modification
 - Changing requirements
 - No need to understand all aspects of problem
- Good performance
 - Fast answer
 - Good results
 - Optimal solutions rarely required

- Production sequencing
- Production scheduling
- Satellite tasking
- Maintenance planning
- Product blending
- Time tabling
- Crew rotation
- Aircraft rotation

- Transport
- Personnel assignment
- Personnel requirement planning
- Hardware design
- Compilation
- Financial problems
- Placement
- Cutting problems

- Stand allocation
- Air traffic control
- Frequency allocation
- Network configuration
- Product design
- Production step planning

Helmut Simonis

Application Overview

9

Tools Used (Prolog Based Constraint Languages)

• CHIP

- 1986-1990 ECRC, Munich, Germany
- 1990-today COSYTEC, Orsay, France

ECLiPSe

- 1984-1996 ECRC
- 1996-2004 IC-Parc, PTL, London
- 2004-today Cisco Systems
- a.k.a. Sepia (ECRC)
- a.k.a. DecisionPower (ICL)

- Assignment
 - Parking assignment
 - Platform allocation
- Network Configuration
- Scheduling
 - Production scheduling
 - Project planning
- Transport
 - Lorry, train, airlines
- Personnel assignment
 - Timetabling, Rostering
 - Train, airlines

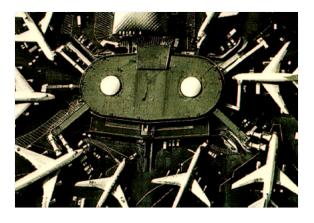
Constraint Computation Centre

Helmut Simonis

Application Overview

11

Stand allocation


• HIT (ICL)

- Assign ships to berths in container harbor
- Developed with ECRC's version of CHIP
 - Then using DecisionPower (ICL)
 - Early version of ECLiPSe
- First operational constraint application (1989-90)
- APACHE (COSYTEC)
 - Stand allocation for airport
- Refinery berth allocation (ISAB/COSYTEC)
 - Where to load/unload ships in refinery

APACHE - AIR FRANCE (COSYTEC)

- Stand allocation system
 - For Air Inter/Air France
 - Roissy, CDG2
 - Packaged for large airports
- Complex constraint problem
 - Technical constraints
 - Operational constraints
 - Incremental re-scheduler
- Cost model
 - Max. nb passengers in contact
 - Min. towing, bus usage
- Benefits and status
 - Quasi real-time re-scheduling
 - KAL, Turkish Airlines

Helmut Simonis A

Application Overview

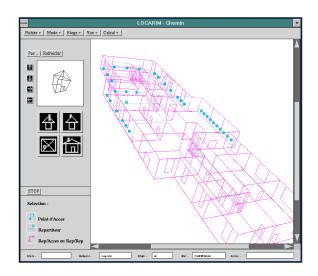
13

Network configuration

- BoD (PTL)
- Locarim (France Telecom, COSYTEC)
 - Cabling of building
- Planets (UCB, Enher)
 - Electrical power network reconfiguration
- Load Balancing in Banking networks (ICON)
 - Distributed applications
 - Control network traffic
- Water Networks (UCB, ClocWise)

BoD - Schlumberger (IC-Parc/PTL)

- Bandwidth on Demand
 - Provide guaranteed QoS
 - For temporary connections
 - Video conferences
 - Oil well logging
- World-wide, sparse network
- Bandwidth limited
- Do not affect existing traffic
- Uses route generator module for MPLS-TE
 - Model extended with temporal component
- First version delivered February, 2003



- Traffic Engineering in MPLS
- Find routes for demands satisfying bandwidth limits
- Path placement algorithm developed for Cisco by PTL and IC-Parc (2002-2004)
- Internal, competitive selection of approaches
- Strong emphasis on stability
- Written in ECLiPSe
- PTL bought by Cisco in 2004
- Part of team moved to Boston

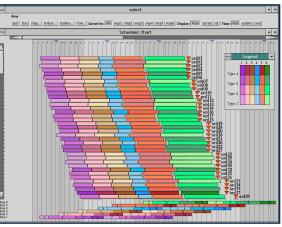
LOCARIM - France Telecom

- Intelligent cabling system
 - For large buildings
 - Developed by
 - COSYTEC
 - Telesystemes
- Application
 - Input scanned drawing
 - Specify requirements
- Optimization
 - Minimize cabling, drilling
 - Reduce switches
 - Shortest path
- Status
 - Operational in 5 Telecom sites
 - Generates quotations

Helmut Simonis Appl

Application Overview

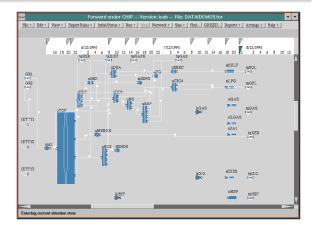
17


Production Scheduling

- Amylum (OM Partners)
 - Glucose production
- Cerestar (OM Partners)
 - Glucose production
- Saveplan (Sligos)
 - Production scheduling
- Trefi Metaux (Sligos)
 - Heavy industry production scheduling
- Michelin
 - Rubber blending, rework optimization

PLANE - Dassault Aviation

- Assembly line scheduling
 - Mirage 2000 Fighter
 - Falcon business jet
- Two user system
 - Production planning 3-5 years
 - Commercial what-if sales aid
- Optimisation
 - Balanced schedule
 - Minimise changes in production rate
 - Minimise storage costs
- Benefits and status
 - Replaces 2 week manual planning
 - Operational since Apr 94
 - Used in US for business jets



19

Helmut Simonis Application Overview

FORWARD - Fina

- Oil refinery scheduling
 - Developed by
 - TECHNIP
 - COSYTEC
 - Uses simulation tool
 - Forward by Elf
- Schedules daily production
 - Crude arrival \rightarrow
 - Processing → Delivery
 - Design, optimize and simulate
- Product Blending
 - Explanation facilities
 - Handling of over-constrained problems
- Status
 - Operational since June 94
 - Operational at FINA, ISAB, BP

MOSES - Dalgety

- Animal feed production
 - Feed in different sizes/
 - For different species
 - Human health risk
 - Contamination
 - BSE
 - Strict regulations
- Constraints
 - Avoid contamination risks
 - Machine setup times
 - Machine choice (quality/speed)
 - Limited storage of finished products
 - Very short lead times (8-48 hours)

Helmut Simonis

- Factory structure given as data
- Status
 - Operational since Nov 96
 - Installed in 5 mills

 Bart
 Text
 Description
 Control
 Description
 <thDescription<

90 Constraint Computation

Application Overview

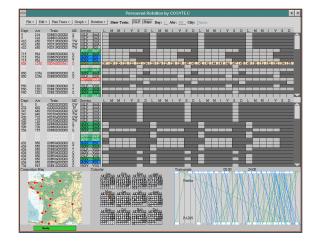
21

ork

Transport

- By Air
 - AirPlanner (PT)
 - Daysy (Lufthansa)
 - Pilot (SAS)
- By Road
 - Wincanton (IC-Parc)
 - TACT (SunValley)
 - EVA (EDF)
- By Rail
 - CREW (Servair)
 - COBRA (NWT)

- Based on the Retimer project for BA
- Consider fleet of aircraft
- Shifting some flights by small amount may allow better use of fleet
- Many constraints of different types limit the changes that are possible



- Large scale distribution problem
- Deliver fresh products to supermarkets
- Direct deliveries/warehousing
- Combining deliveries
- Capacity constraints
- Tour planning
- Workforce constraints

CREW - Servair

- Crew rostering system
 - Assign service staff to TGV
 - Bar/Restaurant service
 - Joint design COSYTEC/GSI
- Problem solver
 - Generates tours/cycles
 - Assigns skilled personnel
- Constraints
 - Union, physical, calendar
- Status
 - Operational since Mar 1995
 - Cost reduction by 5%

Helmut Simonis

Application Overview

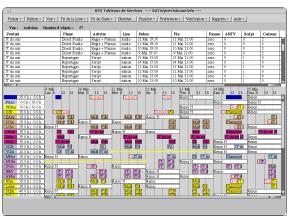
25

Personnel Planning

- RAC (IC-Parc)
- OPTISERVICE (RFO)
- Shifter (ERG Petroli)
- Gymnaste (UCF)
- MOSAR (Ministère de la JUSTICE)

- Personnel dispatching
- On-line problem
 - Change plan as new requests are phoned in
- Typical constraints for workforce
 - Duty time
 - Rest periods
 - Max driving time
 - Response time
- Operational/Strategic use

Constraint Computation Centre


27

Helmut Simonis A

Application Overview

OPTI SERVICE - RFO

- Assignment of technical staff
 - Overseas radio/TV network
 - Radio France Outre-mer
 - Joint development:
 - GIST and COSYTEC
 - 250 journalists and technicans
- Features
 - Schedule manually,
 - Check, Run automatic
 - Rule builder to specify cost formulas
 - Minimize overtime, temporary staff
 - Compute cost of schedule
- Status
 - Operational since 1997
 - Installed worldwide in 8 sites
 - Developed into generic tool

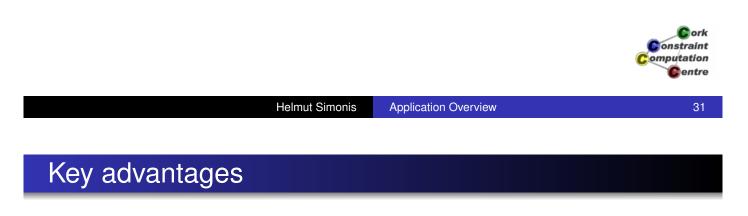
- GYMNASTE
- Time tabling
- Personnel assignment
- Provisional and reactive planning (1-6 weeks)
- Developed by COSYTEC with partners
 - PRAXIM/Université Joseph Fourier de Grenoble
- Pilot site Grenoble
- Also used at hôpital de BLIGNY (Paris)
- Advantages :
 - Plan generation in 5 minutes
 - User/personnel preferences
 - Decrease in days lost

Constraint Computation Centre

Helmut Simonis Application

Application Overview

29


Conclusions

- Constraint Programming useful for many domains
- Large scale industrial use in
 - Assignment
 - Network Management
 - Production Scheduling
 - Transport
 - Personnel Planning

Good approach for specialized, complex problems

- 3D camera control in movie animation
- Finding instable control states for robots
- Optimized register allocation in gcc

- Easy to prototype/develop
- Using modelling to understand problem
- Expressive power
- Add/remove constraints as problem evolves
- Customized search exploiting structure and knowledge

Mark Wallace.

Practical applications of constraint programming. *Constraints*, 1(1/2):139–168, 1996.

Helmut Simonis.

Building industrial applications with constraint programming.

In Hubert Comon, Claude Marché, and Ralf Treinen, editors, *CCL*, volume 2002 of *Lecture Notes in Computer Science*, pages 271–309. Springer, 1999.

> Constraint Computation Centre

> > 33

Helmut Simonis App

Application Overview

More Information

Helmut Simonis.
Models for global constraint applications.
Constraints, 12(1):63–92, 2007.

