Chapter 8: Symmetry Breaking (Balanced
Incomplete Block Designs)

Helmut Simonis

Cork Constraint Computation Centre
Computer Science Department
University College Cork
Ireland

ECLiPSe ELearning
©ork

@onstraint
C omputation

“@entre

Helmut Simonis Symmetry Breaking 1

Licence

This work is licensed under the Creative Commons
Attribution-Noncommercial-Share Alike 3.0 Unported License.
To view a copy of this license, visit http:
//creativecommons.org/licenses/by—-nc—-sa/3.0/ or
send a letter to Creative Commons, 171 Second Street, Suite
300, San Francisco, California, 94105, USA.

ooce)

_@ork
@onstraint
Computation

“@entre

Helmut Simonis Symmetry Breaking 2

http://creativecommons.org/licenses/by-nc-sa/3.0/
http://creativecommons.org/licenses/by-nc-sa/3.0/

Outline

0 Problem

e Program

Q Symmetry Breaking

©Cork
@onstraint
C omputation

“@entre

Helmut Simonis Symmetry Breaking 3

What we want to introduce

@ BIBD - Balanced Incomplete Block Designs

@ Using lex constraints to remove symmetries

@ Only one of many ways to deal with symmetry in problems
@ Finding all solutions to a problem

@ Using timeout to limit search

©Cork
@onstraint
Computation

“@entre

Helmut Simonis Symmetry Breaking 4

Problem

Problem Definition

BIBD (Balanced Incomplete Block Design)

A BIBD is defined as an arrangement of v distinct objects into b
blocks such that each block contains exactly k distinct objects,
each object occurs in exactly r different blocks, and every two
distinct objects occur together in exactly A blocks. A BIBD is
therefore specified by its parameters (v, b, r, k, A).

©Cork
@onstraint
C omputation

“@entre

Helmut Simonis Symmetry Breaking 5

Problem

Motivation: Test Planning

Consider a new release of some software with v new features.
You want to regression test the software against combinations
of the new features. Testing each subset of features is too
expensive, so you want to run b tests, each using k features.
Each feature should be used r times in the tests. Each pair of
features should be tested together exactly A times. How do you
arrange the tests?

©Cork
@onstraint
Computation

“@entre

Helmut Simonis Symmetry Breaking 6

Problem

Another way of defining a BIBD is in terms of its incidence
matrix, which is a binary matrix with v rows, b columns, r ones
per row, k ones per column, and scalar product A between any
pair of distinct rows.

A (6,10,5,3,2) BIBD

Eork
@onstraint
C omputation

“@entre

Helmut Simonis Symmetry Breaking 7

Program

Model for (v, b, r, k, \) BIBD

@ Abinary v x b matrix. Entry Vj states if item / is in block j.
@ Sum constraints over rows, each sum equal r
@ Sum constraints over columns, each sum equal k

@ Scalar product between any pair of rows, the product value
is A.

Eork
@onstraint
Computation

“@entre

Helmut Simonis Symmetry Breaking 8

Program

Top Level Program

:—module (bibd) .
:—export (top/0) .
:—1lib (ic) .
:—1lib(ic_global).

top: -
bibd(6,10,5,3,2,Matrix),writeln (Matrix) .

bibd (V,B,R,K,L,Matrix) : -
model (V,B,R,K,L,Matrix),= Set up model
extract_array (row,Matrix, List),= Get 1ist
search (L, 0, input_order, indomain,

©Cork

complete, []) .2 Search ¢ Somatraint
“@entre

Helmut Simonis Symmetry Breaking 9

Program

Constraint Model

model (V,B,R,K,L,Matrix,Method) : -
dim (Matrix, [V,B]),= Define Binary Matrix
Matrix[1l..V,1..B] :: 0..1,
(for(I,1,V), param(Matrix,B,R) do
sumlist (Matrix[I,1..B],R)
), = Row Sum = R
(for(J,1,B), param(Matrix,V,K) do
sumlist (Matrix[1..V,J],K)
), = Column Sum = K
(for(1,1,v-1), param(Matrix,V,B,L) do
(for(11,1I+1,V), param(Matrix,I,B,L) do
scalar_product (Matrix[I,1..B],
Matrix[I1,1..B],L) Cor«

@onstraint
) Computation

“@entre

.=> Scalar product between all rows
Helmut Simonis Symmetry Breaking 10

Program

scalar_product

scalar_product (XVector, YVector,V) :—
collection_to_list (XVector,XList),
collection_to_list (YVector,YList),=™ Get 1lists
(foreach (X, XList),=™ Iterate over 1ists
foreach (Y, YList),= ...in parallel
fromto(0,A,Al, Term) do = Build term
Al = A+X*Y=> Construct term
) 14
eval (Term) #= V.= State Constraint
©Cork

@onstraint
C omputation

“@entre

Helmut Simonis Symmetry Breaking 11

Program

Search Routine

@ Static variable order

@ First fail does not work for binary variables

@ Enumerate variables by row

@ Use utility predicate extract_array/3

@ Assign with indomain, try value 0, then value 1
@ Use simple search call

Eork
@onstraint
Computation

“@entre

Helmut Simonis Symmetry Breaking 12

Program

Basic Model - First Solution

©Cork
@onstraint
C omputation

“@entre

Helmut Simonis Symmetry Breaking 13

Program

Finding all solutions - Hack!

:—module (bibd) .
:—export (top/0) .
:—lib(ic).
:—1lib(ic_global).

top:—
bibd(6,10,5,3,2,Matrix),writeln (Matrix),
fail.= Force Backtracking

bibd(V,B,R,K, L, Matrix) :—
model (V,B,R,K,L,Matrix),
extract_array (row,Matrix, List),
search (L, 0, input_order, indomain, Gor

@onstraint

complete, []) . GM¥§ﬂ2

Helmut Simonis Symmetry Breaking 14

Program

Finding all solutions - Proper

:—module (bibd) .
:—export (top/0) .
:—lib(ic) .
:—1lib(ic_global).

top:—
findall (Matrix,bibd(6,10,5,3,2,Matrix), Sols),
writeln (Sols).

bibd(V,B,R,K,L,Matrix) :—
model (V,B,R,K,L,Matrix),
extract_array (row,Matrix, List),

search (L, 0, input_order, indomain, @&Qﬁi

C omputation

complete, []) . “@entre

Helmut Simonis Symmetry Breaking 15

Program

findall predicate

@ findall (Template, Goal,Collection)

@ Finds all solutions to Goal and collects them into a list
Collection

@ Template is used to extract arguments from Goal to
store as solution

@ Backtracks through all choices in Goal
@ Solutions are returned in order in which they are found

©Cork
@onstraint
Computation

“@entre

Helmut Simonis Symmetry Breaking 16

Program

Problem

@ Program now only stops when it has found all solutions
@ This takes too long!

@ How can we limit the amount of time to wait?

@ Use of the timeout library

Eork
@onstraint
C omputation

“@entre

Helmut Simonis Symmetry Breaking 17

Program

Finding all solutions - Proper

:—module (bibd) .

:—export (top/0) .

:—1lib (ic) .

:—1lib(ic_global) .
:—lib(timeout) .= Load library

top: -
findall (Matrix, timeout (bibd(6,10,5,3,2,Matrix),
10,=> seconds
fail), Sols),
writeln (Sols).
©Cork

@onstraint
Computation

“@entre

Helmut Simonis Symmetry Breaking 18

Program

timeout library

@ timeout (Goal, Limit, TimeoutGoal)
@ Runs Goal for Limit seconds

@ If Limit is reached, Goal is stopped and TimeoutGoal
is run instead

@ If Limit is not reached, it has no impact
@ Mustload :-1ib (timeout) .

©Cork
@onstraint
C omputation

“@entre

Helmut Simonis Symmetry Breaking 19

Program

Finding all Solutions - Search Tree 200 Nodes

©Cork
@onstraint
Computation

“@entre

Helmut Simonis Symmetry Breaking 20

Program

Observation

@ Surprise! There are many solutions

Eork
@onstraint
C omputation

“@entre

Helmut Simonis Symmetry Breaking 21

Program

Search Tree 300 Nodes

7\
3
Eork
@onstraint
Computation
“@entre
Helmut Simonis Symmetry Breaking 22

Program

Search Tree 400 Nodes

“ ©Cork
@onstraint
C omputation

“@entre

Helmut Simonis Symmetry Breaking 23

Program

Search Tree 500 Nodes

©Cork
@onstraint
Computation

“@entre

Helmut Simonis Symmetry Breaking 24

Program

Search Tree 1000 Nodes

R Y e e N W

©Cork
@onstraint
C omputation

“@entre

Helmut Simonis Symmetry Breaking 25

Program

Search Tree 2000 Nodes

©Cork
@onstraint
Computation

“@entre

Helmut Simonis Symmetry Breaking

26

Program

Problem

@ There are too many solutions to collect in a reasonable
time
@ Most of these solutions are very similar

@ If you take one solution and

@ exchange two rows
e and/or exchange two columns

@ ... you have another solution
@ Can we avoid exploring them all?
Eork

@onstraint
C omputation

“@entre

Helmut Simonis Symmetry Breaking 27

Experiment with alternative value order
Symmetry Breaking

Symmetry Breaking Techniques

@ Remove all symmetries

@ Reduce the search tree as much as possible
e May be hard to describe all symmetries
e May be expensive to remove symmetric parts of tree

@ Remove some symmetries

@ Search is not reduced as much
e May be easier to find some symmetries to remove
e Cost can be low

©Cork
@onstraint
Computation

“@entre

Helmut Simonis Symmetry Breaking 28

Experiment with alternative value order
Symmetry Breaking

Symmetry Breaking Techniques

@ Symmetry removal by forcing partial, initial assignment

e Easy to understand
e Rather weak, does not affect search

@ Symmetry removal by stating constraints

e Removing all symmetries may require exponential number
of constraints
e Can conflict with search strategies

@ Symmetry removal by controling search

e At each node, decide if it needs to be explored
e Can be expensive to check
Eork

@onstraint
C omputation

“@entre

Helmut Simonis Symmetry Breaking 29

Experiment with alternative value order
Symmetry Breaking

Solution used here: Double Lex

@ Partial symmetry removal by adding lexicographical
ordering constraints

@ Our problem has full row and column symmetries

@ Any permutation of rows adn/or columns leads to another
solution

@ Idea: Order rows lexicographically

@ Rows must be different from each other, strict order on
rows
@ Columns might be identical, non strict order on columns
e This can be improved in some cases

@ Constraints only between adjacent rows(columns) Cork

@onstraint
Computation

“@entre

Helmut Simonis Symmetry Breaking 30

Experiment with alternative value order
Symmetry Breaking

Added Constraints

dim (Matrix, [V,B]),

(for(1,1,v-1),

param(Matrix,B) do
I1 is I+1,

lex less (Matrix[Il,1..B],Matrix[I,1..B])
), Row lex constraints
(for(Jg,1,B-1),
param (Matrix,V) do

Jl 1is J+1,

lex_ _leg(Matrix[1..V,J1],Matrix[1..V,J])
), = Column lex constraints @

@onstraint
C omputation

“@entre

Helmut Simonis Symmetry Breaking 31

Experiment with alternative value order
Symmetry Breaking

Using Two Global Constraints

@ lex_leg(Listl,List2)

@ List1 is lexicographical smaller than or equal to List2
@ Achieves domain consistency

@ lex less(Listl,List?2)

@ Listl1 is lexicographical smaller than List2
e Achieves domain consistency

©Cork
@onstraint
Computation

“@entre

Helmut Simonis Symmetry Breaking 32

Experiment with alternative value order
Symmetry Breaking

Example propagation lex_less

Before
[2 X2 € {1,3,4}, X3 e {1,2,3}, X4 € {1,2}, X5¢€ {3,4}],
[Y1e{0,1,2}, 1, Y3 € {0,1,2,3}, Y4e{0,1}, Y5¢€{0,1}]
After
[2 1, X3 e {1,2}, X4 € {1,2}, X5€ {3,4}],
[2 1, Y3 € {2,3}, Y4 € {0,1}, Y5¢€ {0,1}]

©Cork
@onstraint
C omputation

“@entre

Helmut Simonis Symmetry Breaking 33

Experiment with alternative value order
Symmetry Breaking

Complete Search Tree with Double Lex

©Cork
@onstraint
Computation

“@entre

Helmut Simonis Symmetry Breaking 34

Experiment with alternative value order
Symmetry Breaking

Observation

@ Enormous reduction in search space

@ We are solving a different problem!

@ Not just good for finding all solutions, also for first solution!
@ Value choice not optimal for finding first solution

@ There is a lot of very shallow backtracking, can we avoid
that?

©Cork
@onstraint
C omputation

“@entre

Helmut Simonis Symmetry Breaking 35

Experiment with alternative value order
Symmetry Breaking

Effort for First Solution

Basic Model With double Lex

©Cork
@onstraint
Computation

“@entre

Helmut Simonis Symmetry Breaking 36

Experiment with alternative value order
Symmetry Breaking

Alternative Value Order

:—module (bibd) .
:—export (top/0) .
:—lib(ic) .
:—1lib(ic_global).

top:—
bibd(6,10,5,3,2,Matrix),writeln (Matrix) .

bibd (V,B,R,K,L,Matrix) :—
model (V, B, R,K,L,Matrix),
extract_array(row,Matrix, List),
search (L, 0, input_order,

indomain_max,= Start with I 0&333
C omputation

complete, []) . “@eontre
Helmut Simonis Symmetry Breaking 37

Experiment with alternative value order
Symmetry Breaking

Assigning Value 1 First

©Cork
@onstraint
Computation

“@entre

Helmut Simonis Symmetry Breaking 38

Experiment with alternative value order
Symmetry Breaking

Observation

@ First solution is found more quickly
@ Size of tree for all solutions unchanged

@ Value order does not really affect search space when
exploring all choices!

©Cork
@onstraint
C omputation

“@entre

Helmut Simonis Symmetry Breaking 39

Experiment with alternative value order
Symmetry Breaking

Effort for All Solutions

Assign 0, then 1 Assign 1, then 0

©Cork
@onstraint
Computation

“@entre

Helmut Simonis Symmetry Breaking 40

Experiment with alternative value order
Symmetry Breaking

Conclusions

@ Symmetry breaking can have huge impact on model

@ Mainly works for pure problems

@ Partial symmetry breaking with additional constraints

@ Double lex for row/column symmetries

@ Only one variant of many symmetry breaking techniques

Eork
@onstraint
C omputation

“@entre

Helmut Simonis Symmetry Breaking 41

Why assign by row?

Row- or Column- wise Assignment?

@ We did assign matrix by row, why?
@ What happens if we assign variables by column?

Eork
@onstraint
Computation

“@entre

Helmut Simonis Symmetry Breaking 42

Why assign by row?

Variable Selection by Column

©Cork
@onstraint
C omputation

“@entre

Helmut Simonis Symmetry Breaking 43

Why assign by row?

Observation

@ Good, but not as good as row order

@ Value choice (0/1) or (1/0) unimportant even for first
solution

@ Changing the variable selection does affect size of search
space, even for all solutions

©Cork
@onstraint
Computation

“@entre

Helmut Simonis Symmetry Breaking 44

Why assign by row?

Effort for All Solutions

By Row By Column

©Cork
@onstraint
C omputation

“@entre

Helmut Simonis Symmetry Breaking 45

Why assign by row?

Possible Explanations

@ There are fewer rows than columns

@ Strict lex constraints on rows, but not on columns
e More impact of first row

@ Needs better understanding

©Cork
@onstraint
Computation

“@entre

Helmut Simonis Symmetry Breaking 46

Why assign by row?

Does this scale?

v b rook o asym lex? STAB lex? + SBNO
9 24 8 3 2 36 5,087 344 311
16 16 6 6 2 3 46 3 7
15 21 7 5 2 0 0 0 0
13 26 6 3 1 2 12,800 21 101
7 3 15 3 5 109 33,304 542 282
15 15 7 7 3 5 118 19 19
21 21 5 5 1 1 12 1 1
25 30 6 5 1 1 864 1 5
10 18 9 5 4 21 8,031 302 139
7 42 18 3 6 418 250,878 2,334 1,247
22 22 7 7 2 0 0 0 0
7 49 21 3 7 1,508 1,460,332 8,821 4,353
8 28 14 4 6 2,310 2,058,523 17,890 11,424
19 19 9 9 4 6 6,520 71 17
10 30 9 3 2 960 724,662 24,563 15,169
31 31 6 6 1 1 864 1 2
7 5 24 3 8 5,413 6,941,124 32,038 14,428
9 3 12 3 3 22521 14843772 315531 85,605
7 63 27 3 9 ? 28,079,394 105,955 43,259
15 35 7 3 A 80 32,127,296 6,782 35,183
21 28 8 6 2 0 0 0 0
13 26 8 4 2 2461 3,664,243 83,337 31,323
11 22 10 5 4 4393 6,143,408 106,522 32,908 _
12 2 11 6 5 ? ? 228,146 76,572 e L
25 25 9 9 3 ? ? 17,016 1,355 @onstraint
16 24 9 6 3 ? ? 769,482 76,860 Cemputation
“@entre
Helmut Simonis Symmetry Breaking 47

Why assign by row?

Scalability

@ lex? good, but not good enough

@ Siill leaves too many symmetries to explore
@ Better techniques in the literature

e STAB, group theory based, Puget 2003.
@ SBNO, local search based domination check, Prestwich,
2008.

©Cork
@onstraint
Computation

“@entre

Helmut Simonis Symmetry Breaking 48

Why assign by row?

Do we need binary variables?

@ The 0/1 model does very little propagation
@ Consider a model with finite domain variables

@ Each of b blocks consists of k variables ranging over v
values

@ The values in a block must be alldifferent (ordered)
@ Each value can occur r times

@ Scalar product more difficult

@ Even better expressed with finite set variables

©Cork
@onstraint
C omputation

“@entre

Helmut Simonis Symmetry Breaking 49

Why assign by row?

More Information

& 1. Gent, K. Petrie, and J.F. Puget.
Symmetry in constraint programming.
In F. Rossi, P. van Beek, and T. Walsh, editors, Handbook
of Constraint Programming, chapter 10. Elsevier, 2006.

W Jean-Francois Puget.
Symmetry breaking using stabilizers.
In Francesca Rossi, editor, CP, volume 2833 of Lecture
Notes in Computer Science, pages 585-599. Springer,
2003.
©Cork

@onstraint
Computation

“@entre

Helmut Simonis Symmetry Breaking 50

Why assign by row?

More Information

@ S.D. Prestwich , B. Hnich , R. Rossi, and S. A. Tarim.
Symmetry Breaking by Metaheuristic Search.
SymCon 2008 - The 8th International Workshop on
Symmetry and Constraint Satisfaction Problems, Sydney,
Australia, September, 2008.

Eork
@onstraint
C omputation

“@entre

Helmut Simonis Symmetry Breaking 51

Exercises

Exercises

Eork
@onstraint
Computation

“@entre

Helmut Simonis Symmetry Breaking 52

	Problem
	Program
	Symmetry Breaking
	Experiment with alternative value order

	Optional Material
	Why assign by row?
	Exercises

