Chapter 16: More Global Constraints (Car Sequencing)

Helmut Simonis

Cork Constraint Computation Centre
Computer Science Department
University College Cork
Ireland

ECLiPSe ELEarning

Licence

This work is licensed under the Creative Commons Attribution-Noncommercial-Share Alike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/ or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA.
What we want to introduce

- Car sequencing problem
- \texttt{gcc} global cardinality constraint
- \texttt{sequence} constraint
- Search does not always have to be based on original problem variables
- Can be useful to consider additional variables which allow more clever search
Car Sequencing

We have to schedule a number of cars for production on an assembly line. Each car is of a certain type, and we know how many cars of each type we have to produce. Car types differ in the options they require, i.e. sun-roof, air conditioning. For each option, we have capacity limits on the assembly line, expressed as k cars out of n consecutive cars on the line may have some option. Find an assignment which produces the correct number of cars of each type, while satisfying the capacity constraints.

Example (DSV88)

- 100 cars
- 18 types
- 5 options
 - Option 1: 1 out of 2
 - Option 2: 2 out of 3
 - Option 3: 1 out of 3
 - Option 4: 2 out of 5
 - Option 5: 1 out of 5
Car Types

<table>
<thead>
<tr>
<th>Type</th>
<th>Cars Required</th>
<th>Option 1</th>
<th>Option 2</th>
<th>Option 3</th>
<th>Option 4</th>
<th>Option 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>5</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>2</td>
<td>3</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>7</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>4</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>10</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>7</td>
<td>11</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>10</td>
<td>6</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>12</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>5</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>15</td>
<td>9</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>17</td>
<td>12</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>18</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
</tbody>
</table>
Modelling Alternatives

- Assign start time (sequence number) to each car
 - 100 variables, each with 100 values
 - Handling of car types implicit
 - Symmetry breaking for cars of same type (inequalities)?
 - Capacity constraints?
- Assign car type to each slot on assembly line
 - 100 variables, 18 values
 - How to control number of cars of each type?
 - How to express capacity constraints?

Model

- 100 variables ranging over car types
- gcc constraint to control number of items with same type
- 5×100 0/1 variables indicating use of option for each slot
- element constraints to map car types to options used
- sequence constraints to enforce limits on each option
Reminder: \textit{gcc}(\textit{Pattern}, \textit{Variables})

- \textit{gcc} \textit{global cardinality constraint}
- \textit{Pattern} is list of terms \textit{gcc}(\textit{Low}, \textit{High}, \textit{Value})
- The overall number of variables taking value \textit{Value} is between \textit{Low} and \textit{High}
- Generalization of \textit{alldifferent}
- Domain consistent version in ECLiPSe

\textbf{gcc Example}

\begin{verbatim}
X1 :: [2,4], X2 :: [1,3,4], X3 :: [1,2,3,4],
X4 :: [3,4,5], X5 :: [3,4,5],
gcc([gcc(1,1,1),gcc(2,3,2),gcc(1,3,3),
 gcc(0,4,4),gcc(1,3,5)],
 [X1,X2,X3,X4,X5]),
X1 = ?, X2 = ?, X3 = ?, X4 = ?, X5 = ?
\end{verbatim}
X1 :: [2,4], X2 :: [1,3,4], X3 :: [1,2,3,4],
X4 :: [3,4,5], X5 :: [3,4,5],
gcc([gcc(1,1,1), gcc(2,3,2), gcc(1,3,3),
 gcc(0,4,4), gcc(1,3,5)],
 [X1, X2, X3, X4, X5]),

X1 = ?2, X2 = ?, X3 = ?2, X4 = ?, X5 = ?

X1 :: [2,4], X2 :: [1,3,4], X3 :: [1,2,3,4],
X4 :: [3,4,5], X5 :: [3,4,5],
gcc([gcc(1,1,1), gcc(2,3,2), gcc(1,3,3),
 gcc(0,4,4), gcc(1,3,5)],
 [X1, X2, X3, X4, X5]),

X1 = 2, X2 = ?1, X3 = 2, X4 = ?, X5 = ?
Problem
Program
Search
Improved Search Strategy

gcc Continued

\[
\begin{align*}
X_1 & : [2, 4], X_2 : [1, 3, 4], X_3 : [_, 2, 3, 4], \\
X_4 & : [3, 4, 5], X_5 : [3, 4, 5],
\end{align*}
\]

\[
gcc([gcc(1, 1, 1), gcc(2, 3, 2), gcc(1, 3, 3),
\quad gcc(0, 4, 4), gcc(1, 3, 5)],
\quad [X_1, X_2, X_3, X_4, X_5]),
\]

\[
X_1 = 2, X_2 = 1, X_3 = 2, X_4 = ?, X_5 = ?
\]

Helmut Simonis
More Global Constraints 15

gcc Made Domain Consistent

\[
\begin{align*}
X_1 & : [2, 4], X_2 : [1, 3, 4], X_3 : [_, 2, 3, 4], \\
X_4 & : [3, 4, 5], X_5 : [3, 4, 5],
\end{align*}
\]

\[
gcc([gcc(1, 1, 1), gcc(2, 3, 2), gcc(1, 3, 3),
\quad gcc(0, 4, 4), gcc(1, 3, 5)],
\quad [X_1, X_2, X_3, X_4, X_5]),
\]

\[
X_1 = 2, X_2 = 1, X_3 = 2, X_4 \in \{3, 5\}, X_5 \in \{3, 5\}
\]
How does the constraint solver do that?

Explain in optional material at end

Reminder: element (X, List, Y)

- List is a list of integers
- The X^{th} element of List is Y
- The index starts from 1
- Typical uses:
 - Projection
 - Cost
Prime is 1 iff $X \in 1..10$ is a prime number

$X :: 1..10,$
element(X,[1,1,1,0,1,0,1,0,0,0],Prime),

Cost is the cost corresponding to the assignment of Y

$Y :: 1..10,$
element(Y,[5,3,34,0,3,1,12,12,1,3],Cost)

sequence_total(Min,Max,Low,High,K,Vars)

- Variables $Vars$ have 0/1 domain
- Between Min and Max variables have value 1
- For every sub-sequence of length K, between Low and $High$ variables have value 1
sequence_total Example

\[[X_1, X_2, X_3, X_4, X_5, X_6, X_7, X_8, X_9, X_{10}] :: 0..1, \]
\[\text{sequence_total}(2,3,1,2,3,} \]
\[[X_1, X_2, X_3, X_4, X_5, X_6, X_7, X_8, X_9, X_{10}], \]
\[X_1 = 0, X_4 = 0, X_7 = 0, X_{10} = 0 \]
Mathematical Equivalent

\[\text{Vars} = [x_1, x_2, \ldots x_N] \]

\[\text{Min} \leq \sum_{1 \leq i \leq N} x_i \leq \text{Max} \]

\[1 \leq s \leq N - k + 1 : \quad \text{Low} \leq \sum_{s \leq j \leq s + k - 1} x_j \leq \text{High} \]

- Pruning very different when using finite domain inequalities
- Currently no domain consistent implementation of \text{sequence_total}
- Weaker version \text{sequence} (no global counters) domain consistent
- Currently using decomposition:
 - \text{sequence_total} = \text{sequence} + \text{gcc} + \text{more}
Main Program

:-module(car).
:-export(top/0).
:-lib(ic).
:-lib(ic_global_gac).

top:-
 problem(Problem),
 model(Problem,L),
 writeln(L).

Structure Definitions

:-local struct(problem(cars,
 models,
 required,
 using_options,
 value_order)).

:-local struct(option(k,
 n,
 index_set,
 total_use)).
Model (Part 1)

```
model(problem{cars:NrCars,
           models:NrModels,
           required:Required,
           using_options:List,
           value_order:Ordered},L):-
    length(L,NrCars),
    L :: 1..NrModels,
    (foreach(Cnt,Required),
     count(J,1,_),
     foreach(gcc(Cnt,Cnt,J),Card) do
      true
    ),
    gcc(Card,L),
    ...
```

Model (Part 2)

```
... (foreach(option{k:K,
                  n:N,
                  index_set:IndexSet,
                  total_use:Total},List),
    param(L,NrCars) do
    (foreach(X,L),
     foreach(B,Binary),
     param(IndexSet) do
      element(X,IndexSet,B)
    ),
    sequence_total(Total,Total,0,K,N,Binary)
  ),
  search(L,0,input_order,ordered(Ordered),
```
Data

```
problem(100, 18,
    [5, 3, 7, 1, 10, 2, 11, 5, 4, 6, 12, 1, 1, 5, 9, 5, 12, 1],
    [option(1, 2, [1, 2, 3, 5, 6, 7, 8, 14],
      [1, 1, 1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0, 0], 48),
     option(2, 3, [1, 2, 3, 4, 5, 9, 10, 11, 15],
      [1, 1, 1, 1, 0, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0, 0], 57),
     option(1, 3, [3, 4, 8, 11, 12, 13, 18],
      [0, 0, 1, 1, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 1], 28),
     option(2, 5, [2, 4, 7, 10, 13, 17],
      [0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1], 34),
     option(1, 5, [1, 6, 9, 12, 16],
      [1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0], 17)]
    [1, 3, 2, 4, 6, 8, 7, 12, 13, 5, 9, 11, 10, 14, 16, 18, 17, 15]).
```

Data Generation

- Data not really stored as facts
- Generated from text data files in different format
- Benchmark set from CSPLIB (http://www.csplib.org)
Another Example (PR97)

- 100 cars
- 22 types
- 5 options
 - Option 1: 1 out of 2
 - Option 2: 2 out of 3
 - Option 3: 1 out of 3
 - Option 4: 2 out of 5
 - Option 5: 1 out of 5

Second Example: Car Types

<table>
<thead>
<tr>
<th>Type</th>
<th>Cars Required</th>
<th>Option 1</th>
<th>Option 2</th>
<th>Option 3</th>
<th>Option 4</th>
<th>Option 5</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>6</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>10</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>3</td>
<td>2</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>4</td>
<td>2</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>5</td>
<td>8</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>6</td>
<td>15</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>7</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>8</td>
<td>5</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>9</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>10</td>
<td>3</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>11</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>12</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>13</td>
<td>8</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>14</td>
<td>3</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>15</td>
<td>10</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>16</td>
<td>4</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>17</td>
<td>4</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>18</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>19</td>
<td>4</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>20</td>
<td>6</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>21</td>
<td>1</td>
<td>1</td>
<td>0</td>
<td>1</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>22</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>
Search (Stopped After 1000 Nodes)

- This does not look good
- Typical thrashing behaviour
- We made a wrong choice at some point
- ... but did not detect it
- Many additional choices are made before failure is detected
- We have to explore the complete tree under the wrong choice
- This is far too expensive
Change of Search Strategy

- Do not label car slot variables
- Decide instead if slot should use an option or not
- This restricts the car models which can be placed in this slot
- Start with the most restricted option
- When all options are assigned, the car type is fixed
- Potential problem: We now have 500 instead of 100 decision variables
- Naive searchspace $2^{500} = 3.2 \times 10^{150}$ instead of $2^{100} = 1.7 \times 10^{34}$

Second Modification

- Instead of assigning values left to right
- Start assigning in middle of board
- And alternate around middle until you reach edges
- Idea: Slots at edges are less constrained, i.e. easier to assign
- Save those slots until the end
- We already encountered this idea for the N-Queens problem
Modified Search

Assignment Step 2
Observations

- Important to start in middle
- Making hard choices first
- Concentrate on difficult to satisfy sub-problem
- Number of choices is much smaller than number of variables
- Some assignments lead to a lot of propagation

Conclusions

- Introduced global constraint *sequence*
- Reuse *gcc* and *element*
- Search on auxiliary variables can work well
- Raw search space measures are unreliable
- Modelling idea
 - Decide what to make in a given time slot
 - ... and not when to schedule some given activity
Making gcc Domain Consistent

Method: Max Flow Model

- Express constraint as max-flow problem
- Any flow solution corresponds to a valid assignment
- Only work with one flow solution
- Obtain all others by considering
 - residual graph and
 - strongly connected components
- Classical method, faster methods exist
- Use of max flow based propagators for many constraints
Making gcc Domain Consistent

Start with Value Graph

\[\begin{align*}
X_1 &\rightarrow 1 & X_2 &\rightarrow 2 \\
X_2 &\rightarrow 3 & X_3 &\rightarrow 4 \\
X_3 &\rightarrow 5 & X_4 &\rightarrow 2 \\
X_4 &\rightarrow 4 & X_5 &\rightarrow 5 \\
\end{align*} \]

More Global Constraints

Convert to Flow Problem

\[\begin{align*}
\text{s} &\rightarrow X_1 & 1 \\
\text{s} &\rightarrow X_2 & 2 \\
\text{s} &\rightarrow X_3 & 3 \\
\text{s} &\rightarrow X_4 & 4 \\
\text{s} &\rightarrow X_5 & 5 \\
X_1 &\rightarrow X_2 & 1 \\
X_1 &\rightarrow X_3 & 1 \\
X_1 &\rightarrow X_4 & 1 \\
X_1 &\rightarrow X_5 & 1 \\
X_2 &\rightarrow X_3 & 1 \\
X_2 &\rightarrow X_4 & 1 \\
X_2 &\rightarrow X_5 & 2 \\
X_3 &\rightarrow X_4 & 1 \\
X_3 &\rightarrow X_5 & 0 \\
X_4 &\rightarrow X_5 & 1 \\
\text{t} &\rightarrow X_1 & 1 \\
\text{t} &\rightarrow X_2 & 2 \\
\text{t} &\rightarrow X_3 & 3 \\
\text{t} &\rightarrow X_4 & 4 \\
\text{t} &\rightarrow X_5 & 5 \\
\end{align*} \]
Find Maximal Flow

Mark Value Edges in Flow
Residual Graph

Find Strongly Connected Components
Mark Edges

Remove Unmarked Edges

Helmut Simonis More Global Constraints 55

Helmut Simonis More Global Constraints 56
Constraint is Domain Consistent

More Information

Mehmet Dincbas, Helmut Simonis, and Pascal Van Hentenryck.
Solving the car-sequencing problem in constraint logic programming.

Jean-Charles Regin and Jean-Francois Puget.
A filtering algorithm for global sequencing constraints.
Making gcc Domain Consistent

More Information

Christine Solnon, Van Dat Cung, Alain Nguyen, and Christian Artigues.

Willem Jan van Hoeve, Gilles Pesant, Louis-Martin Rousseau, and Ashish Sabharwal.
Revisiting the sequence constraint.

Michael J. Maher, Nina Narodytska, Claude-Guy Quimper, and Toby Walsh.
Flow-based propagators for the sequence and related global constraints.