Chapter 11: Limits of Propagation (Costas Array)

Helmut Simonis

Cork Constraint Computation Centre
Computer Science Department
University College Cork
Ireland

ECLiPSe ELearning Overview

Helmut Simonis

Limits of Propagation

1

Problem Program Search Improvements

Licence

This work is licensed under the Creative Commons Attribution-Noncommercial-Share Alike 3.0 Unported License. To view a copy of this license, visit http:

//creativecommons.org/licenses/by-nc-sa/3.0/ or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA.

Outline

- Problem
- Program
- Search
- 4 Improvements

Helmut Simonis

Limits of Propagation

0

Problem Program Search Improvements

What we want to introduce

- Improving propagation does not always pay
- For some problems, simple backtracking is best
- CP may not always be the best method
- CP should always be fastest way to model problem
- Consider time to target
 - Time required to run program
 - Time required to write program
- Problem: Costas Array (Antenna design, sonar systems)

Problem Definition

Costas Array (Wikipedia)

A Costas array (named after John P. Costas) can be regarded geometrically as a set of N points lying on the squares of a NxN checkerboard, such that each row or column contains only one point, and that all of the N(N - 1)/2 vectors between each pair of dots are distinct.

Helmut Simonis

Limits of Propagation

5

Problem
Program
Search
Improvements

Example (Size 6)

Model

- A variable for each column, ranging from 1 to N
- A list of N variables for the columns
- A difference variable between each ordered pair of variables
- alldifferent constraint between variables
- alldifferent constraints for all differences

Helmut Simonis

Limits of Propagation

7

Problem
Program
Search
Improvements

Model

Example

Helmut Simonis

Limits of Propagation

ç

Problem
Program
Search
Improvements

Declarations

:-module(costas).

:-export(top/0).

:-lib(ic).

Main Program

Helmut Simonis

Limits of Propagation

11

Problem
Program
Search
Improvements

Differences

Basic Model

Helmut Simonis

Limits of Propagation

13

Problem Program Search Improvements

Other Problem Sizes

	Basic Model		
Size	Backtrack	Time	
10	4	0.00	
11	118	0.08	
12	50	0.05	
13	335	0.36	
14	5008	6.23	
15	47332	68.92	
16	157773	271.22	
17	1641685	3278.19	
18	115745	283.97	

Search tree (Size 12)

Helmut Simonis

Limits of Propagation

14

Problem Program Search Improvements

Search tree (Size 13)

Search tree (Size 14)

Helmut Simonis

Limits of Propagation

17

Problem Program Search Improvements

Search tree (Size 15)

Search tree (Size 16)

Helmut Simonis

Limits of Propagation

19

Problem Program Search Improvements

Observation

- Problem becomes harder with increasing size
- Failures occur from level 3 down
- Deep backtracking required to undo wrong choices
- Value selection not working, have to explore all choices
- Increase not uniform

Missing Propagation

The model is doing this

Helmut Simonis

Limits of Propagation

21

Problem Program Search Improvements

Missing Propagation

It could be doing that!

Changed Differences

Helmut Simonis

Limits of Propagation

23

Problem Program Search Improvements

Adding Constraints
Change of Search Strategy

Changed Differences

Changed Differences

©ork Constraint Computation Centre

Helmut Simonis

Limits of Propagation

25

Problem Program Search Improvements

Adding Constraints
Change of Search Strategy

Further Model Improvements

- DC consistent alldifferent between variables
- (DC consistent alldifferent between differences)
- DC difference constraint

Improved Model

Helmut Simonis

Limits of Propagation

27

Problem Program Search Improvements

Adding Constraints
Change of Search Strategy

Comparison (Solutions)

Comparison (Search Trees)

Initial Model

Improved Model

Helmut Simonis

Limits of Propagation

29

Problem Program Search Improvements

Adding Constraints
Change of Search Strategy

Search tree (Size 12)

Search tree (Size 13)

Helmut Simonis

Limits of Propagation

31

Problem Program Search Improvements

Adding Constraints
Change of Search Strategy

Search tree (Size 14)

Search tree (Size 15)

Helmut Simonis

Limits of Propagation

33

Problem Program Search Improvements

Adding Constraints
Change of Search Strategy

Search tree (Size 16)

Comparison (Search Tree, size 16)

Initial Model

Improved Model

Helmut Simonis

Limits of Propagation

35

entre

Problem Program Search Improvements

Adding Constraints
Change of Search Strategy

Other Problem Sizes

	Basic Model		Improved Model	
Size	Backtrack	Time	Backtrack	Time
10	4	0.00	4	0.16
11	118	0.08	77	1.44
12	50	0.05	31	0.94
13	335	0.36	216	6.22
14	5008	6.23	2875	95.94
15	47332	68.92	25820	1046.75
16	157773	271.22	84161	4099.52
17	1641685	3278.19	825590	49371.02
18	115745	283.97	55102	4530.83

Observation

- Changes reduce backtracks by 50%
- But, run times explode
- Being clever does not always pay
- Or, perhaps, we did not make the right improvements?

Helmut Simonis

Limits of Propagation

37

Problem Program Search Improvements

Adding Constraints
Change of Search Strategy

Change of Search Strategy

- Idea: Make more difficult choices first
- Reorder variables to start from middle
- Assign values starting in middle

Labeling From Middle

Helmut Simonis

Limits of Propagation

39

Problem Program Search Improvements

Adding Constraints
Change of Search Strategy

Other Problem Sizes

	Improved Model		Improved Model, Middle	
Size	Backtrack	Time	Backtrack	Time
10	4	0.16	1	0.01
11	77	1.44	13	0.03
12	31	0.94	72	0.26
13	216	6.22	513	1.81
14	2875	95.94	589	2.37
15	25820	1046.75	7840	34.30
16	84161	4099.52	13158	63.91
17	825590	49371.02	56390	298.16
18	55102	4530.83	19750	115.64

Observation

- Big improvement in backtracks and time
- Not for all problem sizes
- Question: Do we need improvement of model for this to work?
- Experiment: Run changes search routine on basic model

Helmut Simonis

Limits of Propagation

41

Problem Program Search Improvements

Adding Constraints
Change of Search Strategy

Labeling Basic Model from Middle

	Basic Model		Basic Model, Middle	
Size	Backtrack	Time	Backtrack	Time
10	4	0.00	1	0.00
11	118	0.08	17	0.01
12	50	0.05	97	0.09
13	335	0.36	644	0.74
14	5008	6.23	746	1.03
15	47332	68.92	10041	16.03
16	157773	271.22	17005	31.12
17	1641685	3278.19	73080	152.72
18	115745	283.97	28837	60.97

Comparison: Model Impact

	Basic Model, Middle		Improved Model, Middle	
Size	Backtrack	Time	Backtrack	Time
10	1	0.00	1	0.01
11	17	0.01	13	0.03
12	97	0.09	72	0.26
13	644	0.74	513	1.81
14	746	1.03	589	2.37
15	10041	16.03	7840	34.30
16	17005	31.12	13158	63.91
17	73080	152.72	56390	298.16
18	28837	60.97	19750	115.64
19	1187618	3174.72	1044751	4474.56

Helmut Simonis

Limits of Propagation

43

Problem Program Search Improvements

Adding Constraints
Change of Search Strategy

Comparison (Search Tree, size 18)

Initial Model

Improved Model

© ork © onstraint © omputation © entre

Observation

- Search strategy does not depend on model
- Variable selection is the same!
- Basic model is about two times faster
- About 50% more backtrack steps
- Again, sometimes reasoning does not pay!
- Better search strategy pays off dramatically

Helmut Simonis

Limits of Propagation

45

0/1 Models

A Different Model

Model shown is not the only way to express problem

0/1 Models

- SAT (Minisat)
- Pseudo Boolean (Minisat+)
- MIP (Coin-OR)

Helmut Simonis

Limits of Propagation

47

0/1 Models

0/1 Models: Variables

- X_{iv} : Variable i takes value v
- D_{ijv} : Difference between variables i and j is v

MIP Model: Constraints

- alldifferent between variables
 - $\sum_{i} X_{iv} = 1$ $\sum_{v} X_{iv} = 1$
- alldifferent between differences

 - $\sum_{v} D_{ijv} = 1$ $\sum_{i-j=c} D_{ijv} \le 1$
- link between variables and differences
 - $D_{ijv} = \sum_{v1=v2+v} X_{iv_1} X_{jv_2}$

Helmut Simonis

Limits of Propagation

49

0/1 Models

More Information

http://www.costasarrays.org/

