Chapter 6: Search Strategies (N-Queens)

Helmut Simonis

Cork Constraint Computation Centre
Computer Science Department
University College Cork
Ireland

ECLiPSe ELearning

Licence

This work is licensed under the Creative Commons Attribution-Noncommercial-Share Alike 3.0 Unported License. To view a copy of this license, visit http://creativecommons.org/licenses/by-nc-sa/3.0/ or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA.
What we want to introduce

- Importance of search strategy, constraints alone are not enough
- Dynamic variable ordering exploits information from propagation
- Variable and value choice
- Hard to find strategy which works all the time
- search builtin, flexible search abstraction
- Different way of improving stability of search routine
Example Problem

- N-Queens puzzle
- Rather weak constraint propagation
- Many solutions, limited number of symmetries
- Easy to scale problem size

Problem Definition

8-Queens

Place 8 queens on an 8×8 chessboard so that no queen attacks another. A queen attacks all cells in horizontal, vertical and diagonal direction. Generalizes to boards of size $N \times N$.

Solution for board size 8×8
This is a rather old puzzle
Dudeney (1917) cites Nauck (1850) as source
Certain solutions for all sizes can be constructed, this is not a hard problem
Long history in AI and CP papers
Important: Haralick and Elliot (1980) describing the first-fail principle

Cell based Model
- A 0/1 variable for each cell to say if it is occupied or not
- Constraints on rows, columns and diagonals to enforce no-attack
- \(N^2 \) variables, \(6N - 2 \) constraints

Column (Row) based Model
- A 1..N variable for each column, stating position of queen in the column
- Based on observation that each column must contain exactly one queen
- \(N \) variables, \(N^2 / 2 \) binary constraints
assign \[X_1, X_2, \ldots X_N \]

s.t.

\[
\forall 1 \leq i \leq N : \ X_i \in 1..N \\
\forall 1 \leq i < j \leq N : \ X_i \neq X_j \\
\forall 1 \leq i < j \leq N : \ X_i \neq X_j + i - j \\
\forall 1 \leq i < j \leq N : \ X_i \neq X_j + j - i
\]

Main Program (Array Version)

```prolog
:-module(array).
:-export(top/0).
:-lib(ic).

top:-
    nqueen(8,Array), writeln(Array).

nqueen(N,Array):-
    dim(Array,[N]),
    Array[1..N] :: 1..N,
    alldifferent(Array[1..N]),
    noattack(Array,N),
    labeling(Array[1..N]).
```
Generating binary constraints

noattack(Array,N):-
 (for(I,1,N-1),
 param(Array,N) do
 (for(J,I+1,N),
 param(Array,I) do
 subscript(Array,[I],Xi),
 subscript(Array,[J],Xj),
 D is I-J,
 Xi \= Xj+D,
 Xj \= Xi+D
)
).

Main Program (List Version)

:-module(nqueen).
:-export(top/0).
:-lib(ic).

top:-
 nqueen(8,L), writeln(L).

nqueen(N,L):-
 length(L,N),
 L :: 1..N,
 alldifferent(L),
 noattack(L),
 labeling(L).
Generating binary constraints

\begin{verbatim}
noattack([]).
noattack([H|T]):-
 noattack1(H,T,1),
 noattack(T).

noattack1(_,[],_).
noattack1(X,[Y|R],N):-
 X \#\= Y+N,
 Y \#\= X+N,
 N1 is N+1,
 noattack1(X,R,N1).
\end{verbatim}
First Solution

Observations

- Even for small problem size, tree can become large
- Not interested in all details
- Ignore all automatically fixed variables
- For more compact representation abstract failed sub-trees
Compact Representation

Number inside triangle: Number of choices
Number under triangle: Number of failures

Exploring other board sizes

- How stable is the model?
- Try all sizes from 4 to 100
- Timeout of 100 seconds
Naive Search, Problem Sizes 4-100

Observations

- Time very reasonable up to size 20
- Sizes 20-30 times very variable
- Not just linked to problem size
- No size greater than 30 solved within timeout
Possible Improvements

- Better constraint reasoning
 - Remodelling problem with 3 \textit{alldifferent} constraints
 - Global reasoning as described before
 - Not explored here
- Better control of search
 - Static vs. dynamic variable ordering
 - Better value choice
 - Not using complete depth-first chronological backtracking

Static vs. Dynamic Variable Ordering

- Heuristic Static Ordering
 - Sort variables before search based on heuristic
 - Most important decisions
 - Smallest initial domain
- Dynamic variable ordering
 - Use information from constraint propagation
 - Different orders in different parts of search tree
 - Use all information available
First Fail strategy

- Dynamic variable ordering
- At each step, select variable with smallest domain
- Idea: If there is a solution, better chance of finding it
- Idea: If there is no solution, smaller number of alternatives
- Needs tie-breaking method

Caveat

- First fail in many constraint systems have slightly different tie breakers
- Hard to compare result across platforms
- Best to compare search trees, i.e. variable choices in all branches of tree
Modification of Program

```prolog
:-module(nqueen).
:-export(top/0).
:-lib(ic).

top:-
    nqueen(8,L), writeln(L).

nqueen(N,L):-
    length(L,N),
    L :: 1..N,
    alldifferent(L),
    noattack(L),
    search(L,0,first_fail,indomain,complete,[]).
```

The search Predicate

- Packaged search library in ic constraint solver
- Provides many different alternative search methods
- Just select a combination of keywords
- Extensible by user
search Parameters

search(L, 0, first_fail, indomain, complete, [])

1. List of variables (or terms, covered later)
2. 0 for list of variables
3. Variable choice, e.g. first_fail, input_order
4. Value choice, e.g. indomain
5. Tree search method, e.g. complete
6. Optional argument (or empty) list

Variable Choice

- Determines the order in which variables are assigned
- input_order assign variables in static order given
- first_fail select variable with smallest domain first
- most_constrained like first_fail, tie break based on number of constraints in which variable occurs
- Others, including programmed selection
Value Choice

- Determines the order in which values are tested for selected variables
- `indomain` Start with smallest value, on backtracking try next larger value
- `indomain_max` Start with largest value
- `indomain_middle` Start with value closest to middle of domain
- `indomain_random` Choose values in random order

Comparison

- Board size 16x16
- Naive (Input Order) Strategy
- First Fail variable selection
Naive (Input Order) Strategy (Size 16)

FirstFail Strategy (Size 16)
Comparing Solutions

- Naive Search
- Improved Heuristics
- Making Search More Stable
- Dynamic Variable Choice

Solutions are different!

FirstFail, Problem Sizes 4-100
Observations

- This is much better
- But some sizes are much harder
- Timeout for sizes 88, 91, 93, 97, 98, 99

Can we do better?

- Improved initial ordering
 - Queens on edges of board are easier to assign
 - Do hard assignment first, keep simple choices for later
 - Begin assignment in middle of board
- Matching value choice
 - Values in the middle of board have higher impact
 - Assign these early at top of search tree
 - Use `indomain_middle` for this
Modified Program

:-module(nqueen).
:-export(top/0).
:-lib(ic).
top:-
 nqueen(16,L), writeln(L).

nqueen(N,L):-
 length(L,N),
 L :: 1..N,
 alldifferent(L),
 noattack(L),
 reorder(L,R),
 search(R,0,first_fail,indomain_middle,complete,[]).

Reordering Variable List

reorder(L,L1):-
 halve(L,L,[],Front,Tail),
 combine(Front,Tail,L1).

halve([],Tail,Front,Front,Tail).
halve([_],Tail,Front,Front,Tail).
halve([_,_|R],[F|T],Front,Fend,Tail):-
 halve(R,T,[F|Front],Fend,Tail).

combine(C,[],C):-!.
combine([],C,C).
combine([A|A1],[B|B1],[B,A|C1]):-
 combine(A1,B1,C1).
Start from Middle (Size 16)

Comparing Solutions

Naive

First Fail

Middle

Again, solutions are different!
Middle, Problem Sizes 4-100

- Not always better than first fail
- For size 16, trees are similar size
- Timeout only for size 94
- But still, one strategy does not work for all problem sizes
- There are ways to resolve this!
Approach 1: Heuristic Portfolios

- Try multiple strategies for the same problem
- With multi-core CPUs, run them in parallel
- Only one needs to be successful for each problem

Approach 2: Restart with Randomization

- Only spend limited number of backtracks for a search attempt
- When this limit is exceeded, restart at beginning
- Requires randomization to explore new search branch
- Randomize variable choice by random tie break
- Randomize value choice by shuffling values
- Needs strategy when to restart
Approach 3: Partial Search

- Abandon depth-first, chronological backtracking
- Don’t get locked into a failed sub-tree
- A wrong decision at a level is not detected, and we have to explore the complete subtree below to undo that wrong choice
- Explore more of the search tree
- Spend time in promising parts of tree

Example: Credit Search

- Explore top of tree completely, based on credit
- Start with fixed amount of credit
- Each node consumes one credit unit
- Split remaining credit amongst children
- When credit runs out, start bounded backtrack search
- Each branch can use only K backtracks
- If this limit is exceeded, jump to unexplored top of tree
Credit based search

:-module(nqueen).
:-export(top/0).
:-lib(ic).
top:-
 nqueen(8,L), writeln(L).

nqueen(N,L):-
 length(L,N),
 L :: 1..N,
 alldifferent(L),
 noattack(L),
 reorder(L,R),
 search(R,0,first_fail,indomain_middle, credit(N,5),[]).

Credit, Search Tree Problem Size 94
Credit, Problem Sizes 4-100

Credit, Problem Sizes 4-200
Conclusions

- Choice of search can have huge impact on performance.
- Dynamic variable selection can lead to large reduction of search space.
- `search` builtin provides useful abstraction of search functionality.
- Depth-first chronological backtracking not always best choice.

Outlook

- Finite domain with good search reasonable for board sizes up to 1000.
- Limitation is memory, not execution time.
- Memory requirement quadratic as domain changes must be trailed.
- Better results possible for repair based methods.
- N-Queens not a hard problem, so general conclusions hard to draw.
Exercises

1. Write a program for the 0/1 model of the puzzle as described above. Explain the problem with introducing a dynamic variable ordering for this model.

2. It is possible to express the problem with only three \textit{alldifferent} constraints. Can you describe this model?

3. What is the impact of using a more powerful consistency method for the \textit{alldifferent} constraint in our model? How do the search trees differ to our solution? Does it pay off in execution time?

4. Describe precisely what the \textit{reorder} predicate does. You may find it helpful to run the program with instantiated lists of varying length.

5. The credit search takes two parameters, the total amount of credit and the extra number of backtracks allowed after the credit runs out. How does the program behave if you change these parameters? Can you explain this behaviour?