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What we want to introduce

@ Problem decomposition

e Decide which problem to solve
e Not always required to solve complete problem in one go

@ Modelling with bin packing
@ Customized search routines can bring dramatic

improvements
@ Understanding what is happening important to find
improvements
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Problem
Phase 1
Phase 2

Problem Definition

Progressive Party

The problem is to timetable a party at a yacht club. Certain
boats are to be designated hosts, and the crews of the
remaining boats in turn visit the host boats for several
successive half-hour periods. The crew of a host boat remains
on board to act as hosts while the crew of a guest boat together
visits several hosts. Every boat can only host a limited number
of guests at a time (its capacity) and crew sizes are different.
The party lasts for 6 time periods. A guest boat cannot not
revisit a host and guest crews cannot meet more than once.

The problem facing the rally organizer is that of minimizing the | _
number of host boats. vaint
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Problem
Phase 1
Phase 2

Capacity 6 8 12 12 12 12 12 10 10 10 10 10 8 8

Crew 2 2 2 2 4 4 4 1 2 2 2 3 4 2

Capacity 8 12 8 8 8 8 8 8 7 7 7 7 7 7
Crew 3 6 2 2 4 2 4 5 4 4 2 2 4 5

Capacity 6 6 6 6 6 6 6 6 6 6 9 0 0 0
Crew 2 4 2 2 2 2 2 2 4 5 7 2 3 4
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Problem
Phase 1
Phase 2

High Level Problem Decomposition

@ Phase 1: Select minimal set of host boats
e Manually

@ Phase 2: Create plan to assign guest boats to hosts in
multiple periods

e Done as a constraint program
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Problem

@ Decompose problem into multiple, simpler sub problems
@ Solve each sub problem in turn

@ Provides solution of complete problem

@ Challenge: How to decompose so that good solutions are
obtained?

@ How to show optimality of solution?
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Problem

Phase 1
Phase 2

Selecting Host boats

@ Some additional side constraints
@ Some boats must be hosts
e Some boats may not be hosts
@ Reason on total or spare capacity

@ No solution with 12 boats (with side constraints)
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Problem

Solution to Phase 1

@ Select boats 1 to 12 and 14 as hosts

@ Many possible problem variants by selecting other host
boats
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Problem
Phase 1
Phase 2

Phase 2 Sub-problem

@ Host boats and their capacity given

@ Ignore host teams, only consider free capacity
@ Assign guest teams to host boats
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Problem
Phase 1
Phase 2

@ Assign guest boats to hosts for each time period
@ Matrix (size NrGuests x NrPeriods) of domain variables x;
@ Variables range over possible hosts 1..NrHosts
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Problem
Phase 1
Phase 2

Constraints

@ Each guest boat visits a host boat atmost once
@ Two guest boats meet at most once

@ All guest boats assigned to a host in a time period fit within
spare capacity of host boat
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Problem
Phase 1
Phase 2

Each guest visits a hosts atmost once

@ The variables for a guest and different time periods must
be pairwise different

@ alldifferent constraint on rows of matrix
@ alldifferent({x;|1 < j < NrPeriods})
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Problem
Phase 1
Phase 2

Two guests meet at most once

@ The variables for two guests can have the same value for
atmost one time period

@ Constraints on each pair of rows in matrix
@ Xjj = Xij, i # b = Xi, k +* X,'2k1 < k < NrPeriods, k # |
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Problem
Phase 1
Phase 2

All guests assigned to a host in a time period fit within
spare capacity of host boat

@ Capacity constraint expressed as bin packing for each time
period

@ Each host boat is a bin with capacity from 0 to its unused
capacity

@ Each guest is an item to be assigned to a bin

@ Size of item given by crew size of guest boat
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Problem
Phase 1
Phase 2

Bin Packing Constraint

@ Global constraint
bin_packing (Assignment, Sizes, Capacity)
@ ltems of different sizes are assigned to bins

@ Assignment of item modelled with domain variable (first
argument)

@ Size of items fixed: integer values (second argument)
@ Each bin may have a different capacity

@ Capacity of each bin given as a domain variable (third
argument)
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Program

Main Program

top:—
top (10, 6) .

top (Problem, Size) :—
problem (Problem, Hosts, Guests),
model (Hosts, Guests, Size,Matrix),
writeln (Matrix) .
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Program

problem (10,
(10,10,9,8,8,8,8,8,8,7,6,6,41],
[71 6/ 5/ 5/ 5/ 4/ 4/ 4/ 4/ 4/ 4/ 4/ 4/ 4/ 3/
3,2,2,2,2,2,2,2,2,2,2,2,2,2]) .
mnsf;'::;
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Program

Creating Variables

model (Hosts, Guests, NrPeriods,Matrix) :—
length (Hosts,NrHosts),
length (Guests, NrGuests),
dim (Matrix, [NrGuests,NrPeriods]),
Matrix[1l..NrGuests,1l..NrPeriods] :: 1..NrHosts,
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Program

Setting up alldifferent constraints

(for(I,1,NrGuests),
param (Matrix,NrPeriods) do
ic:alldifferent (Matrix[I,1l..NrPeriods])

) 1
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Program

Setting up bin_packing constraints

(for(J,1l,NrPeriods),
param (Matrix, NrGuests, Guests, Hosts) do
make_ bins (Hosts,Bins),
bin_packing (Matrix[1l..NrGuests, J],
Guests,Bins)
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Program

Each pair of guests meet atmost once

(for(I,1,NrGuests-1),
param(Matrix,NrGuests, NrPeriods) do
(for(I1l,I+1,NrGuests),
param (Matrix,NrPeriods, I) do
card_leg(Matrix[I,1..NrPeriods],
Matrix[Il,1..NrPeriods], 1)
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Program

Call search

extract_array (col,Matrix, List),
assign (List) .
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Program

Make Bin variables

make_bins (HostCapacity,Bins) :—
(foreach (Cap, HostCapacity),
foreach (B,Bins) do
B :: 0..Cap
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Program

Each pair of guests meet atmost once

card_leqg(Vectorl,Vector2,Card) :—

collection_to_1list (Vectorl,Listl),
collection_to_1list (Vector2,List2),
(foreach (X, Listl),

foreach (Y, List2),

fromto (0,A, A+B, Term) do

#=(X,Y,B)
)
eval (Term) #=< Card.
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Program

Naive Search

assign (List) :—

search (List, 0, input_order, indomain,
complete, []) .
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First Fail Strategy
Layered Search
Search Layered with Credit Search

Randomized with Restart

Naive Search (Compact view)
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First Fail Strategy
Layered Search
Search Layered with Credit Search

Randomized with Restart

Naive Search (Zoomed)
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First Fail Strategy

Layered Search

Layered with Credit Search
Randomized with Restart

Observations

@ Not too many wrong choices

@ But very deep backtracking required to discover failure
@ Most effort wasted in “dead” parts of search tree
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First Fail Strategy
Layered Search

Search Layered with Credit Search
Randomized with Restart

First Fail strategy

assign (List) :—
search (List, 0, £first_ fail, indomain,
complete, []) .
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First Fail Strategy

Layered Search

Layered with Credit Search
Randomized with Restart

First Fail Search
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First Fail Strategy

Layered Search
Search Layered with Credit Search

Randomized with Restart
First Fail Search (Zoomed)
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First Fail Strategy

Layered Search

Layered with Credit Search
Randomized with Restart

Observations

@ Assignment not done in row or column mode
@ Tree consists of straight parts without backtracking
@ ... and nearly fully explored parts
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First Fail Strategy
Layered Search
Search Layered with Credit Search

Randomized with Restart

@ Assign variables by time period

@ Within one time period, use first_fail selection

@ Solves bin packing packing for each period completely
@ Clearer impact of disequality constraints

@ Serial composition of search procedures
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First Fail Strategy

Layered Search

Layered with Credit Search
Randomized with Restart

Layered Search

assign (Matrix,NrPeriods, NrGuests) : —
(for (J,1,NrPeriods),
param (Matrix, NrGuests) do
search (Matrix[1l..NrGuests,J], 0,
first_fail, indomain,
complete, [])
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First Fail Strategy
Layered Search

Search Layered with Credit Search
Randomized with Restart

Layered Search
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First Fail Strategy
Layered Search
Search Layered with Credit Search

Randomized with Restart

Layered Solution (Zoomed)
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First Fail Strategy
Layered Search

Search Layered with Credit Search
Randomized with Restart

Observations

@ Deep backtracking for last time period
@ No backiracking to earlier time periods required
@ Small amount of backtracking at other time periods
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First Fail Strategy
Layered Search
Layered with Credit Search

Randomized with Restart

Use credit based search

But not for complete search tree

Loose too much useful work

Backtrack independently for each time period

Hope to correct wrong choices without deep backtracking
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First Fail Strategy
Layered Search

Search Layered with Credit Search
Randomized with Restart

Reminder: Credit Based Search

@ Explore top of tree completely, based on credit
@ Start with fixed amount of credit
@ Each node consumes one credit unit
@ Split remaining credit amongst children
@ When credit runs out, start bounded backtrack search
@ Each branch can use only K backtracks
@ If this limit is exceeded, jump to unexplored top of tree
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First Fail Strategy

Layered Search

Layered with Credit Search
Randomized with Restart

Layered with Credit

assign (Matrix,NrPeriods, NrGuests) : —
(for (J,1,NrPeriods),
param(Matrix,NrGuests) do
NSg is NrGuestsxNrGuests,
search (Matrix[1l..NrGuests,J], 0,
first_fail, indomain,
credit (NSq,10), [])
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First Fail Strategy
Layered Search

Search Layered with Credit Search
Randomized with Restart

Layered with Credit Search
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First Fail Strategy
Layered Search

Search Layered with Credit Search
Randomized with Restart

Layered with Credit Search (Zoomed)
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First Fail Strategy
Layered Search

Search Layered with Credit Search
Randomized with Restart

Observations

@ Improved search
@ Need more sample problems to really understand impact

©Cork
@onstraint
C omputation

“@entre

Helmut Simonis Customizing Search 45

First Fail Strategy
Layered Search
Layered with Credit Search

Randomized with Restart

@ Randomize value selection
@ Remove bias picking bins in same order
@ Allows to add restart
@ When spending too much time without finding solution
@ Restart search from beginning
@ Randomization will explore other initial assignments
@ Do not get caught in “dead” part of search tree
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First Fail Strategy
Layered Search

Search Layered with Credit Search
Randomized with Restart

Randomized with Restart

assign (Matrix,NrPeriods,NrGuests) :—
repeat,
(for(J,1,NrPeriods),
param(Matrix, NrGuests) do
NSg 1is NrGuests*NrGuests,
once (search (Matrix[1l..NrGuests, J], 0,
first_fail, indomain_random,
credit (NSg,10),[1]))
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First Fail Strategy

Layered Search

Layered with Credit Search
Randomized with Restart

Randomized Search
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First Fail Strategy
Layered Search

Search Layered with Credit Search
Randomized with Restart

Observations

@ Avoids deep backiracking in last time periods

@ Perhaps by mixing values more evenly

@ Impose fewer disequality constraints for last periods
@ Easier to find solution

@ Should allow to find solutions with more time periods

Eork
@onstraint
C omputation

“@entre

Helmut Simonis Customizing Search 49

First Fail Strategy
Layered Search

Search Layered with Credit Search
Randomized with Restart

Changing time periods

Problem | Size | Naive FF | Layered | Credit | Random

10 5| 0.812 | 1.453 1.515 | 0.828 1.922
10 6 | 14.813 | 2.047 2.093 | 1.219 2.469
10 /7| 79.109 | 3.688 | 50.250 | 3.234 3.672
10 8 - - | 141.609 | 55.156 6.328
10 9 - - - - 10.281
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First Fail Strategy
Layered Search

Search Layered with Credit Search
Randomized with Restart

Observations

@ Randomized method is strongest for this problem
@ Not always fastest for smaller problem sizes

@ Restart required for size 9 problems

@ Same model, very different results due to search
@ Very similar results for other problem instances
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A Further Decomposition

Further Improvement

@ Idea: There is no real effect of including later time periods
in constraint model

@ Only current time period matters
@ Decomposition: Set up model for one period at a time
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A Further Decomposition

Fine Grained Decomposition

Old New
Bin packing Bin packing
Alldifferent Domain restrictions
Meet at most once Disequalities between guest boats
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A Further Decomposition

Generated Graph Coloring Problem

@ Guest boats = Nodes
@ Host boats = Colors

@ Disequality constraints = Edges in graph
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A Further Decomposition

Visualization (Time period 2)
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A Further Decomposition

Visualization (Time period 3)
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A Further Decomposition

Visualization (Time period 6)
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A Further Decomposition

Solving the Graph Coloring Problem

@ Use disequality constraints
e Weak propagation
@ Extract alldifferent constraints

e Edge clique cover problem
e Choice of consistency method

@ Use somedifferent global constraint

e Heavy
e Interaction with bin packing constraint

Helmut Simonis Customizing Search
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A Further Decomposition

Comparison to Comet

ECLiPSe 6.0 Comet

Nr Size Solved Min Max Avg Solved Min Max Avg
1 6 100 0.187 0.343 0.226 100 0.33 0.38 0.35
1 7 100 0.218 0.515 0.271 100 0.39 0.49 0.44
1 8 100 0.250 2.469 0.382 100 0.50 0.72 0.57
1 9 100 0.266 9.906 1.253 100 0.74 1.46 1.01
1 10 100 0.375 136.828 23.314 100 1.47 41.72 4.68
2 6 100 0.218 2.375 0.624 100 0.37 0.52 0.43
2 7 100 0.266 3.453 1.117 100 0.47 1.64 0.73
2 8 100 0.297 15.421 2.348 100 0.75 7.16 2.69
2 9 100 0.469 107.187 20.719 99 4.41 162.96 33.54
3 6 100 0.219 3.266 0.551 100 0.37 0.56 0.43
3 7 100 0.250 3.734 0.889 100 0.49 1.45 0.74
3 8 100 0.296 21.360 2.005 100 0.84 11.64 2.85
3 9 100 1.078 173.266 34.774 96 4.41 164.44 40.10
4 6 100 0.219 9.922 2.443 100 0.39 0.72 0.47
4 7 100 0.360 25.297 3.531 100 0.55 2.33 0.87
4 8 100 0.438 53.547 8.848 100 1.23 11.38 3.68
4 9 63 3.062 494.109 206.324 94 8.35 166.90 59.55
5 6 100 0.203 7.922 1.498 100 0.53 5.29 1.67
5 7 100 0.266 28.000 5.889 100 1.77 132.82 29.72

6 6 100 0.219 15.219 2.147 100 0.58 31.84 2.74 an*

6 7 100 0.407 64.312 11.328 88 3.24 152.37 56.92 "imstraint
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A Further Decomposition

More Information
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A Further Decomposition

More Information
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A Further Decomposition

More Information
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