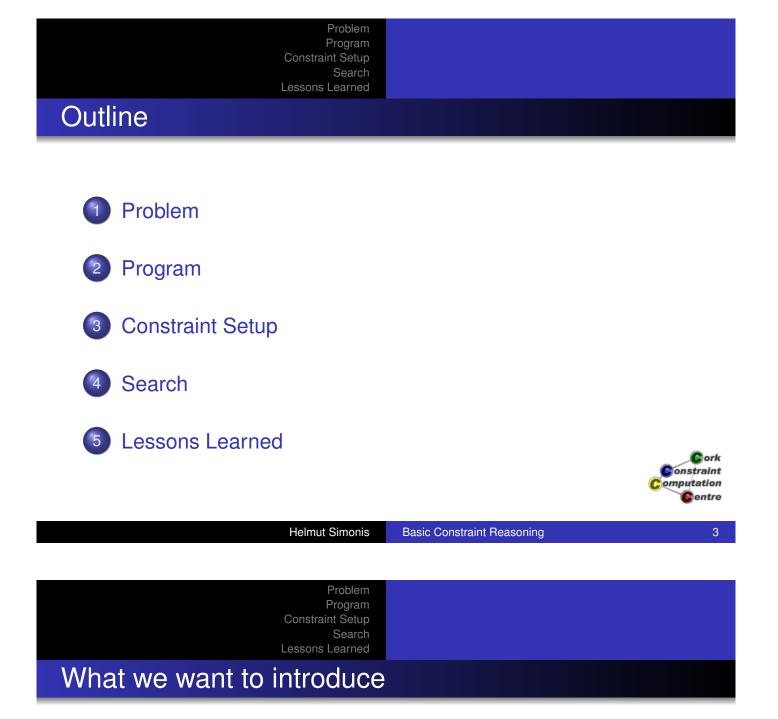
Chapter 4: Basic Constraint Reasoning (SEND+MORE=MONEY)

Helmut Simonis

Cork Constraint Computation Centre Computer Science Department University College Cork Ireland


This work is licensed under the Creative Commons Attribution-Noncommercial-Share Alike 3.0 Unported License. To view a copy of this license, visit http:

//creativecommons.org/licenses/by-nc-sa/3.0/ or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA.

Licence

- Finite Domain Solver in ECLiPSe
- Models and Programs
- Constraint Propagation and Search
- Basic constraints: linear arithmetic, all different, disequality
- Built-in search: Labeling
- Visualizers for variables, constraints and search

Problem Definition

A Crypt-Arithmetic Puzzle

We begin with the definition of the SEND+MORE=MONEY puzzle. It is often shown in the form of a hand-written addition:

ork onstraint omputation entre

5

	Problem Program Constraint Setup Search Lessons Learned	
Rules		

Basic Constraint Reasoning

S

+

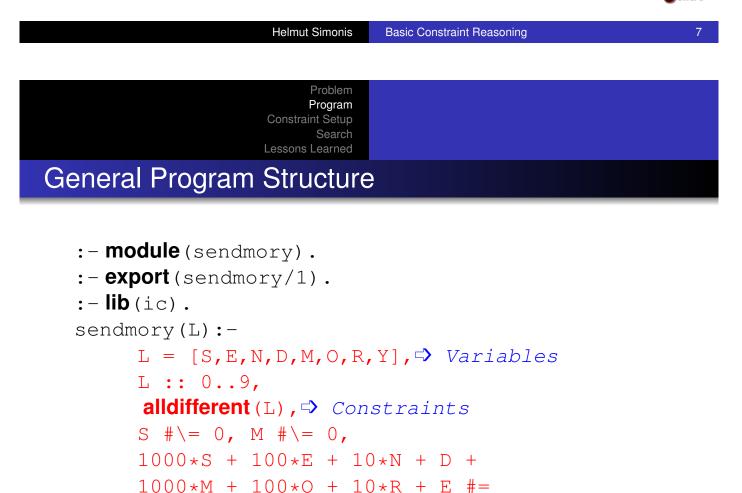
END

E

Е

Y

Each character stands for a digit from 0 to 9.

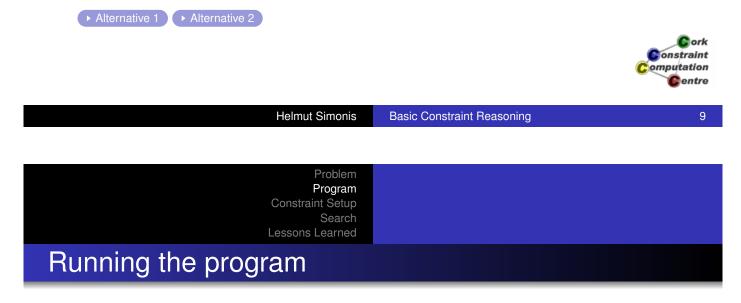

Helmut Simonis

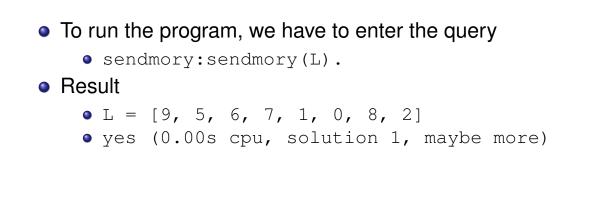
- Numbers are built from digits in the usual, positional notation.
- Repeated occurrence of the same character denote the same digit.
- Different characters denote different digits.
- Numbers do not start with a zero.
- MOR Ν • The equation must hold. М 0

Cork nstraint mputation entre

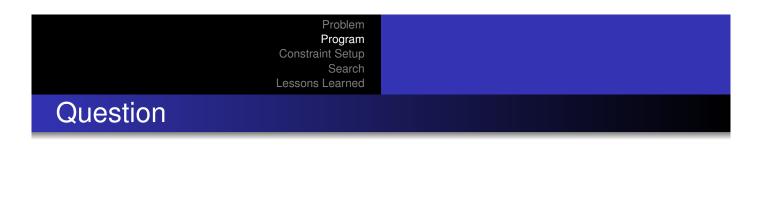
- Each character is a variable, which ranges over the values 0 to 9.
- An *alldifferent* constraint between all variables, which states that two different variables must have different values. This is a very common constraint, which we will encounter in many other problems later on.
- Two *disequality constraints* (variable *X* must be different from value *V*) stating that the variables at the beginning of a number can not take the value 0.
- An arithmetic equality constraint linking all variables with the proper coefficients and stating that the equation must hold.

 $10000 \star M + 1000 \star O + 100 \star N + 10 \star E + Y$,


labeling(L). → Search

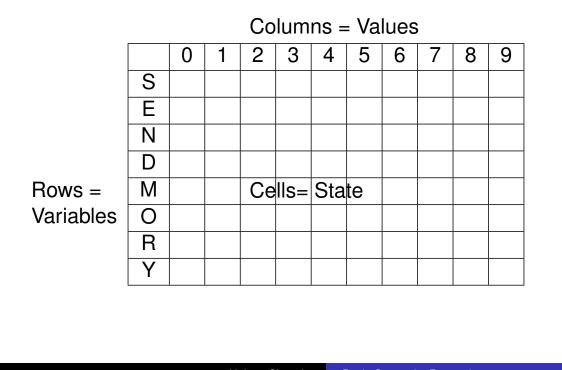

©ork onstraint

omputation Centre


Problem Program Constraint Setup Search Lessons Learned Choice of Model

- This is one model, not the model of the problem
- Many possible alternatives
- Choice often depends on your constraint system
 - Constraints available
 - Reasoning attached to constraints
- Not always clear which is the best model
- Often: Not clear what is the problem

• But how did the program come up with this solution?


Helmut Simonis	Basic Constraint Reasoning	11
Problem Program Constraint Setup Search Lessons Learned	Domain Definition Alldifferent Constraint Disequality Constraints Equality Constraint	
Domain Definition		

 $[S, E, N, D, M, O, R, Y] \in \{0..9\}$

Domain Definition Alldifferent Constraint Disequality Constraints Equality Constraint

Domain Visualization

Centre

Ielmut Simonis	Basic Constra
----------------	---------------

Basic Constraint Reasoning

13

Cork Constraint omputation

Domain Definition Alldifferent Constraint Disequality Constraints Equality Constraint

Alldifferent Constraint

alldifferent(L),

- Built-in of ic library
- No initial propagation possible
- Suspends, waits until variables are changed
- When variable is fixed, remove value from domain of other variables
- Forward checking

Alldifferent Constraint

Alldifferent Visualization

Uses the same representation as the domain visualizer

	0	1	2	3	4	5	6	7	8	9
S										
E										
Ν										
D										
Μ										
0										
R										
Y										

Dork onstraint omputation Centre

Helmut Simonis

Basic Constraint Reasoning

15

Problem Program **Constraint Setup** Search

Disequality Constraints

Disequality Constraints

S # = 0, M # = 0,

Remove value from domain

 $S \in \{1..9\}, M \in \{1..9\}$

Constraints solved, can be removed

Domain Definition Alldifferent Constraint Disequality Constraints Equality Constraint

Domains after Disequality

	0	1	2	3	4	5	6	7	8	9
S										
E										
N										
D										
Μ										
0										
R										
Y										

Constraint Computation Centre

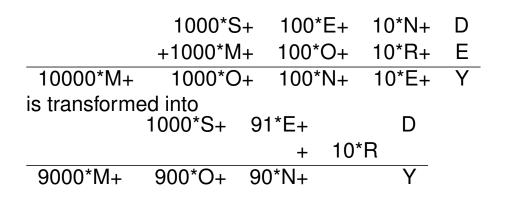
lelmut Simonis	Basic Constraint

Basic Constraint Reasoning

17

Domain Definition Alldifferent Constraint Disequality Constraints Equality Constraint

Equality Constraint


Normalization of linear terms

- Single occurence of variable
- Positive coefficients
- Propagation

Domain Definition Alldifferent Constraint Disequality Constraints Equality Constraint

Normalization

Computation Computation

Helmut	Simonis	
--------	---------	--

Basic Constraint Reasoning

19

Problem Program Constraint Setup Search Lessons Learned

Domain Definition Alldifferent Constraint Disequality Constraints Equality Constraint

Simplified Equation

1000 * *S* + 91 * *E* + 10 * *R* + *D* = 9000 * *M* + 900 * *O* + 90 * *N* + *Y*

Disequality Constraints Equality Constraint

Propagation

$$\underbrace{\frac{1000 * S^{1..9} + 91 * E^{0..9} + 10 * R^{0..9} + D^{0..9}}_{1000..9918}}_{9000 * M^{1..9} + 900 * O^{0..9} + 90 * N^{0..9} + Y^{0..9}}_{9000..89919}$$

Deduction:

$$M = 1, S = 9, O \in \{0..1\}$$

Why? Skip

Cork
Constraint
Computation
Centre

Reasoning

$$\underbrace{1000*S^{1..9}+91*E^{0..9}+10*R^{0..9}+D^{0..9}}_{9000..9918}=\underbrace{9000*M^{1..9}+900*O^{0..9}+90*N^{0..9}+Y^{0..9}}_{9000..9918}$$

- Lower bound of equation is 9000
- Rest of lhs (left hand side) $(91 * E^{0..9} + 10 * R^{0..9} + D^{0..9})$ is atmost 918
- *S* must be greater or equal to $\frac{9000-918}{1000} = 8.082$
 - otherwise lower bound of equation not reached by lhs
- *S* is integer, therefore $S \ge \lceil \frac{9000-918}{1000} \rceil = 9$
- S has upper bound of 9, so S = 9

Domain Definition Alldifferent Constraint Disequality Constraints Equality Constraint

Consider upper bound of M

 $\underbrace{1000 * S^{1..9} + 91 * E^{0..9} + 10 * R^{0..9} + D^{0..9}}_{9000..9918} = \underbrace{9000 * M^{1..9} + 900 * O^{0..9} + 90 * N^{0..9} + Y^{0..9}}_{9000..9918}$

- Upper bound of equation is 9918
- Rest of rhs (right hand side) 900 * O^{0..9} + 90 * N^{0..9} + Y^{0..9} is at least 0
- *M* must be smaller or equal to $\frac{9918-0}{9000} = 1.102$
- *M* must be integer, therefore $M \leq \lfloor \frac{9918-0}{9000} \rfloor = 1$
- *M* has lower bound of 1, so M = 1

Helmut Simonis	Basic Constraint Reasoning	23			
Problem Program Constraint Setup Search Lessons Learned	Domain Definition Alldifferent Constraint Disequality Constraints Equality Constraint				
Consider upper bound of O					

$$\underbrace{1000 * S^{1..9} + 91 * E^{0..9} + 10 * R^{0..9} + D^{0..9}}_{9000..9918} = \underbrace{9000 * M^{1..9} + 900 * O^{0..9} + 90 * N^{0..9} + Y^{0..9}}_{9000..9918}$$

- Upper bound of equation is 9918
- Rest of rhs (right hand side) 9000 * 1 + 90 * N^{0..9} + Y^{0..9} is at least 9000
- *O* must be smaller or equal to $\frac{9918-9000}{900} = 1.02$
- *O* must be integer, therefore $O \leq \lfloor \frac{9918-9000}{900} \rfloor = 1$
- *O* has lower bound of 0, so $O \in \{0..1\}$

Cork onstraint omputation

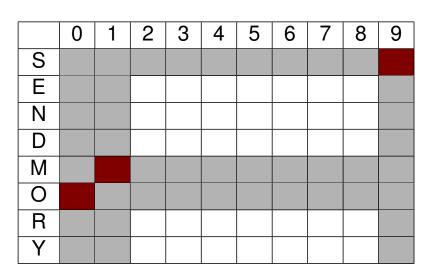
Domain Definition Alldifferent Constraint Disequality Constraint Equality Constraint

Propagation of equality: Result

	0	1	2	3	4	5	6	7	8	9
S		-	-	-	-	-	-	-	-	*
E										
Ν										
D										
Μ		*	-	-	-	-	-	-	-	-
0			×	×	×	×	*	*	×	×
R										
Y										

Constraint Computation Computation

Helmut Simonis	Basic Constrair

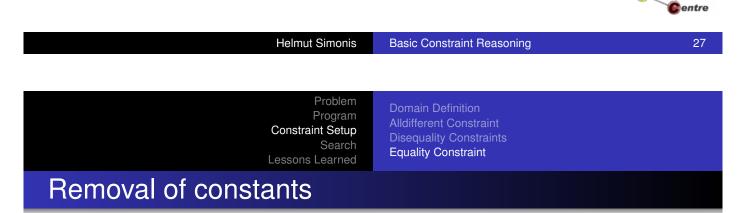

Basic Constraint Reasoning

25

Problem Program Constraint Setup Search

Domain Definition Alldifferent Constraint Disequality Constraints Equality Constraint

Propagation of alldifferent


 $O = 0, [E, R, D, N, Y] \in \{2..8\}$

Domain Definition Alldifferent Constraint Disequality Constraint Equality Constraint

Waking the equality constraint

- Triggered by assignment of variables
- or update of lower or upper bound

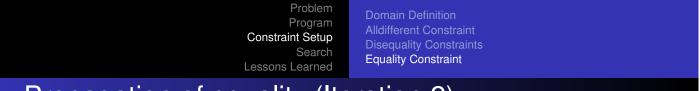
$$1000 * 9 + 91 * E^{2..8} + 10 * R^{2..8} + D^{2..8} = 9000 * 1 + 900 * 0 + 90 * N^{2..8} + Y^{2..8}$$

$$1000 * 9 + 91 * E^{2..8} + 10 * R^{2..8} + D^{2..8} = 9000 * 1 + 900 * 0 + 90 * N^{2..8} + Y^{2..8}$$

$$91 * E^{2..8} + 10 * R^{2..8} + D^{2..8} = 90 * N^{2..8} + Y^{2..8}$$

Cork Constraint omputation

Domain Definition Alldifferent Constraint Disequality Constraint Equality Constraint


Propagation of equality (Iteration 1)

$$\underbrace{91 * E^{2..8} + 10 * R^{2..8} + D^{2..8}}_{204..816} = \underbrace{90 * N^{2..8} + Y^{2..8}}_{182..728}$$

$$\underbrace{91 * E^{2..8} + 10 * R^{2..8} + D^{2..8} = 90 * N^{2..8} + Y^{2..8}}_{204..728}$$

$$N \ge 3 = \lceil \frac{204 - 8}{90} \rceil, E \le 7 = \lfloor \frac{728 - 22}{91} \rfloor$$

29

Propagation of equality (Iteration 2)

$$91 * E^{2..7} + 10 * R^{2..8} + D^{2..8} = 90 * N^{3..8} + Y^{2..8}$$

$$\underbrace{91 * E^{2..7} + 10 * R^{2..8} + D^{2..8}}_{204..725} = \underbrace{90 * N^{3..8} + Y^{2..8}}_{272..728}$$

$$\underbrace{91 * E^{2..7} + 10 * R^{2..8} + D^{2..8} = 90 * N^{3..8} + Y^{2..8}}_{272..725}$$

$$E \ge 3 = \lceil \frac{272 - 88}{91} \rceil$$

Constraint Computation Centre

Domain Definition Alldifferent Constraint Disequality Constraint Equality Constraint

Propagation of equality (Iteration 3)

$$91 * E^{3..7} + 10 * R^{2..8} + D^{2..8} = 90 * N^{3..8} + Y^{2..8}$$

$$\underbrace{91 * E^{3..7} + 10 * R^{2..8} + D^{2..8}}_{295..725} = \underbrace{90 * N^{3..8} + Y^{2..8}}_{272..728}$$

$$\underbrace{91 * E^{3..7} + 10 * R^{2..8} + D^{2..8} = 90 * N^{3..8} + Y^{2..8}}_{295..725}$$

$$N \ge 4 = \lceil \frac{295 - 8}{90} \rceil$$

Helmut Simonis Basic Co

Basic Constraint Reasoning

31

Propagation of equality (Iteration 4)

$$91 * E^{3..7} + 10 * R^{2..8} + D^{2..8} = 90 * N^{4..8} + Y^{2..8}$$

$$\underbrace{91 * E^{3..7} + 10 * R^{2..8} + D^{2..8}}_{295..725} = \underbrace{90 * N^{4..8} + Y^{2..8}}_{362..728}$$

$$\underbrace{91 * E^{3..7} + 10 * R^{2..8} + D^{2..8}}_{362..725} = 90 * N^{4..8} + Y^{2..8}$$

$$E \ge 4 = \lceil \frac{362 - 88}{91} \rceil$$

Constraint Computation Centre

Domain Definition Alldifferent Constraint Disequality Constraints Equality Constraint

Propagation of equality (Iteration 5)

$$91 * E^{4..7} + 10 * R^{2..8} + D^{2..8} = 90 * N^{4..8} + Y^{2..8}$$

$$\underbrace{91 * E^{4..7} + 10 * R^{2..8} + D^{2..8}}_{386..725} = \underbrace{90 * N^{4..8} + Y^{2..8}}_{362..728}$$

$$\underbrace{91 * E^{4..7} + 10 * R^{2..8} + D^{2..8} = 90 * N^{4..8} + Y^{2..8}}_{386..725}$$

$$R \ge 5 = \lceil \frac{386 - 8}{90} \rceil$$

$$91 * E^{4..7} + 10 * R^{2..8} + D^{2..8} = 90 * N^{5..8} + Y^{2..8}$$

$$\underbrace{91 * E^{4..7} + 10 * R^{2..8} + D^{2..8}}_{386..725} = \underbrace{90 * N^{5..8} + Y^{2..8}}_{452..728}$$

$$\underbrace{91 * E^{4..7} + 10 * R^{2..8} + D^{2..8} = 90 * N^{5..8} + Y^{2..8}}_{452..725}$$

$$N \geq 5 = \lceil \frac{452-8}{90} \rceil, E \geq 4 = \lceil \frac{452-88}{91} \rceil$$

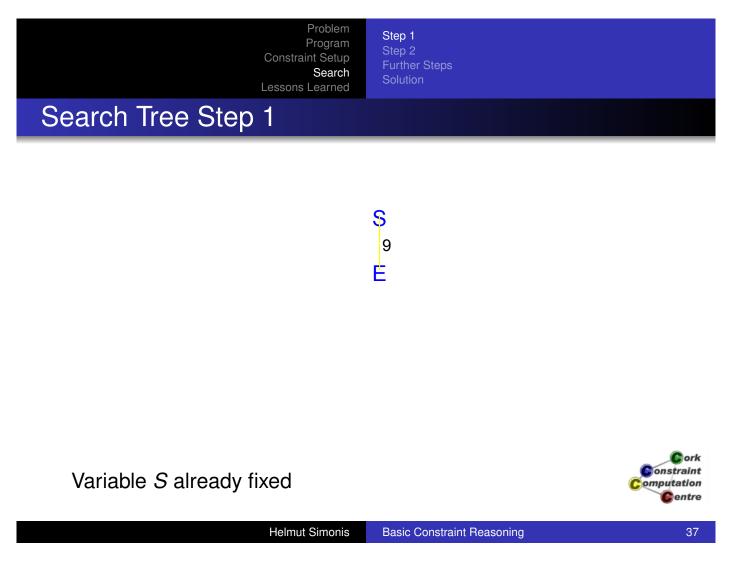
No further propagation at this point

Cork Constraint Computation Centre

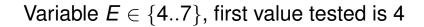
Domain Definition Alldifferent Constraint Disequality Constraints Equality Constraint

Domains after setup

	0	1	2	3	4	5	6	7	8	9
S										
E										
Ν										
D										
Μ										
0										
R										
Y										


Constraint Computation Computation

Helmut Simonis	Basic Constraint Reasoning	35
Problem Program Constraint Setup Search Lessons Learned	Step 1 Step 2 Further Steps Solution	
labeling built-in		


labeling([S,E,N,D,M,O,R,Y])

- Try variable is order given
- Try values starting from smallest value in domain
- When failing, backtrack to last open choice
- Chronological Backtracking
- Depth First search

Step 1 Step 2 Further Step Solution

Assignment E = 4

	0	1	2	3	4	5	6	7	8	9
S										
E					*	-	-	-		
N										
D										
Μ										
0										
R										
Y										

Constraint Computation Computation

Helmut Simonis	Basic Constraint Reasoning	39
Problem	Step 1	
Program Constraint Setup	Step 2 Further Steps	

Propagation of E = 4, equality constraint

Search

$$91 * 4 + 10 * R^{2..8} + D^{2..8} = 90 * N^{5..8} + Y^{2..8}$$

$$\underbrace{91 * 4 + 10 * R^{2..8} + D^{2..8}}_{386..452} = \underbrace{90 * N^{5..8} + Y^{2..8}}_{452..728}$$

$$\underbrace{91 * 4 + 10 * R^{2..8} + D^{2..8}}_{452} = 90 * N^{5..8} + Y^{2..8}}_{452}$$

$$N = 5, Y = 2, R = 8, D = 8$$

Constraint Computation Centre

Step 1 Step 2 Further Step Solution

Result of equality propagation

	0	1	2	3	4	5	6	7	8	9
S										
E										
Ν						*	-	-	-	
D			-	-	-	-	-	-	*	
Μ										
0										
R			-	-	-	-	-	-	*	
Y			*	-	-	-	-	-	-	

Constraint Computation Computation

lelmut Simonis	Basic Cons
	Bablo Cono

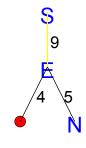
Basic Constraint Reasoning

41

Problem Program Constraint Setup Search

Step 1 Step 2 Further Step Solution

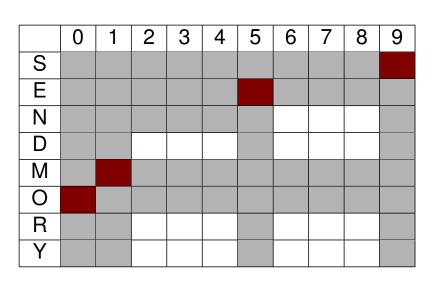
Propagation of alldifferent


Alldifferent fails!

Step 1 Step 2 Further Step Solution

Step 2, Alternative E = 5

Return to last open choice, E, and test next value


Helmut Simonis	Basic Constraint Reasoning	43
Problem Program Constraint Setup Search Lessons Learned	Step 1 Step 2 Further Steps Solution	
Assignment $E = 5$		

	0	1	2	3	4	5	6	7	8	9
S										
E					-	*	-	-		
Ν										
D										
Μ										
0										
R										
Y										

Step 1 Step 2 Further Step Solution

Propagation of alldifferent

 $N \neq 5, N \ge 6$

Helmut Simonis B

Basic Constraint Reasoning

45

Problem Program Constraint Setup Search Lessons Learned	Step 1 Step 2 Further Steps Solution
Propagation of equality	

$$91 * 5 + 10 * R^{2..8} + D^{2..8} = 90 * N^{6..8} + Y^{2..8}$$

$$\underbrace{91 * 5 + 10 * R^{2..8} + D^{2..8}}_{477..543} = \underbrace{90 * N^{6..8} + Y^{2..8}}_{542..728}$$

$$\underbrace{91 * 5 + 10 * R^{2..8} + D^{2..8}}_{542..543} = 90 * N^{6..8} + Y^{2..8}$$

$$N = 6, Y \in \{2,3\}, R = 8, D \in \{7..8\}$$

Cork Constraint Computation Centre

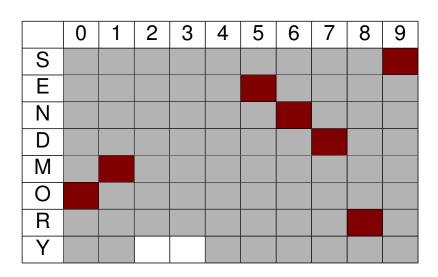
Step 1 Step 2 Further Step Solution

Result of equality propagation

	0	1	2	3	4	5	6	7	8	9
S										
E										
Ν							*	-	-	
D			×	*	*		×			
Μ										
0										
R			-	-	-		-	-	*	
Y					*		*	*	×	

Cork Constraint Computation Centre

lelmut Simonis	Basic Const
ieimut Simonis	Basic Con


Basic Constraint Reasoning

47

Problem Program Constraint Setup **Search** Lessons Learned

Step 1 Step 2 Further Step Solution

Propagation of alldifferent

Step 1 Step 2 Further Step Solution

Propagation of equality

$$91 * 5 + 10 * 8 + 7 = 90 * 6 + Y^{2..3}$$

$$\underbrace{91 * 5 + 10 * 8 + 7}_{542} = \underbrace{90 * 6 + Y^{2..3}}_{542..543}$$

$$\underbrace{91 * 5 + 10 * 8 + 7 = 90 * 6 + Y^{2..3}}_{542}$$

$$Y = 2$$

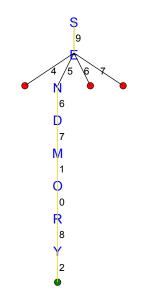
Basic Constraint Reasoning

Constraint Computation Centre

49

Helmut Simonis

Last propagation step


	0	1	2	3	4	5	6	7	8	9
S										
E										
Ν										
D										
Μ										
0										
R										
Y			₩	-						

Step 1 Step 2 Further Steps Solution

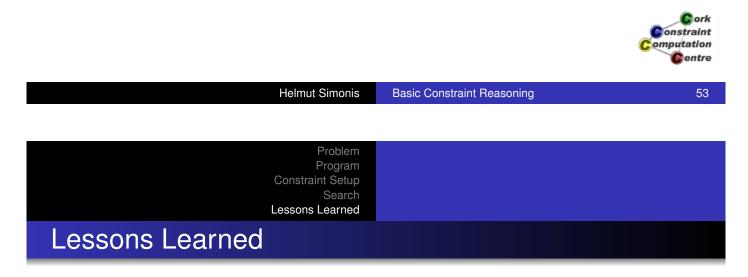
Complete Search Tree

Solution

51

Problem Program Constraint Setup Search Lessons Learned	Step 1 Step 2 Further Steps Solution

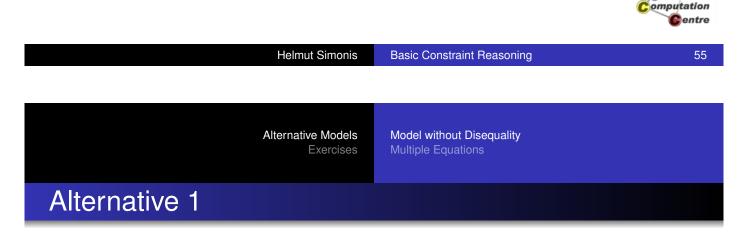
Basic Constraint Reasoning


Helmut Simonis

	9	5	6	7
+	1	0	8	5
1	0	6	5	2

Problem Program Constraint Setup Search Lessons Learned Topics introduced

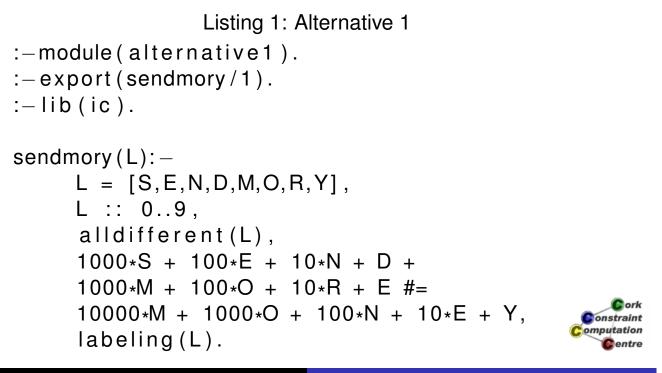
- Finite Domain Solver in ECLiPSe, ic library
- Models and Programs
- Constraint Propagation and Search
- Basic constraints: linear arithmetic, alldifferent, disequality
- Built-in search: labeling
- Visualizers for variables, constraints and search



- Constraint models are expressed by variables and constraints.
- Problems can have many different models, which can behave quite differently. Choosing the best model is an art.
- Constraints can take many different forms.
- Propagation deals with the interaction of variables and constraints.
- It removes some values that are inconsistent with a constraint from the domain of a variable.
- Constraints only communicate via shared variables.

Problem Program **Constraint Setup** Search Lessons Learned Lessons Learned

- Propagation usually is not sufficient, search may be required to find a solution.
- Propagation is data driven, and can be quite complex even for small examples.
- The default search uses chronological depth-first backtracking, systematically exploring the complete search space.
- The search choices and propagation are interleaved, after every choice some more propagation may further reduce the problem. Constraint


- Do we need the constraint "Numbers do not begin with a zero"?
- This is not given explicitly in the problem statement
- Remove disequality constraints from program
- Previous solution is still a solution
- Does it change propagation?
- Does it have more solutions?

ork

Model without Disequality Multiple Equations

Program without Disequality

Helmut Simonis

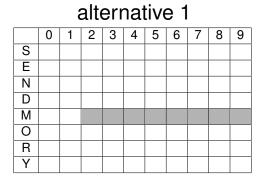
Basic Constraint Reasoning

57

Alternative Models Exercises

Model without Disequality Multiple Equations

After Setup without Disequality

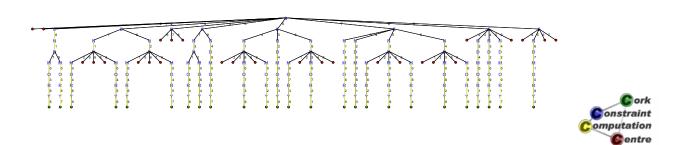

	0	1	2	3	4	5	6	7	8	9
S										
E										
Ν										
D										
Μ										
0										
R										
Y										

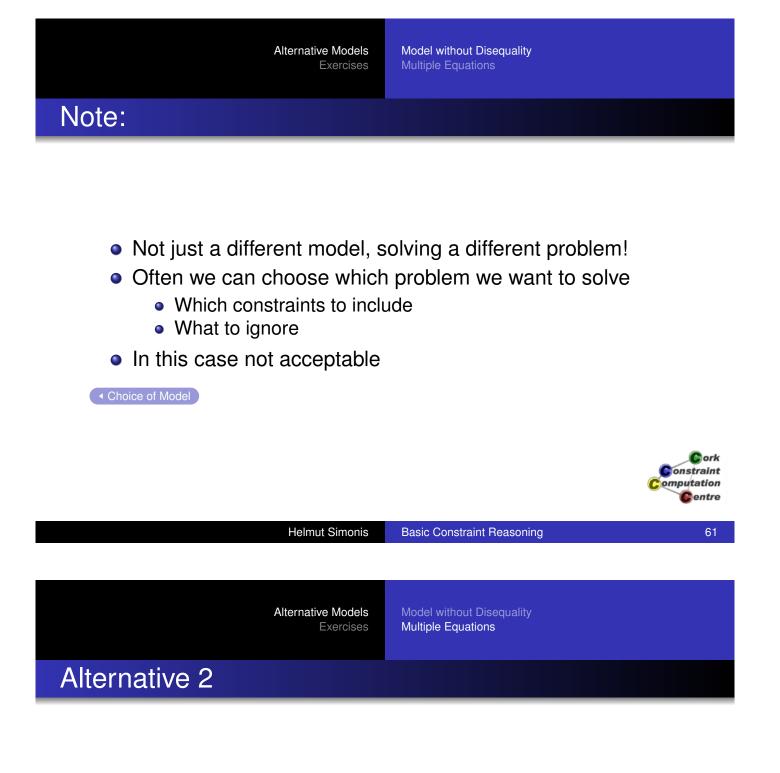
Model without Disequality Multiple Equations

Setup Comparison

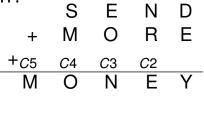
	original										
	0	1	2	3	4	5	6	7	8	9	
S											
Е											
Ν											
D											
М											
0											
R											
Y											

Helmut Simonis

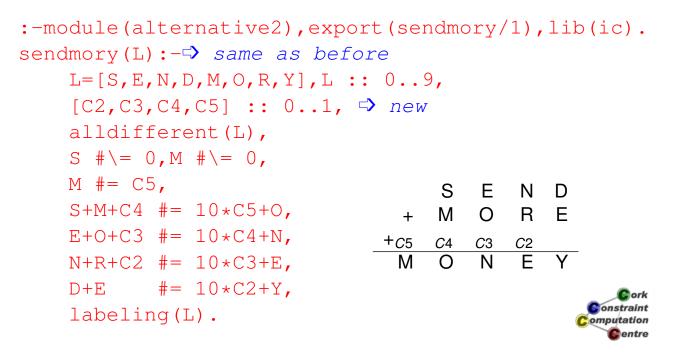

Basic Constraint Reasoning


59

Alternative Models Exercises


Model without Disequality Multiple Equations

Search Tree: Many Solutions


- Large equality difficult to understand by humans
- Replace with multiple, simpler equations
- Linked by carry variables (0/1)
- Should produce same solutions
- Does it give same propagation?

Cork Constraint Computation Centre

Model without Disequality Multiple Equations

Carry Variables with Multiple Equations

Helmut Simonis

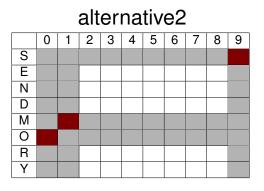
Basic Constraint Reasoning

63

Alternative Models Exercises

Model without Disequality Multiple Equations

With Carry Variables: After Setup


	0	1	2	3	4	5	6	7	8	9
S										
E										
N										
D										
Μ										
0										
R										
Y										

Cork Constraint Computation Centre

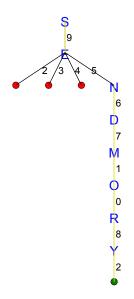
Model without Disequality Multiple Equations

Setup Comparison

original										
	0	1	2	3	4	5	6	7	8	9
S										
E										
Ν										
D										
Μ										
0										
R										
Y										

Constraint Computation Centre

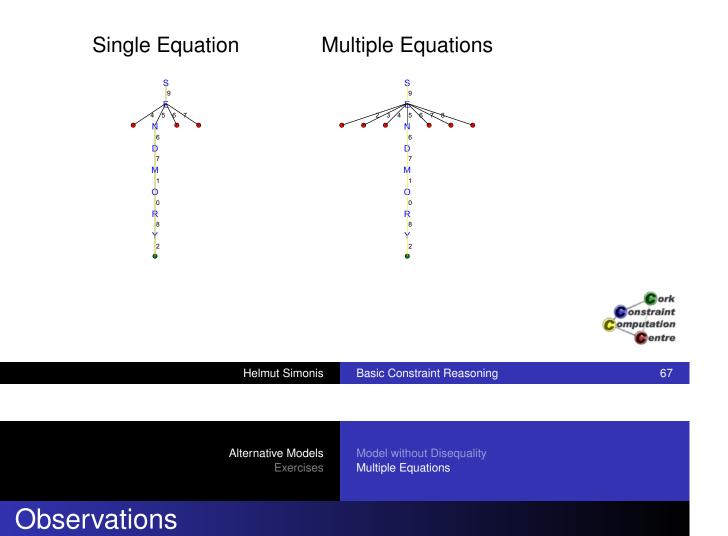
Helmut Simonis


Basic Constraint Reasoning

65

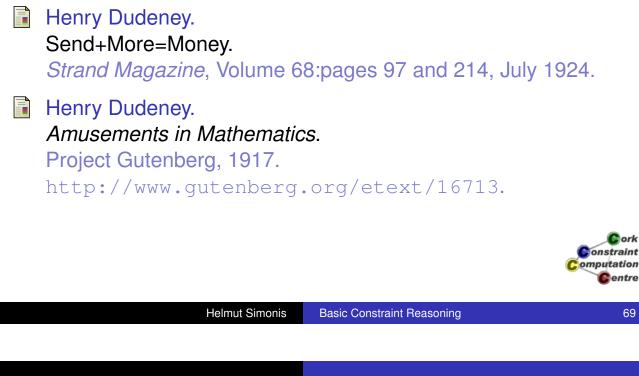
Alternative Models

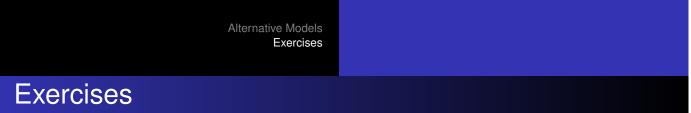
Model without Disequality Multiple Equations


Search Tree: First Solution

Model without Disequality Multiple Equations

Comparison




- This is solving the original problem
- Search tree slightly bigger
- Caused here by missing interaction of equations
- And repeated variables
- But: Introducing auxiliary variables not always bad!

Choice of Model

More Information

- Does the reasoning for the equality constraints that we have presented remove all inconsistent values? Consider the constraint Y=2*X.
- Why is it important to remove multiple occurrences of the same variable from an equality constraint? Give an example!
- Solve the puzzle DONALD+GERALD=ROBERT. What is the state of the variables before the search, after the initial constraint propagation?
- Solve the puzzle Y*WORRY = DOOOOD. What is different?
- (extra credit) How would you design a program that finds constraint new crypt-arithmetic puzzles? What makes a good puzzle? Computation