High-Level Implementation of Consistency Techniques

Joachim Schimpf

Visiting Researcher at NICTA Victoria

Motivation

Propagation behaviour in CP systems:

- Strength/cost of propagation hard-wired
 - only occasionally configurable
- System-specific set of implemented constraints
 - no standard set of global constraints
 - □ but constraint catalog lists 235 of them [Beldiceanu et al]
- Efficient propagation algorithms are constraint-specific
 - □ take a long time to develop
- Implemented procedurally or via rules
 - correctness/mainainability
- → declarative prototyping facility can be useful

Overview

- Constraint definitions
- Reification and its shortcomings
- GP Generalised Propagation
- Applications of GP
- GP Algorithm

M

Constraint definitions

Basic constraints, e.g. equality, domains (decidable)

```
X=5, Y::1..9
```

Built-in constraints (e.g. bounds/arc consistent)

```
X #>= 3*Y+7, alldifferent([X,Y,Z])
```


- User-defined constraints
 - □ Extensional definition (table, disjunctive)

```
% product(Name,Resource1,Resource2,Profit)
product(101, 3, 7, 36).
...
product(999, 5, 2, 23).
```

Intensional definition (logical combinations of built-in constraints)

```
no_overlap(S1,S2,D) :-
S1+D #>= S2 ; S2+D #>= S1.
```


Propagation choices

When?

- ☐ Once before search (preprocessing)
- □ Whenever a variable gets instantiated
- Whenever a domain is reduced
- □ More/Less urgently than other constraints

What?

- Just check current assignment
- Derive further instantiations
- Derive domain reductions

Where?

- Per constraint
- □ Sub-problem
- □ Whole problem

М

Well known: User-defined Constraints via "reification"

The system must provide "reified" versions of constraints, e.g.

=<(X,Y,B)
$$\Leftrightarrow$$
 X =< Y iff B=1
X > Y iff B=0

The Boolean represents the truth value of the constraint. Similar to Big-M constraints in MIP.

Reified primitives can be connected by combining Booleans:

$$\#=<(X+7, Y, B1), \#=<(Y+7, X, B2), B1+B2 \#>= 1.$$

The Boolean can be hidden under syntactic sugar:

$$X+7 \#=< Y \text{ or } Y+7 \#=< X.$$

M

Merits/Limits of reified combinators

Clever example – a lexicographic ordering constraint for vectors:

But often poor propagation behaviour:

```
?- [X,Y]::1..10, ( X + 7 \#=< Y or Y + 7 \#=< X ).

X = X\{1 ... 10\}

Y = Y\{1 ... 10\}

There are 3 delayed goals.
```

Propagation happens only when Boolean gets instantiated, i.e. when one of the primitives is entailed/disentailed.

Ŋ4

Generalised Propagation (GP)

A generic algorithm to extract information from disjunctive specifications

```
c(1,2).
c(1,3).
c(3,4).

?- c(X,Y) infers fd.
X = X{[1, 3]}
Y = Y{2 ... 4}
```

First described in [LeProvost&Wallace 93] Implemented in ECLiPSe system as library "propia"

The *infers* Annotation

GP annotation says what you want to infer:

Goal infers Language

Use strongest available representation in Language (e.g. fd for finite domains) covering all solutions

Weaker (and cheaper) variants are available

Goal infers consistent
 Fail as soon as inconsistency can be proven

Goal infers unique
 Instantiate as soon as unique solution exists

Most Specific Generalisation over Finite Domains and Structured Terms

ŊΑ

Arc consistency (i)

Arc consistency from extensional definition:

NA.

Constructive disjunction with GP

The inferences from disjunctive branches are merged constructively:

Note difference with reification – no inference because neither side is (dis)entailed:

```
?- [A,B]::1..10, (A + 7 \# = < B \text{ or } B + 7 \# = < A).

A = A\{1 ... 10\}

B = B\{1 ... 10\}
```

re.

Arc-consistency (ii)

) infers fd.

```
Arc consistency on top of weaker consistency (e.g. test, forward checking)
   ac constr(Xs) :-
                weak constr(Xs),
                labeling(Xs)
        ) infers fd.
Or, usually more efficient:
   ac constr(Xs) :-
                weak constr(Xs),
                member(X, Xs),
                indomain(X),
                once labeling(Xs)
```

M

Singleton Arc-consistency

Singleton arc consistency from arc consistency, on a subproblem:

If performed on the whole problem, simpler variant: shaving

Shaving often effective as a preprocessing step before actual search.

E.g. sudoku solvable with ac-alldifferent and shaving – no deep search needed [Simonis].

Arc-consistency from arc-consistency

Combining constraints to form a sub-problem. Make result arc-consistent again:

E.g. a constraint for sudoku:

```
overlapping_alldifferent(Xs, Ys) :-
   intersect(Xs, Ys, Overlaps),
   (
        alldifferent(Xs), alldifferent(Ys),
        labeling(Overlaps)
   ) infers ic.
```


GP Applications Summary

- Disjunctive combinations
 - extensional or intensional constraint definitions
- Factoring subproblems
 - effectively create problem-specific global constraints
 - approximate their solution set repeatedly
 - export that approximation repeatedly to the full problem
- Conjunctive combination of overlapping constraints
 - to form larger global constraints
- Prototyping AC constraints
 - expensive when done naively, need good generic GP algorithm
 - better to use a less disjunctive specification, see below

Graph/automaton method (i)

Beldiceanu et al, 2004:
 Deriving Filtering Algorithms from Constraint Checkers

```
global_contiguity(Xs) :-

StateEnd :: 0..2,
(
    fromto(Xs, [X|Xs1], Xs1, []),
    fromto(0, StateIn, StateOut, StateEnd)

do

(
    StateIn = 0, (X = 0, StateOut = 0 ; X = 1, StateOut = 1 )
    ;
    StateIn = 1, (X = 0, StateOut = 2 ; X = 1, StateOut = 1 )
    ;
    StateIn = 2, X = 0, StateOut = 2

) infers ac
).
```

Xi = 1

Xi = 1

Graph/automaton method (ii)

```
inflexion(N, Xs) :-
   StateEnd :: 0..2,
       fromto(Xs, [X1,X2|Xs1], [X2|Xs1], []),
       foreach (Ninc, Nincs),
       fromto(0, StateIn, StateOut, StateEnd)
   do
        (X1 \# < X2) \# = (Sig \# = 1),
        (X1 #= X2) #= (Sig #= 2),
        (X1 \#> X2) \#= (Sig \#= 3),
        ( StateIn = 0,
              ( Sig=1, Ninc=0, StateOut=1
              ; Sig=2, Ninc=0, StateOut=0
              ; Sig=3, Ninc=0, StateOut=2)
        ; StateIn = 1,
              ( Sig=1, Ninc=0, StateOut=1
              ; Sig=2, Ninc=0, StateOut=1
              ; Sig=3, Ninc=1, StateOut=2)
        ; StateIn = 2,
              ( Sig=1, Ninc=1, StateOut=1
              ; Sig=2, Ninc=0, StateOut=2
              ; Sig=3, Ninc=0, StateOut=2)
        ) infers ac
   ),
   N #= sum(Nincs).
```


M

Naïve GP Algorithm

Goal infers Language

Find all solutions to Goal, and put them in a set Find the most specific generalisation of all the terms in the set

E.g. member (X, [1,2,3]) infers fd

Find all solutions to member(X,[1,2,3]): {1,2,3} Find the most specific generalisation of {1,2,3}: $X\{[1,2,3]\}$

Efficient when all solutions can be tabled.

r,e

Robust GP Algorithm: Topological B&B

Goal infers Language

Find one solution S to Goal

The current most specific generalisation MSG = S

Repeat

Find a solution NewS to Goal
which is NOT an instance of MSG
Find the most specific generalisation NewMSG
of MSG and NewS

MSG := NewMSG

until no such solution remains

Resources

Functionality available in the ECLiPSe system

Main web site www.eclipse-clp.org

Tutorial, papers, manuals, mailing lists

Sources at www.sourceforge.net/eclipse-clp

ECLiPSe is open-source (MPL) and freely usable
 Owned/sponsored by Cisco Systems

References

- T. Le Provost, M. Wallace: "Generalised Constraint Propagation Over the CLP Scheme", Journal of Logic Programming, 16/3, 1993.
- N. Beldiceanu, M. Carlsson, T. Petit, "Deriving Filtering Algorithms from Constraint Checkers", CP2004, LNCS, Springer, 2004.