High-Level

Implementation of
Consistency Techniques

Joachim Schimpf
Visiting Researcher at NICTA Victoria

Motivation

Propagation behaviour in CP systems:

m Strength/cost of propagation hard-wired
only occasionally configurable
m System-specific set of implemented constraints
no standard set of global constraints
but constraint catalog lists 235 of them [Beldiceanu et al]
m Efficient propagation algorithms are constraint-specific
take a long time to develop
m Implemented procedurally or via rules
correctness/mainainability

=>» declarative prototyping facility can be useful

" A
Overview

Constraint definitions
Reification and its shortcomings
GP - Generalised Propagation
Applications of GP

GP Algorithm

Constraint definitions

m Basic constraints, e.g. equality, domains (decidable)

X=5, Y¥::1..9
ilt-i i : ECLiIPSe Synt j
= Built-in constraints (e.g. bounds/arc consistent) ; © oyntax

X #>= 3*Y+7, alldifferent([X,Y,Z])

m User-defined constraints

Extensional definition (table, disjunctive)
% product (Name,Resourcel, Resource2, Profit)
product (101, 3, 7, 36).

product (999, 5, 2, 23).
Intensional definition (logical combinations of built-in constraints)
no overlap(Sl,S2,D) :-
S1+D #>= S2 ; S2+D #>= S1.

Propagation choices

When?
Once before search (preprocessing)
Whenever a variable gets instantiated
Whenever a domain is reduced
More/Less urgently than other constraints

What?
Just check current assignment
Derive further instantiations
Derive domain reductions
Where?
Per constraint
Sub-problem
Whole problem

"
Well known:
User-defined Constraints via “reification”

The system must provide “reified” versions of constraints, e.g.
=< (X,Y,B) & X =<Y iff B=1
X >Y iff B=0

The Boolean represents the truth value of the constraint.
Similar to Big-M constraints in MIP.

Reified primitives can be connected by combining Booleans:
#=<(X+7, ¥, Bl), #=<(¥Y+7, X, B2), B1+B2 #>= 1.

The Boolean can be hidden under syntactic sugar:
X+7 #=< Y or Y+7 #=< X.

Merits/Limits of reified combinators

Clever example — a lexicographic ordering constraint for vectors:

lex le(Xs, Y¥Ys) :-
(foreach(X,Xs), foreach(Y,¥s), fromto(l,Bi,Bj,1l) do
Bi #= (X #< Y + Bj) ‘_

) .
But often poor propagation behaviour:

?- [X,¥]::1..10, (X + 7 #=< Y or Y + 7 #=< X).
X =X{1 .. 10}

Y =Y¥Y{1 .. 10}

There are 3 delayed goals.

Propagation happens only when Boolean gets instantiated, i.e. when one of the
primitives is entailed/disentailed.

"
Generalised Propagation (GP)

A generic algorithm to extract information
from disjunctive specifications

c(l,2).
c(l,3).
c(3,4).

?- ¢c(X,Y) infers fd.
X = X{[1, 3]}
Y = Y{2 .. 4}

First described in [LeProvost&Wallace 93]
Implemented in ECLiPSe system as library “propia”

" A
The infers Annotation

GP annotation says what you want to infer:

m Goal infers Language

Use strongest available representation in Language (e.g. fd
for finite domains) covering all solutions

Weaker (and cheaper) variants are available
m Goal infers consistent
Fail as soon as inconsistency can be proven

m Goal infers unique
Instantiate as soon as unique solution exists

"
Most Specific Generalisation
over Finite Domains and Structured Terms

1 2 £(1,2) f(3,4)
3 X{[1,2]} £(X{1,3}, Y{2,4})

oo

X{1..3} “most specific generalisations”

Arc consistency (i)

m Arc consistency from extensional definition:

% extensional constraint spec
c(1l,2).
c(1,3).
c(3,4).

% arc-consistent wversion

ac_c(X,Y) := c¢(X,Y) infers fd.
?- ac_c(X, Y). ?- ac c(X, ¥), X =1.
X = X{[1, 3]} X =1
Y = Y{[2..4]} Y = Y{[2,3]}

There is 1 delayed goal. There is 1 delayed goal.

Constructive disjunction with GP

The inferences from disjunctive branches are merged constructively:

?- [A,B]::1..10, (A + 7 #=< B ; B + 7 #=< A) infers f£fd.
1..3 8.10 1.3 8..10

A = Aa{[1
B = B{[1l

, 8 .. 10]}
, 8 .. 10]}

w w

Note difference with reification — no inference because neither side is (dis)entailed:
?- [A,B]::1..10, (A + 7 #=< B or B + 7 #=< 3a).

A A{l1 .. 10}
B =B{1 .. 10}

Arc-consistency (ii)

Arc consistency on top of weaker consistency (e.g. test, forward checking)

ac_constr(Xs) :-
(
weak constr (Xs),
labeling (Xs)
) infers fd.

Or, usually more efficient:

ac_constr(Xs) :-
(
weak constr (Xs),
member (X, Xs),
indomain (X) ,
once labeling(Xs)
) infers £fd.

Singleton Arc-consistency

Singleton arc consistency from arc consistency, on a subproblem:

sac_constr(Xs) :-
(
ac_constr (<some Xs>), .., ac_constr (<some Xs>),
member (X, Xs),
indomain (X)
) infers ic.

If performed on the whole problem, simpler variant: shaving

shave (Xs) :-
(foreach(X,Xs) do
findall (X, indomain (X)), Values),
X :: Values
) .

Shaving often effective as a preprocessing step before actual search.
E.g. sudoku solvable with ac-alldifferent and shaving — no deep search needed [Simonis].

Arc-consistency from arc-consistency

Combining constraints to form a sub-problem.

Make result arc-consistent again:

ot

1

E.g. a constraint for sudoku:

overlapping alldifferent(Xs, Y¥Ys) :-
intersect(Xs, ¥s, Overlaps),
(
alldifferent(Xs), alldifferent(¥s),
labeling (Overlaps)
) infers ic.

"
GP Applications Summary

m Disjunctive combinations
extensional or intensional constraint definitions

m Factoring subproblems
effectively create problem-specific global constraints
approximate their solution set repeatedly
export that approximation repeatedly to the full problem

m Conjunctive combination of overlapping constraints
to form larger global constraints

m Prototyping AC constraints
expensive when done naively, need good generic GP algorithm
better to use a less disjunctive specification, see below

Graph/automaton method (i)

m Beldiceanu et al, 2004:
Deriving Filtering Algorithms from Constraint Checkers

global contiguity (Xs) :-

StateEnd :: 0..2,

(
fromto (Xs, [X|Xsl], Xsl1l, [1]),
fromto (0, StateIn, StateOut, StateEnd)
do

Stateln

I
o

(X = 0, StateOut =0 ; X =
Stateln

StateIn = 2, X = 0, StateOut = 2

I
=

(X = 0, StateOut = 2 ; X =

) infers ac

1,

1,

StateOut

StateOut

Xi=1
)Xi
Xi=0

1)

1)

Graph/automaton method (ii)

inflexion(N, Xs) :-

StateEnd :: 0..2,

(
fromto (Xs, [X1,X2|Xsl], [X2]|Xsl], [_1),
foreach (Ninc, Nincs),
fromto (0, StateIn, StateOut, StateEnd)

do
(X1 #< X2) #= (Sig #= 1),
(X1 #= X2) #= (Sig #= 2),)Q+1<)(
(X1 #> X2) #= (Sig #= 3),
(StateIn = O,

(Sig=1l, Ninc=0, StateOut=1 :
; Sig=2, Ninc=0, StateOut=0 < T
; Sig=3, Ninc=0, StateOut=2) : .
; StateIn =1, - J
(Sig=1l, Ninc=0, StateOut=1l Xi+1_<xi "’ n++ ..': Xi+1>_
; Sig=2, Ninc=0, StateOut=1l ", § o
; Sig=3, Ninc=1l, StateOut=2) “u. : ”a’
; StateIn = 2, RN P
(Sig=1l, Ninc=1l, StateOut=1l <:i}>
; Sig=2, Ninc=0, StateOut=2

; Sig=3, Ninc=0, StateOut=2)
) infers ac

),

N #= sum(Nincs) .

X

"
Naive GP Algorithm

Goal infers Language

Find all solutions to Goal, and put them in a set
Find the most specific generalisation of all the terms in the set

E.g. member(X,[1,2,3]) infers fd

Find all solutions to member(X,[1,2,3]): {1,2,3}
Find the most specific generalisation of {1,2,3}: x{[1,2,3]}

Efficient when all solutions can be tabled.

" JEE—
Robust GP Algorithm: Topological B&B

Goal infers Language

Find one solution S to Goal
The current most specific generalisation MSG =S
Repeat
Find a solution NewS to Goal
which is NOT an instance of MSG
Find the most specific generalisation NewMSG
of MSG and New$S
MSG := NewMSG
until no such solution remains

Resources

m Functionality available in the ECLiPSe system
Main web site www.eclipse-clp.org
Tutorial, papers, manuals, mailing lists
Sources at www.sourceforge.net/eclipse-clp

m ECLiPSe is open-source (MPL) and freely usable
Owned/sponsored by Cisco Systems

m References

T. Le Provost, M. Wallace: “Generalised Constraint Propagation Over the CLP
Scheme”, Journal of Logic Programming, 16/3, 1993.

N. Beldiceanu, M. Carlsson,T. Petit, "Deriving Filtering Algorithms from
Constraint Checkers", CP2004, LNCS, Springer, 2004.

