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Motivation

ECLiIPSe attempts to support the most common techniques
used in solving Constraint (Optimization) Problems:

CP — Constraint Programming
MP — Mathematical Programming

LS — Local Search
and combinations of those

ECLiIPSe is built around the
CLP (Constraint Logic Programming) paradigm



History

— 1995

1995 — 2005
1999 — 2004
2004 —
2006

ECRC (European Computer Industry Res Centre)
First ECLIPSe release 1990, predecessors earlier

Logic Programming, databases, parallelism, fd+set constraints
Shared roots with CHIP system

|C-Parc, Imperial College London
Focus on hybrid constraint solving, CHIC2 project
MIP integration, repair techniques, new solvers

Parc Technologies Ltd, London
Airline and Telecom product development

Cisco Systems
Networking applications

Open-sourced www.eclipse-clp.org

Mozilla-style licence
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What is ECLIPSe

A system, consisting of

m A core engine
VM with data-driven computation, backtracking, garbage collection
m A collection of libraries
Solvers, algorithms, search methods, interfaces to third-party solvers
m A high-level modelling and control language
Logic programming based
m Development environments and tools
Saros (ECLiPSe/eclipse), TKECLiIPSe

m Interfaces for embedding into host environments
Java , C/C++, Tcl/Tk
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ECLiIPSe Architecture
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ECLiIPSe as black box solver:
Flat Model, including instance data

model (Vars, Obj) :-
Vars = [Al, A2, A3, Bl, B2, B3, Cl1, c2, c3, D1, D2, D3],
Vars :: 0..inf,

Al + A2 + A3 5= 200, Plant Transportation  Client
Bl + B2 + B3 $= 400,

Cl + C2 + C3 $= 300 capacity cost demand

D1 + D2 + D3 $= 100,
Al + Bl + Cl + D1 $=< 500,

A2 + B2 + C2 + D2 $=< 300, 1<500

A3 + B3 + C3 + D3 $=< 400,
Obj =
10*A1l + 7*A2 + 11*A3 + ‘ﬁ
8%B1l + 5%B2 + 10%*B3 + 2<
5%Cl + 5%C2 + 8*C3 +
9*D1 + 3*D2 + 7+*D3. <
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ECLiIPSe as black box solver:
Applying Finite Domain solver

: iii zi(r:;r.lch_and_bound) . L/h SpeCIfy Ilbrarles j
Specify heuristics ]

solve (Vars, Cost) :-
model (Vars, Obj),
Cost #= eval(Obj),
minimize (search (Vars, O,

irst fail, indomain_ split, complete, []), Cost).

model (Vars, Obj) :-
Vars = [Al, A2, A3, Bl, B2, B3, Cl1, c2, c3, D1, D2, D3],

Vars :: 0..inf,

AL + A2 + A3 3= 200, Plant Transportation  Client
Bl + B2 + B3 $= 400, )

Cl + C2 + C3 $= 300, capacity cost demand
D1 + D2 + D3 $= 100,

Al + Bl + C1 + D1 $=< 500,

A2 + B2 + C2 + D2 $=< 300, 1

A3 + B3 + C3 + D3 $=< 400, =

10*A1l + 7*A2 + 11*A3 + ‘ﬁ
8%B1l + 5%B2 + 10%*B3 + 2<

5%Cl + 5%C2 + 8*C3 +

9*D1 + 3*D2 + 7+*D3. <
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ECLiIPSe as black box solver:
Applying LP solver

:— lib(eplex) . —_—

— Specify solver library ]

solve (Vars, Cost) :-
model (Vars, Obj),
eplex solver setup (min (Obj)),
eplex solve(Cost).

model (Vars, Obj) :-
Vvars = [Al, A2, A3, Bl1l, B2, B3, Cl1l, c2, c3, D1, D2, D3],

Vars :: 0..inf,
Al + A2 + A3 $= 200, Plant Transportation  Client
Bl + B2 + B3 $= 400, .
Cl + C2 + C3 $= 300, capacity cost demand
D1 + D2 + D3 $= 100,
Al + B1 + C1 + D1 $=< 500,
A2 + B2 + C2 + D2 $=< 300, 1
A3 + B3 + C3 + D3 $=< 400, =
Obj =
10*Al1 T*n2

8*B1 + 5%*B2 + 10%*B3 + 2<

+ +
+ +

5%*C1l + 5%C2 + 8*C3 +

9*D1 + 3*D2 + 7*D3. <
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ECLIPSe Language - Modelling

m Logic Programming based

Predicates over Logical Variables X#>Y, integers([X,Y])
Disjunction via backtracking X=1; X=2
Metaprogramming (e.g. constraints as data) Constraint = (X+Y)

m Modelling extensions

Arrays M[l,J]
Structures task{start:S}
lteration/Quantification ( foreach(X,Xs) do ...)

m  Solver annotations
Solver libraries :- lib(ic).
Solver qualification [Solvers] : Constraint

One language for modelling, search, and solver implementation!
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Sample Model
Generic Model, no data

model (Capacities, Demands, Dists, Vars, Obj)

length (Capacities, NP),
length (Demands, NC),
matrix (NP, NC, Plants, Clients, Vars),

Vars :: 0.0..inf,

( foreach(Client, Clients), foreach(Demand, Demands) do

sum (Client) $= Demand

),
( foreach(Plant, Plants), foreach(Capacity,

sum (Plant) $=< Capacity

),
Obj = (Dists*Vars).

Capacities) do
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Constraint Solver Libraries

Solver Lib | Var Domains | Constraints class Behaviour
Suspend numeric Arbitrary arithmetic in/dis/equalities | Passive test

fd integer, symbol ELEZ?; in/dis/equalities and some Domain propagation
ic real, integer Arbitrary arithmetic in/dis/equalities gg%g%zgs;nam
ic_global integer il:l):t:éyecr:sonstraints over lists of E?Ol:or;cés;/;lg;nain
ic_sets set of integer ﬁr?;toz?c.a.r.a)tions (subset, cardinality, s;eot;c:;l;r;iii
grasper graphs Graph relations (path, scc, ...) Propagation
iC_symboliC ordered symbols Dis/equality, ordering, element, ... sroolg;%s;:ﬂg:am

sd unordered symbols | Dis/equality, alldifferent Domain propagation
propia Inherited any various

eplex real, integer Linear in/equalities Global, optimising
tentative open open Violation monitoring _
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Solvers
The real/integer domain solver lib(ic)

A very general numeric solver, based on interval arithmetic

Real-valued variables

Integrality is a constraint

Infinite domains supported
Subsumes finite domain functionality

Not as fast as specialised FD solver, but general and good
for hybrids.
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Mathematical Programming Interface “eplex”

Features supported by solvers

CPLEX XPRESS CLP/CBC SYMPHONY/CLP
problem types LP,MIP,QP,MIQP | LP,MIP,QP ,MIQP | LP, MIP, QP* LP, MIP
solving methods simplex, barrier, simplex, barrier simplex, barrier” | simplex

network simplex,

sifting
Incremental O O
changes
Probe [ [ O O
Col Gen Support [] [] [ [

User defined O O O O
global cuts
Infeasibility all problem types linear problems no no

information (lIS)

* interfaced via solver-specific code
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ECLIPSe as Glue and Scripting Language

Real-life applications involve many integration tasks
m integrating models in various forms
m integrating data and delivering results

And a lot of experimentation-heavy tasks
m specifying search strategies
specifying heuristics

specifying solver interaction
specifying propagation behaviour

How to tackle these tasks
m Do-It-Yourself in your favourite language
m use a language with features suited to the task
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ECLiIPSe Language for Scripting

m Logical variables (problem variables)

with multiple attributes (domain, LP solution, reduced costs, tentative values,
violations, ...)

m  Symbolic manipulation (“meta-programming”)
to build symbolic constraints, post, decompose, inspect, etc
m Safe arithmetic
unlimited precision integers and rationals, safe floating point interval arithmetic
m Search programming
on top of built-in undo (backtrack) and copying facilities
m Data-driven computation
for constraint propagation, external solver triggering, visualisation
m High-level building blocks

solver-independent branch-and-bound, generalised propagation, specific
hybridisation forms
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Embedding MiniZinc Models

m Embedding MiniZinc strings:
queens (N) :-
mzn_run_ string ("
int: n;
array [1l..n] of var 1..n: q;
constraint forall (i in 1..n, j in i+l..n)
( qlil !'= ql3] /\ qlil+i !'= ql[3j1+3 /\ qlil-i !'= ql[3jl-3 );
solve satisfy;

"
4

[n = N], % parameter map: ZincId=EclipseValue
fzn ic). % solver mapping to use

m Model files, with parameter/variable mapping:

queens (N, Q) :-
mzn load("n_ queens.mzn", fzn ic, [n = N], [g = Q], _State),
labeling (Q) .

m Work with symbolic ECLiPSe-term representation of MiniZinc

[int:n, array([1l..n] of var(l..n)):q, constraint(forall(..), (..))]
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Search Scripting
E.qg. Limited Discrepancy Search

User-defined LDS straightforward to program:

lds_labeling(AllVars, MaxDisc) :-
( fromto (Vars, Vars, RestVars, [1),
fromto (MaxDisc, Disc, RemDisc, _)
do
select_variable(X, Vars, RestVars),
once select value (X, Value),

(

X = Value, RemDisc = Disc

Disc > 0, RemDisc is Disc-1, X #\= Value, indomain (X)
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Search Scripting

Restart with seeds, heuristics, IImits

Jobshop example (approximation algorithm by Baptiste/LePape/Nuijten)

init memory (Memory) ,
bb min ((
( no_remembered values (Memory) ->
once bln labeling(c, Resources, Tasks),
remember values (Memory, Resources, P)

o

scale down (P, PLimit, PFactor, Probability), %
member (Heuristic, Heuristics), %
repeat (N) , %
limit backtracks (NB), %

find a first solution

with decreasing probability
try several heuristics
several times

spending limited effort

install some remembered values (Memory, Resources, Probability),

bb _min (

bln labeling(Heuristic, Resources, Tasks),

EndDate,
bb _options{strategy:dichotomic}
),
remember values (Memory, Resources, Probability)
)
),
EndDate, Tasks, TasksSol, EndApprox,
bb_options{strategy:restart}
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Propagation Scripting
Arc-consistency

Arc consistency on top of weaker consistency (e.g. test,
forward checking)

aq_constr(Xs) -

(

weak constr (Xs),

member (X, Xs),

indomain (X) ,

once labeling(Xs)
) infers £d.

—

| “Generalised Propagation” operator j

20
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Propagation Scripting
Singleton Arc-consistency

Singleton arc consistency from arc consistency, on a subproblem:

sac_constr(Xs) : -

(
ac_constr (<some Xs>), .., ac_constr (<some Xs>),
member (X, Xs),
indomain (X)

) infers ic.

If performed on the whole problem, simpler variant: shaving

shave (Xs) :-
( foreach(X,Xs) do
findall (X, indomain (X), Values),
X :: Values
) .

Shaving often effective as a preprocessing step before actual search.
E.g. sudoku solvable with ac-alldifferent and shaving — no deep search needed [Simonis].
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Open Sourcing Experience

Historically, ECLiIPSe was proprietary from the start

But research centre couldn’t provide commercial support
Parent/sponsor companies didn’t want to sell tool and/or support
Academic licences, but uptake limited by bureaucracy
Academic licences, but no commercial upgrade path

Small user base within parent companies, not enough testers

But: exclusivity was nevertheless considered important by spin-out
investors and academic IPR exploitation outfits

In retrospect, community uptake and reputation of system suffered
Possibly also negative consequences for robustness and feature set

22



" A
Now and Next

m Technical
Interface to COIN/OR solvers still being polished and extended
MiniZinc link recently released
ECLiPSe release 6.0 forthcoming, includes a new compiler
Saros development environment — released, needs manpower
New solver interfaces (MiniSat, Gecode) planned

m Organisational
Cisco continues support and maintenance
2 academic collaboration projects currently in selection phase
Wider contributions sought
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ECLIPSe Resources

m Open-sourced (MPL) by Cisco 9/2006

Sources and binaries on www.sourceforge.net/eclipse-clp
Project web site www.eclipse-clp.org
L] Open-source user Community
Traditionally academic teaching/research
Audience widening since open-sourcing
m Book

Constraint Logic Programming using ECLiIPSe
Krzysztof Apt & Mark Wallace, Cambridge University Press, 2006.
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