The ECLIPSe

Optimization Platform

www.eclipse-clp.org

OSSICP’08, Paris
Joachim Schimpf and Kish Shen

" A
Outline

m Motivation
m History

m Components
Modelling
Solvers and Interfaces
m Scripting
Modelling
Search
Propagation
m Open Sourcing and plans

Motivation

ECLiIPSe attempts to support the most common techniques
used in solving Constraint (Optimization) Problems:

CP — Constraint Programming
MP — Mathematical Programming

LS — Local Search
and combinations of those

ECLiIPSe is built around the
CLP (Constraint Logic Programming) paradigm

History

— 1995

1995 — 2005
1999 — 2004
2004 —
2006

ECRC (European Computer Industry Res Centre)
First ECLIPSe release 1990, predecessors earlier

Logic Programming, databases, parallelism, fd+set constraints
Shared roots with CHIP system

|C-Parc, Imperial College London
Focus on hybrid constraint solving, CHIC2 project
MIP integration, repair techniques, new solvers

Parc Technologies Ltd, London
Airline and Telecom product development

Cisco Systems
Networking applications

Open-sourced www.eclipse-clp.org

Mozilla-style licence

=
What is ECLIPSe

A system, consisting of

m A core engine
VM with data-driven computation, backtracking, garbage collection
m A collection of libraries
Solvers, algorithms, search methods, interfaces to third-party solvers
m A high-level modelling and control language
Logic programming based
m Development environments and tools
Saros (ECLiPSe/eclipse), TKECLiIPSe

m Interfaces for embedding into host environments
Java , C/C++, Tcl/Tk

"
ECLiIPSe Architecture

i“ Global constraints
Propagation
~))) Solvers o
Development ‘k\ 7

support Solver

ECLIPSe Interfaces

runtime system
glue language

Hybridisation
forms Techniques
Linear probing ((B
Paradigms (SBDD,SBDS
' Local Search

"
ECLiIPSe as black box solver:
Flat Model, including instance data

model (Vars, Obj) :-
Vars = [Al, A2, A3, Bl, B2, B3, Cl1, c2, c3, D1, D2, D3],
Vars :: 0..inf,

Al + A2 + A3 5= 200, Plant Transportation Client
Bl + B2 + B3 $= 400,

Cl + C2 + C3 $= 300 capacity cost demand

D1 + D2 + D3 $= 100,
Al + Bl + Cl + D1 $=< 500,

A2 + B2 + C2 + D2 $=< 300, 1<500

A3 + B3 + C3 + D3 $=< 400,
Obj =
10*A1l + 7*A2 + 11*A3 + ‘ﬁ
8%B1l + 5%B2 + 10%*B3 + 2<
5%Cl + 5%C2 + 8*C3 +
9*D1 + 3*D2 + 7+*D3. <

"
ECLiIPSe as black box solver:
Applying Finite Domain solver

: iii zi(r:;r.lch_and_bound) . L/h SpeCIfy Ilbrarles j
Specify heuristics]

solve (Vars, Cost) :-
model (Vars, Obj),
Cost #= eval(Obj),
minimize (search (Vars, O,

irst fail, indomain_ split, complete, []), Cost).

model (Vars, Obj) :-
Vars = [Al, A2, A3, Bl, B2, B3, Cl1, c2, c3, D1, D2, D3],

Vars :: 0..inf,

AL + A2 + A3 3= 200, Plant Transportation Client
Bl + B2 + B3 $= 400,)

Cl + C2 + C3 $= 300, capacity cost demand
D1 + D2 + D3 $= 100,

Al + Bl + C1 + D1 $=< 500,

A2 + B2 + C2 + D2 $=< 300, 1

A3 + B3 + C3 + D3 $=< 400, =

10*A1l + 7*A2 + 11*A3 + ‘ﬁ
8%B1l + 5%B2 + 10%*B3 + 2<

5%Cl + 5%C2 + 8*C3 +

9*D1 + 3*D2 + 7+*D3. <

"
ECLiIPSe as black box solver:
Applying LP solver

:— lib(eplex) . —_—

— Specify solver library]

solve (Vars, Cost) :-
model (Vars, Obj),
eplex solver setup (min (Obj)),
eplex solve(Cost).

model (Vars, Obj) :-
Vvars = [Al, A2, A3, Bl1l, B2, B3, Cl1l, c2, c3, D1, D2, D3],

Vars :: 0..inf,
Al + A2 + A3 $= 200, Plant Transportation Client
Bl + B2 + B3 $= 400, .
Cl + C2 + C3 $= 300, capacity cost demand
D1 + D2 + D3 $= 100,
Al + B1 + C1 + D1 $=< 500,
A2 + B2 + C2 + D2 $=< 300, 1
A3 + B3 + C3 + D3 $=< 400, =
Obj =
10*Al1 T*n2

8*B1 + 5%*B2 + 10%*B3 + 2<

+ +
+ +

5%*C1l + 5%C2 + 8*C3 +

9*D1 + 3*D2 + 7*D3. <

"
ECLIPSe Language - Modelling

m Logic Programming based

Predicates over Logical Variables X#>Y, integers([X,Y])
Disjunction via backtracking X=1; X=2
Metaprogramming (e.g. constraints as data) Constraint = (X+Y)

m Modelling extensions

Arrays M[l,J]
Structures task{start:S}
lteration/Quantification (foreach(X,Xs) do ...)

m Solver annotations
Solver libraries :- lib(ic).
Solver qualification [Solvers] : Constraint

One language for modelling, search, and solver implementation!

10

"
Sample Model
Generic Model, no data

model (Capacities, Demands, Dists, Vars, Obj)

length (Capacities, NP),
length (Demands, NC),
matrix (NP, NC, Plants, Clients, Vars),

Vars :: 0.0..inf,

(foreach(Client, Clients), foreach(Demand, Demands) do

sum (Client) $= Demand

),
(foreach(Plant, Plants), foreach(Capacity,

sum (Plant) $=< Capacity

),
Obj = (Dists*Vars).

Capacities) do

11

Constraint Solver Libraries

Solver Lib | Var Domains | Constraints class Behaviour
Suspend numeric Arbitrary arithmetic in/dis/equalities | Passive test

fd integer, symbol ELEZ?; in/dis/equalities and some Domain propagation
ic real, integer Arbitrary arithmetic in/dis/equalities gg%g%zgs;nam
ic_global integer il:l):t:éyecr:sonstraints over lists of E?Ol:or;cés;/;lg;nain
ic_sets set of integer ﬁr?;toz?c.a.r.a)tions (subset, cardinality, s;eot;c:;l;r;iii
grasper graphs Graph relations (path, scc, ...) Propagation
iC_symboliC ordered symbols Dis/equality, ordering, element, ... sroolg;%s;:ﬂg:am

sd unordered symbols | Dis/equality, alldifferent Domain propagation
propia Inherited any various

eplex real, integer Linear in/equalities Global, optimising
tentative open open Violation monitoring _

2

"
Solvers
The real/integer domain solver lib(ic)

A very general numeric solver, based on interval arithmetic

Real-valued variables

Integrality is a constraint

Infinite domains supported
Subsumes finite domain functionality

Not as fast as specialised FD solver, but general and good
for hybrids.

13

Mathematical Programming Interface “eplex”

Features supported by solvers

CPLEX XPRESS CLP/CBC SYMPHONY/CLP
problem types LP,MIP,QP,MIQP | LP,MIP,QP ,MIQP | LP, MIP, QP* LP, MIP
solving methods simplex, barrier, simplex, barrier simplex, barrier” | simplex

network simplex,

sifting
Incremental O O
changes
Probe [[O O
Col Gen Support [] [] [[

User defined O O O O
global cuts
Infeasibility all problem types linear problems no no

information (lIS)

* interfaced via solver-specific code

"
ECLIPSe as Glue and Scripting Language

Real-life applications involve many integration tasks
m integrating models in various forms
m integrating data and delivering results

And a lot of experimentation-heavy tasks
m specifying search strategies
specifying heuristics

specifying solver interaction
specifying propagation behaviour

How to tackle these tasks
m Do-It-Yourself in your favourite language
m use a language with features suited to the task

15

" S
ECLiIPSe Language for Scripting

m Logical variables (problem variables)

with multiple attributes (domain, LP solution, reduced costs, tentative values,
violations, ...)

m Symbolic manipulation (“meta-programming”)
to build symbolic constraints, post, decompose, inspect, etc
m Safe arithmetic
unlimited precision integers and rationals, safe floating point interval arithmetic
m Search programming
on top of built-in undo (backtrack) and copying facilities
m Data-driven computation
for constraint propagation, external solver triggering, visualisation
m High-level building blocks

solver-independent branch-and-bound, generalised propagation, specific
hybridisation forms

16

Embedding MiniZinc Models

m Embedding MiniZinc strings:
queens (N) :-
mzn_run_ string ("
int: n;
array [1l..n] of var 1..n: q;
constraint forall (i in 1..n, j in i+l..n)
(qlil !'= ql3] /\ qlil+i !'= ql[3j1+3 /\ qlil-i !'= ql[3jl-3);
solve satisfy;

"
4

[n = N], % parameter map: ZincId=EclipseValue
fzn ic). % solver mapping to use

m Model files, with parameter/variable mapping:

queens (N, Q) :-
mzn load("n_ queens.mzn", fzn ic, [n = N], [g = Q], _State),
labeling (Q) .

m Work with symbolic ECLiPSe-term representation of MiniZinc

[int:n, array([1l..n] of var(l..n)):q, constraint(forall(..), (..))]

17

"
Search Scripting
E.qg. Limited Discrepancy Search

User-defined LDS straightforward to program:

lds_labeling(AllVars, MaxDisc) :-
(fromto (Vars, Vars, RestVars, [1),
fromto (MaxDisc, Disc, RemDisc, _)
do
select_variable(X, Vars, RestVars),
once select value (X, Value),

(

X = Value, RemDisc = Disc

Disc > 0, RemDisc is Disc-1, X #\= Value, indomain (X)

"
Search Scripting

Restart with seeds, heuristics, IImits

Jobshop example (approximation algorithm by Baptiste/LePape/Nuijten)

init memory (Memory) ,
bb min ((
(no_remembered values (Memory) ->
once bln labeling(c, Resources, Tasks),
remember values (Memory, Resources, P)

o

scale down (P, PLimit, PFactor, Probability), %
member (Heuristic, Heuristics), %
repeat (N) , %
limit backtracks (NB), %

find a first solution

with decreasing probability
try several heuristics
several times

spending limited effort

install some remembered values (Memory, Resources, Probability),

bb _min (

bln labeling(Heuristic, Resources, Tasks),

EndDate,
bb _options{strategy:dichotomic}
),
remember values (Memory, Resources, Probability)
)
),
EndDate, Tasks, TasksSol, EndApprox,
bb_options{strategy:restart}

19

"
Propagation Scripting
Arc-consistency

Arc consistency on top of weaker consistency (e.g. test,
forward checking)

aq_constr(Xs) -

(

weak constr (Xs),

member (X, Xs),

indomain (X) ,

once labeling(Xs)
) infers £d.

—

| “Generalised Propagation” operator j

20

"
Propagation Scripting
Singleton Arc-consistency

Singleton arc consistency from arc consistency, on a subproblem:

sac_constr(Xs) : -

(
ac_constr (<some Xs>), .., ac_constr (<some Xs>),
member (X, Xs),
indomain (X)

) infers ic.

If performed on the whole problem, simpler variant: shaving

shave (Xs) :-
(foreach(X,Xs) do
findall (X, indomain (X), Values),
X :: Values
) .

Shaving often effective as a preprocessing step before actual search.
E.g. sudoku solvable with ac-alldifferent and shaving — no deep search needed [Simonis].

21

"
Open Sourcing Experience

Historically, ECLiIPSe was proprietary from the start

But research centre couldn’t provide commercial support
Parent/sponsor companies didn’t want to sell tool and/or support
Academic licences, but uptake limited by bureaucracy
Academic licences, but no commercial upgrade path

Small user base within parent companies, not enough testers

But: exclusivity was nevertheless considered important by spin-out
investors and academic IPR exploitation outfits

In retrospect, community uptake and reputation of system suffered
Possibly also negative consequences for robustness and feature set

22

" A
Now and Next

m Technical
Interface to COIN/OR solvers still being polished and extended
MiniZinc link recently released
ECLiPSe release 6.0 forthcoming, includes a new compiler
Saros development environment — released, needs manpower
New solver interfaces (MiniSat, Gecode) planned

m Organisational
Cisco continues support and maintenance
2 academic collaboration projects currently in selection phase
Wider contributions sought

23

"
ECLIPSe Resources

m Open-sourced (MPL) by Cisco 9/2006

Sources and binaries on www.sourceforge.net/eclipse-clp
Project web site www.eclipse-clp.org
L] Open-source user Community
Traditionally academic teaching/research
Audience widening since open-sourcing
m Book

Constraint Logic Programming using ECLiIPSe
Krzysztof Apt & Mark Wallace, Cambridge University Press, 2006.

24

