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AbstractConstraint Logic Programming (CLP) is a new class of programming languages combining thedeclarativity of logic programming with the e�ciency of constraint solving. New applicationareas, amongst them many di�erent classes of combinatorial search problems such as scheduling,planning or resource allocation can now be solved, which were intractable for logic programmingso far. The most important advantage that these languages o�er is the short developmenttime while exhibiting an e�ciency comparable to imperative languages. This tutorial aimsat presenting the principles and concepts underlying these languages and explaining them byexamples. The objective of this paper is not to give a technical survey of the current stateof art in research on CLP, but rather to give a tutorial introduction and to convey the basicphilosophy that is behind the di�erent ideas in CLP. It will discuss the currently most successfulcomputation domains and provide an overview on the di�erent consistency techniques used inCLP and its implementations. 1 2
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1 IntroductionDuring the last decade a new programming paradigm called \logic programming" has emerged. Thebest known representative of this new class of programming languages is Prolog, originated from ideas ofColmerauer in Marseille and Kowalski in Edinburgh. Programming in Prolog di�ers from conventionalprogramming both stylistically and computationally, as it uses logic to declaratively state problems anddeduction to solve them.It has been argued in the literature [Kow79, Ste80] that a program is best divided into two componentscalled competence and performance or logic and control. The competence component describes factualinformation - statements of relationships - which must be manipulated and combined to compute thedesired result. The performance component deals with the strategy and control of the manipulations andcombinations. The competence part is responsible for the correctness of the program; the performancepart is responsible for the e�ciency. An ideal programmingmethodologywould �rst be concerned with thecompetence (\what"), and only then, if at all, worry about the performance (\how"). Logic programmingprovides a means for separation of these concerns. It is based on �rst order predicate logic, and theperformance component is mostly automatic by relying on a built-in computation mechanism calledSLD-resolution.In this way, logic programming has the unique property that its semantics, operational and declarative, areboth simple and elegant and coincide in a natural way. These semantics, however, have their limitations.Firstly the objects manipulated by a logic program are uninterpreted structures - the set of all possibleterms that can be formed from the functions and constants in a given program. Equality only holdsbetween those objects which are syntactically identical. Every semantic object has to be explicitly codedinto a term; this enforces reasoning at a primitive level. Constraints on the other hand are used toimplicitly describe the relationship between such semantic objects. These objects are often ranging oversuch rich computation domains, as integers, rationals or reals.The second problem related to logic programming stems from its uniform but simple computation rule, adepth-�rst search procedure, resulting in a generate and test procedure with its well-known performanceproblems for large search applications. Constraint manipulation and propagation have been studied inthe Arti�cial Intelligence community in the late 1970s and early 1980s [Mon74, Ste80, Mac86] to makesearch procedures more intelligent. Techniques like local value propagation, data driven computation,forward checking (to prune the search space) and look ahead have been developed for solving constraints.These techniques can be summarised under the heading \Consistency Techniques".Constraint Logic Programming (CLP) is an attempt to overcome the di�culties of logic programming byenhancing a Prolog-like language with constraint solving mechanisms. Curiously both of these limitationsof logic programming can be lifted using \constraints". However, each limitation is treated by a quitedi�erent notion of constraint. CLP has hence two complementary lines of descent.Firstly it descended from work that aimed at introducing richer data structures to a logic programmingsystem thus allowing semantic objects, e.g. arithmetic expressions, directly to be expressed and manipu-lated. The core idea here is to replace the computational heart of a logic programming system, uni�cation,by constraint handling in a constraint domain. This scheme, called CLP(X), has been laid out in theseminal paper of Ja�ar & Lassez [JL87]. X has been instantiated with several so called computationdomains, e.g. reals in CLP(R), rationals in CLP(Q), and integers in CLP(Z).Secondly CLP has been strongly in
uenced by the work on consistency techniques. With the objective ofimproving the search behaviour of a logic programming system Gallaire [Gal85] advocated the use of thesetechniques in logic programming. He proposed the active use of constraints, pruning the search tree in ana priori way rather than using constraints as passive tests leading to a \generate and test" or \standardbacktracking" behaviour. Subsequently the di�erent inference mechanisms underlying the �nite domainpart of the CLP system CHIP [DVS+88] were developed. The key aspect is the tight integration betweena deterministic process, constraint evaluation, and a nondeterministic process, search. It is this activeview of constraints which is exploited in CHIP to overcome the well-known performance problems of\generate and test". This new paradigm exhibits a data-driven computation and can be characterised as\constrain and generate".Constraint solving has been used in many di�erent application areas such as engineering, planning or1



graphics. Problems like scheduling, allocation, layout, fault diagnosis and hardware design are typicalexamples of constrained search problems. The most common approach for solving constrained searchproblems consists in writing a specialised program in a procedural language. This approach requiressubstantial e�ort for program development, and the resulting programs are hard to maintain, modify andextend. With CLP systems a large number of constrained search problems have been solved, some of themwere previously solved with conventional languages. CLP languages dramatically reduce the developmenttime while achieving a similar e�ciency. The resulting programs are shorter and more declarative andhence easier to maintain, modify or extend. The wealth of applications shows the 
exibility of CLPto adapt to di�erent problem areas. Many Operations Research problems have been solved with theCLP system CHIP [DVS+88, Van88, DSV90]. Another very promising application domain is circuitdesign [Sim92, FSTW91]. Extensive work has also been devoted to �nancial applications [Ber89, LMY87].More recently applications in user interfaces [HHLM91] and in databases [KKR90] have been studied.As the subsequent tutorial in this summer school focusses on industrial applications of CLP, we will notfurther discuss them in this article.The aim of this informal tutorial is to present the most prominent ideas and concepts underlying CLPlanguages. It is not intended to present the underlying theory of this new class of programming languagesor to give an overview on the current state of art in CLP research. There are already technical surveys inthe literature, giving more details on those aspects. In particular the article of [Van91] is worth reading.A restricted view is presented in [Coh90, Fr�u90] discussing work around the CLP scheme. For the usageof \consistency techniques" in CLP, [Van89] is a valuable source going from theory to application with alarge number of programming example.This tutorial is organised as follows: In the next section we will introduce the CLP scheme and re-view the most important computation domains that have been developed so far, linear and non-lineararithmetic and boolean constraints. Then we will introduce the concept of �nite domains, consistencytechniques and their extension to arbitrary domains. Next we will explore ways of extending and tuningconstraint systems. Then the work on search and optimisation in CLP will be presented. Finally currentCLP implementations will be reviewed, amongst them the most well-known systems: CHIP [DVS+88],CLP(R) [JMSY90] and Prolog III [Col90].
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2 The CLP SchemeIn this section we will introduce in an informal way the basics of the Constraint Logic ProgrammingScheme (called CLP(X)), as developed by Ja�ar and Lassez [JL87]. The key aspect in the CLP scheme isto provide the user with more expressiveness and 
exibility concerning the primitive objects the languagecan manipulate. Clearly the user wants to design his application using concepts that are as close aspossible to his domain of discourse, e.g. he wants to use sets, boolean expressions, integers, rationals orreals, instead of coding everything as uninterpreted structures, i.e. �nite trees, as is advocated in logicprogramming. Associated with each computation domain are the usual algebraic operations, includingset intersection, conjunction of boolean expressions or multiplication of arithmetic expressions. Thesecomputation domains also have certain relations de�ned on them, such as set equality, equality betweenboolean expressions or equality, disequality and inequality between arithmetic expressions.The constraint logic programming scheme admits computation directly over these domains. Specialfunction and predicate symbols are introduced into logic programming,whose interpretation in the domainof computation is �xed. The relations over the domain of discourse are termed \constraints". Formulaeinvolving the special function and predicate symbols are called \constraint formulae". Informally theword \constraint" is used also for constraint formulae.When constraints are introduced into logic programming, a mechanism to solve them must also beintroduced. In traditional logic programming the only constraint is equality between terms, and theuni�cation algorithm is used to solve such constraints. There are two aspects related to uni�cation.Firstly it tells us if the equation t1 = t2 has a solution. Secondly in case there exists a solution, it givesus a most general solution, which is logically equivalent to the original equation. The important aspectof uni�cation is the �rst one deciding whether a constraint (or a set of constraints) has a solution ornot. In other computation domains, where such a most general solution may not exist, the system cancontinue manipulating the original set of constraints. Therefore in order to accommodate constraintsin logic programming the uni�cation algorithm needs to be replaced by a decision procedure telling uswhether a constraint or a set of constraints is satis�able. In the following we will call such a decisionprocedure a constraint solver.One reason for the success of CLP in recent applications has been the choice of constraint systemsintegrated into the di�erent implementations. The selection of new constraint domains needs to satisfyboth technical and practical criteria [DVS+88, JL87, SA89]. Most important are� the expressive power of the computation domain,� the existence of a complete and e�cient constraint solver,� its relevance in applications.The constraint solver is complete if it is able to decide the satis�ability of any set of constraints of thecomputation domain. To achieve e�ciency the constraint solver needs to be incremental, i.e. when addinga new constraint C to an already solved set of constraints S, the constraint solver should not start solvingthe new set S [ fCg from scratch.In the following we will illustrate the operational behaviour of a CLP(X) system and the two mostsuccessful constraint domains, arithmetic and Boolean constraints. A description of other interestingdomains may be found in section 6 where speci�c constraint languages are described.2.1 The Arithmetic Domain2.1.1 Linear ConstraintsProviding arithmetic was one of the motivations behind the research in combining logic programmingwithconstraints. Although Prolog has built-in facilities for evaluating arithmetic expressions the behaviouris not what one would ideally expect. Prolog cannot handle equations like X - 3 = Y + 5. In Prologthe term X - 3 is not equal to the term Y + 5 as Prolog knows only about uninterpreted structures.3



The programmer needs to resort to the built-in arithmetic. And here the problems are the same as inany other programming language. Indeed the programmer needs to know which of the variables willbe instantiated �rst and then he can use assignment (is) to instantiate the other. CLP(R) [JL87] wasthe �rst constraint programming language to introduce arithmetic constraints. There is a caveat. Thedecision procedure is only complete for linear arithmetic constraints. Nonlinear constraints are suspendeduntil they become linear. Linear constraint handling turned out to be su�cient in many applicationssuch as simulation of circuits and devices, decision-support systems and geometrical problems.Linear arithmetic expressions are terms composed from numbers, variables and the usual arithmeticoperators: negation (�), addition (+), subtraction (�), multiplication (�) and division (=). For thecondition of linearity to be satis�ed it is required that in a multiplication at most one of the componentsis a variable and that in a division the denominator is a number. An arithmetic constraint is an expressionof the form t1 R t2 where R is one of the following predicates f>;�;=;�; <; 6=g.There are several decision procedures for deciding a system of linear arithmetic constraints. Usuallya combination of Gaussian elimination and a modi�ed Simplex algorithm is employed. The Simplexalgorithm is required as soon as inequality constraints need to be solved. The Simplex algorithm is usedbecause it has quite a good behaviour on average, it is well-understood, and it can be made incremental.We now present the execution mechanism for CLP languages informally through a small example. Con-sider the following problem from [Col90].Given the de�nition of a meal as consisting of an appetiser, a main meal and a dessert and adatabase of foods and their calori�c values we wish to construct light meals i.e. meals whose sum ofcalori�c values does not exceed 10.A CLP program (in an arithmetic domain) for solving this problem is given below.lightmeal(A,M,D) :-I > 0, J > O, K > 0,I + J + K <= 10,appetiser(A,I),main(M,J),dessert(D,K).main(M,I) :-meat(M,I).main(M,I) :-fish(M,I).appetiser(radishes,1).appetiser(pasta,6).meat(beef,5).meat(pork,7).fish(sole,2).fish(tuna,4).dessert(fruit,2).dessert(icecream,6).A CLP program is syntactically a collection of clauses which are either rules or facts. Rules are asin Prolog, with the addition that they may contain constraints in their premises. Rules describe theconclusions that can be reached given certain premises. For our example we read \The meal consistingof foods A, M and D is a light meal if A is an appetiser (with a positive calori�c value I), M is a main meal(with positive calori�c value J), D is a dessert (with positive calori�c value K) and I + J + K is less than4



or equal to 10". The premise of a rule is a conjunction of constraints, e.g. I + J + K <= 10 and atomse.g. appetiser(A,I). Facts express known relationships. In our case, the calori�c value of beef (whichis a meat) is 5.We shall describe the intermediate results of an execution of a CLP program as computation states. Acomputation state consists of two components, a constraint store and the remaining goals. We shallseparate the constraint store from the remaining goals by the symbol �. The constraint store consistsof the set constraints collected during the computation so far. CLP programs are executed by reducingthe goals in the computation state using the facts and rules. In each intermediate computation state theconstraint store must be consistent. Consider the general query ?- lightmeal(A ,M ,D) asking for alllight meal plans. This corresponds to the initial computation state� lightmeal(A, M, D).For our �rst reduction step we �rst have to choose an atomic goal to reduce. There is only one possibilityi.e. lightmeal(A, M, D). Next we need to choose an applicable rule. Again there is only one possibilityi.e. the rule with the consequent lightmeal(A, M, D). The next step is to form equations betweenvariables in the consequent of the rule and the selected atom. The constraint store of the new computationstate consists of the current constraint store, this equation set and the set of constraints in the premiseof the rule. The atom set of the new computation state is the current atom set where the selected goalis replaced by the atoms of the premise of the rule (as in the case of Prolog). Thus our �rst reductionstep produces the following computation state:I + J + K <= 10, I > 0, J > 0, K > 0 �appetiser(A,I), main(M,J), dessert(D,K).1A CLP system searches for all solution by systematically trying all possible rules (and facts) for thereduction of all the atoms in the atom set. Therefore any one possible alternative is in fact a sequence ofreduction steps called a derivation. A derivation terminates when there are no more atoms to be reducedand the �nal constraint store is consistent. For the �rst example a successful derivation is the following:A=radishes, I=1, 1+J+K <= 10, 1>0, J>0, K>0� main(M, J), dessert(D, K)A=radishes, I=1, M=M1, J=I1, 1+J+K <= 10, 1>0, J>0,K>0� meat(M1, I1), dessert(D, K)A=radishes, I=1, M=beef, J=5, M1=beef, I1=5, 1+5+K <= 10, 1>0, 5>0, K>0 � dessert(D, K)A=radishes, I=1, M=beef, J=5, M1=beef, I1=5, D=fruit, K=2, 1+5+2 <= 10, 1>0, 5>0, 2>0 �.Note that the answer to this query is given by the constraint store. A simpli�ed answer in terms of theinput variables is A=radishes, M=beef, D=fruit.If the constraint store becomes inconsistent, the derivation fails. An example of a failed derivation is nowpresented. We begin with the same initial computation state as above but make some di�erent choicesin the rules and facts to apply.A=pasta, I=6, 6+J+K <= 10, 6>0, J>0, K>0� main(M,J), dessert(D,K)A=pasta, I=6, M=M1, J=I1, 6+J+K <= 10, 6>0, J>0, K>0� meat(M1,I1), dessert(D,K)A=pasta, I=6, M=beef, J=5, M1=beef, I1=5, 6+5+K <= 10, 5>0, 6>0, K>0� dessert(D,K) (inconsistency)1In the examples trivial equations are omitted 5



If the last computation state for this derivation is examined it can be seen that the constraint storecontaining 6+5+K <= 10 and K > 0 is not satis�able.The answer A=radishes, M=beef, D=fruit is de�nite in the sense that a constant is equated with eachvariable in the query. However, in general answers can also be inde�nite, i.e. the answer consists of a setof constraints representing a possibly in�nite set of solutions. An example of this kind will be presenteda little later when nonlinear constraints are discussed. How to extract an understandable answer fromthe constraints in the constraint store is an active �eld of research [JMSY92].2.1.2 Nonlinear constraintsTo introduce nonlinear arithmetic constraints we shall use a program multiplying two complex numbersR1 + I*I1, R2 + I*I2 taken from [JL87]:zmul(R1, I1, R2, I2, R3, I3):-R3 = R1*R2 - I1*I2,I3 = R1*I2 + R2*I1.If the query zmul(1,2,3,4,R3,I3) is given, then the nonlinear equations become linear at run time, andthe answer produced by e.g. CLP(R) is:R3 = -5I3 = 10*** YesIf we ask the query zmul(1,2,R2,I2,R3,I3), the solution is a conjunction of two linear equalities:I2 = 0.2*I3 - 0.4*R3R2 = 0.4*I3 + 0.2*R3*** YesThis answer is an example for an inde�nite solution. The solution is an in�nite set of points that isrepresented by a minimal set of constraints stating relations between the variables of the query. Toobtain precise values for I2 and R2 (i.e. to obtain I2 equal to a constant and R2 equal to a constant),the user has to further instantiate I3 and R3.For the two previous queries, there is no need for a nonlinear solver. But for the query zmul(R1,2,R2,4,-5,10),R2 < 3 nonlinear constraints appear in the solution. CLP(R) gives the answer:R1 = -0.5*R2 + 2.53 = R1 * R2R2 < 3*** MaybeThis is due to the property of CLP(R), whose decision procedure can only solve linear arithmetic. Whena nonlinear constraint is encountered during computation, then it is delayed until it becomes linear. Forthe previous query, two nonlinear equations are encountered during computation. They are delayed, butno instantiation makes them linear. So at the end of the computation CLP(R) gives back the delayedconstraints without knowing if there are some solutions or not ( *** Maybe).This introduces the need for nonlinear arithmetic solvers in constraint logic programming. Nonlinearconstraints arise for instance in computational geometry [PS85], and �nancial applications. Severalalgorithms can be used to solve nonlinear constraints. Their capacities and complexities are quite di�erent6



(see [Mon92a] for a comparison of di�erent solvers). For example Gr�obner bases [Buc85] treat onlyequations whereas quanti�er elimination [Col75] can handle all (well formed) formulae over the reals at,sometimes, considerable extra cost.For the �rst two queries of the previous example (multiplication of complex numbers) the answer given bynonlinear solvers is the same as the one fromCLP(R). But the last query zmul(R1, 2, R2, 4, -5, 10),R2 < 3 is completely solved, and the answer is de�nite:R1 = 1.5R2 = 2Gr�obner Bases are used in CAL [AH92], and in the system of [Mon92b]; and an improved version ofquanti�er elimination [Hon90] is used in RISC-CLP [Hon92].2.2 The Boolean DomainThe most prominent applications of boolean constraints are in the area of circuit design [Sim92], herein particular hardware veri�cation [FSTW91], and in theorem proving in the domain of propositionalcalculus [SD90, Col90]. Such applications motivated the incorporation of boolean constraint solvers intoconstraint logic programming languages.Boolean terms are built from the truth values (false and true, represented sometimes also by 0 and 1),from variables and from logical connectives (e.g. _, �2, ^, neg). The only constraint between booleanterms is the equality (=). In some implementations (e.g. CHIP) additional constants can be used in theconstruction of terms. This is particularly important in hardware veri�cation as these constants can beused to represent symbolic names for input arguments of circuits.Each of the systems mentioned above employs quite di�erent ways of handling boolean constraints. ABoolean uni�cation algorithm [BS87] is used in the case of CHIP. In the literature a number of di�erentuni�cation algorithms for Boolean constraints are reported [MN90, Bue88]. Another possibility is toimplement boolean constraint solving as a special case of numerical constraint solving. A modi�edversion of the Gr�obner bases algorithm [ASS+88] is used in CAL. Prolog III uses a saturation method tosolve boolean constraints [Col90]. This method does not compute a most general solution and is hence noteasily applicable to circuit veri�cation. Since boolean constraint solving provides a decision procedurefor propositional calculus and is therefore NP-complete, any algorithm for boolean constraints has anexponential worst case complexity. It is thus very important to use a compact description of booleanterms to achieve e�ciency. CHIP [DVS+88], for example, represents boolean terms as directed acyclicgraphs, which are manipulated by special purpose graph algorithms [Bry86].The following classic example coming from hardware veri�cation illustrates how boolean constraints canbe solved by boolean uni�cation.% Full-adder circuit exampleadd(I1; I2; I3; O1; O2) : �X1 = I1� I2;A1 = I1 ^ I2;O1 = X1� I3;A2 = I3 ^X1;O2 = A1 _A2:2� is the exclusive or 7



Figure 1: Full Adder CircuitThe computation of an answer to the query add(a; b; c; O1;O2) gives the following set of intermediaryconstraints: X1 = a� bA1 = b ^ aO1 = a� b� cA2 = c ^ (a � b)O2 = a ^ b� a ^ c� b ^ c:The boolean solver hence produces the answer:O1 = a� b� c; O2 = a ^ b� a ^ c � b ^ cwhich describes the logical function of the piece of hardware. The output parameters are expressedas boolean expressions constructed from the input parameters. These boolean expressions can now becompared with the speci�cation of the circuit, which is also expressed in terms of boolean expressions.In case of hardware veri�cation the full power of boolean uni�cation is needed. But obviously booleanuni�cation is a very costly method. For simulation tasks for instance, where the input parameters arenot symbolic constants but the ground values 0 or 1, this power is not needed and other methods aremore e�cient. In section 3.2 and 4.2 we will describe such other techniques.
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3 Consistency Techniques3.1 Finite DomainsConsistency techniques were �rst introduced for improving the e�ciency of picture recognition programs,by researchers in arti�cial intelligence [Wal72]. Picture recognition involves labelling all the lines in apicture in a consistent way. The number of potential labellings can be huge, while only very few areconsistent.Consistency techniques e�ectively rule out many inconsistent labellings at a very early stage, and thuscut short the search for consistent labellings. These techniques have since proved to be e�ective on awide variety of hard search problems, made even wider since their integration into a logic programmingframework in CHIP and subsequent CLP implementations.The handling of constraints using consistency techniques is unlike constraint solving in the CLP Scheme,as described earlier, in that it does not guarantee to detect inconsistency of the (global) constraint storeuntil the labelling of the problem variables is complete. Instead consistency techniques provide an e�cientway to extract from the constraint store new information about the problem variables.3.1.1 A Scheduling ExampleTo illustrate one such consistency technique let us take a very simple scheduling problem, with six tasksto be scheduled into a �ve-hour day, where each task takes an hour. The following diagram shows taskson the left which must precede other tasks on the right:T2/T1 T6\ /T3--T5/T4In addition we impose the constraint that tasks T2 and T3 cannot be scheduled at the same time.To express this as a constraint satisfaction problem, we associate a variable T i with the start time ofeach task, whose domain of possible values is f1; 2; 3; 4;5g. We then impose the constraintsbefore(T1,T2)before(T1,T3)before(T2,T6)before(T3,T5)before(T4,T5)before(T5,T6)notequal(T2,T3)Consistency techniques work by propagating information about the variables via the constraints betweenthem. For example given that T1 2 f1; 2; 3; 4; 5g and that T2 2 f1; 2; 3; 4; 5g, then based on the con-straint before(T1,T2) our consistency technique deduces the information that T1 2 f1; 2; 3; 4g andT2 2 f2; 3; 4; 5g. The value 5 is removed from the domain of T1 because there is no value in the do-main of T2 which is consistent with it - that satis�es the constraint before(T1,T2). The value 1 isremoved from the domain of T2 for the same reason. (This consistency technique, which removes valuesinconsistent with a single constraint between two variables, is termed arc consistency [Mac77].)Propagation continues until no further new domain reductions can be extracted from the constraints.The e�ect of applying arc consistency in our example is to reduce the domains associated with the tasks'9



start times as follows:T1 2 f1; 2g; T2 2 f2; 3; 4g; T32 f2; 3g; T4 2 f1; 2; 3g; T52 f3; 4g; T6 2 f4; 5gConsistency techniques alone can rarely be used to solve a problem, since in general there remain combina-tions of values in the resulting domains which are inconsistent. For example the constraint before(T1,T2)has been used during propagation to reduce the domains of T1 and T2, but it is still not satis�ed by allthe values of the resulting domains of T1 and T2. (Although T1 = 2 is consistent with some values inthe domain of T2, it is not consistent with the value T2 = 2.)To �nd a solution to this scheduling problem the system therefore performs some search, by labellinga variable with some value in its domain (search is discussed in detail in section 5 below). This choice(which may prove later to have been erroneous), allows further propagation to be attempted. For examplesuppose T1 is labelled with the value T1 = 2. Propagation yields T2 2 f3; 4g and T3 2 f3g. At this pointthe constraint notequal(T2,T3) is used actively for the �rst time to produce the information T2 2 f4g.Propagation continues until the following information has been extracted: T1 2 f2g; T2 2 f4g; T3 2f3g; T4 2 f1; 2; 3g; T5 2 f4g; T6 2 f5g.3.1.2 Propagation versus SolvingThe treatment of the notequal constraint with arc consistency is a typical example of how and whyconsistency techniques di�er from constraint solving. If variables X and Y each have domains with morethan one value, then the constraint notequal(X,Y) will not yield any new information. The reason isthat every value in the domain of Y will be consistent with at least one value in the domain of X, andvice versa. Propagation on the constraint notequal can be implemented very e�ciently. The constraintyields no information until one of the variables has a domain with only one remaining value. This value isimmediately removed from the domain of the other variable, and the constraint is satis�ed. It can neveragain yield new information.However if the constraint notequal is handled by a constraint solver it can yield more information thanpropagation. For example suppose variable X, Y and Z all have two-value domains: X 2 f1; 2g; Y 2f1; 2g; Z 2 f1; 2g. The constraintsnotequal(X,Y) notequal(Y,Z) notequal(Z,X)are not satis�able. Although this is detected by a solver for the notequal constraint, arc consistencyyields no information.For simple examples, such as this, the solver can detect the inconsistency at little cost. However non-trivialproblems involve a reasonably large number of constraints and domains containing a reasonably largenumber of values; and in this case the cost of solving the constraints increases very quickly (exponentially)with the number of variables involved. For such problems it is often too expensive to attempt constraintsolving on the notequal constraints, and constraint propagation proves to be a more e�ective technique.3.1.3 Constraint Driven ComputationConsistency techniques extend the notion of data driven program execution. The arrival of \data"no longer means the arrival of a speci�c value for a variable, but rather any reduction of the domainassociated with the variable. We call it constraint driven. In this framework new \data" may arrivemany times on a single variable - each time its domain is reduced. Much research has been published onconstraint propagation and its complexity, and we list some important references [MH86, Mon74, Fre78,HE80, Mac77, MF85].For handling constraints de�ned extensionally as relations, there is a range of standard consistencytechniques. However for particular constraints, specialised consistency techniques can be applied whichtake advantage of their particular semantics. The specialised techniques can support more e�cientconstraint propagation than the standard techniques [DV91].10



For problems modelled using integers (like the scheduling example above), the constraints most oftenrequired are equations and inequations between mathematical expressions (involving the predicates =,> �, < and �). These can be e�ciently handled by reasoning on maxima and minima. For examplesuppose X, Y and Z each have domain f1; : : : ; 10g. Reasoning on the constraint 2*X + 3*Y + 2 < Z weuse maxima and minima to remove inconsistent values from the domains of all three variables. Since 10is the maximumpossible value for Z, we can deduce that 2 �X+3 �Y < 8. Since the minimum value forY is 1, it follows that 2 �X < 5. Consequently the domain of X can be reduced to X 2 f1; 2g. SimilarlyY 2 f1g. Finally by reasoning on the minima of X and Y we conclude that Z 2 f8; 9; 10g.Of particular importance for current day computing systems is that constraint propagation can be per-formed in parallel. Propagation on the di�erent constraints can occur concurrently and asynchronously,and as long as it continues until no more domain reductions are possible the result is independent of theprecise behaviour.3.1.4 Embedding in CLPWe now illustrate the embedding of consistency techniques in a logic programming system, by expressinga couple of problems in the CHIP language (see section 6 for information about CLP languages).The above example can be encoded in CHIP as follows:?- [X,Y,Z]::1..10,2*X + 3*Y + 2 #< Z,indomain(X), indomain(Y), indomain(Z).First the �nite domain variables X, Y and Z over the subrange 1..10 are declared. Then the constraintthat must hold between X, Y and Z are stated as a goal1. This goal is recognised by its syntax to be aconstraint that will be handled by propagation. Finally the search for admissible values of X, Y and Z isexpressed using the goal indomain. This goal instantiates its argument to a value in its current domain.This instantiation will cause constraint propagation to take place, which may reduce the domains of theremaining variables, or even cause a failure. If this choice proves later to have been wrong, and the systembacktracks, another value in the domain will be chosen, until all the alternatives have been exhausted.Because the domains are pruned by propagation, the two admissible combinations of values are foundwithout any wrong guesses. For this simple example, it is an interesting exercise to write a logic programwithout constraints that avoids unnecessary search. For real-life problems, such an exercise is no longerinteresting, and it can easily lead to unmaintainable and even incorrect logic programs. Using CLPhowever, we use a simple standard program structure and rely on consistency techniques for e�ciency.The structure is as follows:� Declare problem variables and their �nite domains� Set up the constraints� Search for a solutionNotice that consistency techniques are deterministic, as opposed to the search which is non-deterministic(and usually entails backtracking). This standard structure ensures that deterministic computation dur-ing propagation is performed as soon as possible and non-deterministic computation during search isused only when there is no more propagation to be done. The importance of prioritising deterministiccomputation has been recognised as an important principle in the logic programming community.It is also possible to specify user-de�ned predicates as constraints for propagation, by a declaration suchas lookahead.21The symbol #< stands for < on �nite domains.2\Looking ahead" is another name used for consistency techniques [HE80]11



Thus in the following program goals for the predicate less will be treated using consistency techniques,whilst goals for the predicate gteq will be treated by choice and backtracking in the normal fashion oflogic programming.3lookahead less(d,d).less(1,1).less(1,2).less(2,2).less(2,3).gteq(2,1).gteq(3,2).The query?- [X,Y,Z]:: [1,2,3,4,5], less(X,Y), less(Y,Z), gteq(X,Z)is evaluated as follows. As soon as the constraints (less(X,Y), less(Y,Z)) are set up, the domains ofthe variables are reduced by consistency techniques to f1; 2; 3g. Now the goal gteq(X,Z) is invoked; thesystem selects the �rst clause de�ning gteq and attempts to add the constraints Z = 1; X = 2 to theconstraint store. Arc consistency on less(X,Y) reduces the domain of Y to Y 2 f2; 3g, then propagationon less(Y,Z) reveals an inconsistency. Thus the attempt to match the �rst clause for gteq fails, andthe second clause is tried. This fails similarly, and so the whole query fails.As usual for consistency techniques, the evaluation of the constraint goals less are constraint driven,and there is no backtracking on these goals.3.2 Generalised PropagationThe study of constraint propagation has been recently extended to remove the requirement for �nitedomains associated with the variables. One step in this direction is to admit intervals instead of �nitedomains (eg 1 < X < 10 for real X) [Dav87]. However, more radically, it is possible to performpropagation without requiring either domains or intervals to be associated with the problem variables.This technique has been named generalised propagation [LW92a]. Generalised propagation integratesthe CLP scheme, described in section 2 above, and constraint satisfaction techniques, described in thissection.In the CLP scheme an answer to a goal is a (consistent) set of constraints on the problem variables.Standard logic programming is a particular instance of the CLP scheme, where answers are expressedusing equations on terms. Thus if predicate p is de�ned byp(1,1).p(2,2).the query ?- p(X,Y) has two answers X = 1; Y = 1 and X = 2; Y = 2. The idea of generalisedpropagation is to enable p(X,Y) to be used as a constraint, even though there are no domains or intervalsassociated with its arguments. Instead of extracting information in the form of reduced domains for Xand Y , the information extracted is in the form of constraints in the current computation domain - i.e.equations between terms.As with �nite domain propagation, the information extracted must not exclude any answers to p(X,Y).Thus generalised propagation only extracts information common to all the answers to p(X,Y). Over thiscomputation domain, the information extracted from a goal is technically the \most speci�c generalisa-tion" of all the answers to the goal. In this case the most speci�c generalisation is X = Y .3The d in lookahead less(d,d) signi�es that this argument of less is a domain variable.12



If p is handled as an ordinary predicate in the query ?- p(X,Y), p(V,W), Y=V, notequal(X,W), thesystem will backtrack four times before failing. To use p(X,Y) and p(Y,Z) as constraints for generalisedpropagation, it is merely necessary to annotate the query as follows:?- propagate p(X,Y), propagate p(V,W), Y=V, notequal(X,W)The annotation propagate Goal tells the system to perform generalised propagation on Goal, instead oftreating it as an ordinary logic programming goal. Generalised propagation will immediately deduce thatX = Y and V = W . Consequently when the goals Y=V, notequal(X,W) are executed, the inconsistencywill be detected without any backtracking.Another example of generalised propagation is its application to the predicate and, de�ned as follows:and(0,0,0).and(0,1,0).and(1,0,0).and(1,1,1).Consider the query ?- propagate and(X,Y,Z), Rest where Rest is some goal that performs search,eventually yielding further information about the variables X;Y and Z. Initially no information can beextracted from the constraint and(X,Y,Z). However as further information is added to the constraintstore, during evaluation of Rest, interesting propagations on and(X,Y,Z) may become possible. Forexample if the constraint X = 0 is added to the constraint store, generalised propagation on and(X,Y,Z)immediately yields the new equation Z = 0. Alternatively if X = 1 is added to the constraint store,generalised propagation yields Z = Y .Like propagation, generalised propagation is a form of constraint driven computation. As more infor-mation about the problem variables becomes available, via the constraint store, further information isextracted from the constraints. All the extracted information is added to the constraint store, whichenables further propagation to take place. Propagation is repeatedly attempted on all constraints untilthere is no more information to be extracted.In section 4.2 below, it is described how the user can explicitly program the handling of constraints,so as to achieve a similar constraint driven behaviour for the constraint and(X,Y,Z). The advantage ofgeneralised propagation is that such constraint driven behaviour is achieved by a single annotation, andwithout risk of incorrectness or potential omission of possible propagation steps.Generalised propagation yielding equality constraints, as in the above examples, has been implementedin a system called Propia [LW92b]. Programming in Propia has shown three advantages of generalisedpropagation.� It is relatively simple to encode the constraints of real problems in Propia, and there is no need toexplicitly add �nite domains. (In fact current systems only admit �nite domains of integers whichimplies an extra encoding step).� It is very natural to encode a problem using a logic program without regard for e�ciency. To turnsuch a program into a Propia program utilising generalised propagation, it is merely necessary toadd annotations as in the above example. Consequently it is easy to experiment with di�erentways of executing the program by changing the annotations. The �nal program still has the samestructure as the original logic programming \speci�cation" and is therefore easy to maintain.� Even some problems which involve �nite domains prove to be solved more e�ciently when encoded inPropia, than is achieved with �nite domain propagation. For propositional logic problems, which canbe encoded using �nite domains with two values, generalised propagation produces more informationthan arc consistency. In fact Propia turns out to be broadly as e�cient as specialised programs ona current benchmark of such problems. For problems which involve large �nite domains, on theother hand, generalised propagation scores again by its simplicity: it extracts less information butit avoids wasting storage and execution time doing so. Consequently Propia can solve problemswhich are too big and too slow to run on existing CLP systems with �nite domains.13



4 Extending and Specialising the Constraint SystemA given constraint system supports certain computation domains, and certain consistency techniques,enabling it to solve a range of problems e�ciently. However, specialised problems may require specialisedconstraints, with specialised solving and consistency techniques. Two di�erent approaches have been de-veloped to tackle this problem. The �rst approach consists in identifying frequently occurring constraintsand o�ering them via a system library. The second consists in o�ering the user a language to de�ne hisown constraints and the necessary propagation.4.1 Specialised ConstraintsIn the past a variety of frequently occurring constraints, have been identi�ed, which caused problemsif they are encoded using the standard built-in constraints. For these, specialised constraint solvingalgorithms have been developed. We shortly mention some of those, developed within the CHIP system.Note that the user of these constructs need not be concerned about the implementational aspects, asthey all have a declarative reading.4.1.1 The Element ConstraintMany constraint problems use the notion of a cost function associated with a choice. This can describethe cost which we want to optimise, or it can be just an internal �gure that has to be kept within certainlimits. For example in a production unit switching a job from one machine to another involves a certainsetup time. Now the overall time needed is restricted by some constraints. These constraints provide apruning on the possible choices of jobs. An e�cient implementation of arc-consistency for the functionalconstraint between choices (jobs in this example) and their costs (here the setup times) is supported via aspecial element constraint. It has the following structure: element(N, List, Value), with the reading:V alue is the N -th value of the list List.[M1,M2,M3] :: 1..5, % 3 Machines, 5 jobsalldistinct([M1,M2,M3]), % no job is done twiceelement(M1,[3,2,6,8,9],C1),element(M2,[4,6,2,3,2],C2),element(M3,[6,3,2,5,2],C3),C1+C2+C3 #= Cost,Cost #<= 9.Running this query will give the result that M1 does Job 1 or 2, M2 can do all jobs except Job 2, andM3 all except Job 1. The cost is guaranteed to be between 6 and 9.Note that this constraint works in all directions, e.g. restrictions of the possible values also prune theassociated index.A variety of special constraints on lists of choices have been developed. They express e.g. that all theelements have to be di�erent (alldistinct); certain values may not occur more than a certain numberof times (atmost, as exampled below); that only one variable may take a certain value, etc. A specialconstraint - cumulative - developed for scheduling and loading problem has been recently presented in[AB92].[chipc 7]: [A,B,C] :: 0..5, atmost(1,[A,B,C],5),B=5.A = $_267 [0..4]C = $_287 [0..4]B = 5yes. 14



4.2 User De�ned ConstraintsThe implementation of special constraints can only be done by the system designer. But as it is usefulto have special constraint solving mechanisms available the trend now is to develop tools to allow theconstraint solving behaviour necessary for the speci�c application to be de�ned by the application pro-grammer. Given these tools provide means for a simple declarative speci�cation, they once again supportone key concept behind logic programming: the programming time is reduced, di�erent possibilities canbe tested easily, and support of the software becomes easier.In this section we discuss facilities for the user to control the evaluation of constraints, to specifyconstraint-driven computation, and to de�ne constraint solvers for new constraints.4.2.1 Delay DeclarationsWe saw above that for certain constraints (like non-linear constraints in CLP(R)) it is necessary todelay their handling until certain variables have a speci�c value. In some systems the delaying of theappropriate constraints is built into the system. Often, however, the user needs to be able to controlthe delaying of goals and constraints. An example of a declaration to delay the handling of a goal till acertain condition is satis�ed isdelay employee(Nr,Sal) until ground(Nr)Such a declaration will prevent the system from trying to look up salaries for employees until a speci�cemployee number is known. The declaration would also postpone the application of consistency techniquesto this goal, in case employee was a constraint.Declarations are annotations applied to a program which refer to the program text. As such they aretermed \meta-commands" to distinguish them from commands within the program which manipulatethe data.4.2.2 GuardsThere is another approach to providing user control based on the concept of a guard. The guard de�nesa logical condition, and is part of the program itself rather than a meta-command. An example of aguarded clause isand(X,Y,Z) <=> X=0 | Z=0The guard is X = 0. When the current set of goals include an atomic goal of the form ?- and(A,B,C)the guard is used to control when, or if, the clause can be applied. Speci�cally it can be applied as soonas the constraint store contains, or implies that, X = 0. As soon as this is true, the atomic goal can berewritten into its body (in this case Z = 0). Hence the query ?- and(X, Y, Z),X = 0 will result in aconstraint store X = 0, Z = 0.A special feature of de�nitions by guarded clauses is that when a guard is satis�ed, the system commitsto the clause and there is never any backtracking to alternative clauses. This means that guarded clausesde�ne a computation with \don't care" nondeterminism, rather than the \don't know" nondeterminism oflogic programming which involves backtracking to check the other alternatives. The declarative semanticsof logic programming is sacri�ced with the move to don't care nondeterminism, unless strict conditionsare met by the guarded clauses as given in [Mah87]. An advantage is that the guards can be evaluatedconcurrently, which is why guarded clauses are interesting for concurrent CLP, discussed later in thissection.The control o�ered by the guards is precisely constraint driven computation, without backtracking, asneeded to explicitly encode constraint propagation15



4.2.3 ExampleWe shall take as an example the and constraint used earlier in our discussion of generalised propagation.Declaratively and is de�ned as follows:and(0,0,0).and(0,1,0).and(1,0,0).and(1,1,1).We can specify a propagation behaviour for handling and goals using the following guarded clauses:and(X,Y,Z) , X=0 | Z=0.and(X,Y,Z) , Y=0 | Z=0.and(X,Y,Z) , Z=1 | X=1,Y=1.and(X,Y,Z) , X=1 | Y=Z.and(X,Y,Z) , Y=1 | X=Z.and(X,Y,Z) , X=Y | Z=X.Notice that the information Z = 0 is not su�cient to allow any further consequences to be extracted fromthe and constraint. Thus if the constraint store only contains Z = 0 none of the guards are satis�ed. Inthis case more information on X or Y will be needed before any of the clauses can �re.Consider the full-adder circuitadd(I1,I2,I3,O1,O2) :-xor(I1,I2,X1),and(I1,I2,A1),xor(X1,I3,O1),and(I3,X1,A2),or(A1,A2,O2).together with rules for the logical gates (as was exempli�ed by the rules for the and-gate).The query add(I1,I2,0,O1,1) will produce I1=1,I2=1,O1=0. The computation proceeds as follows:Because I3=0, the result of the and-gate with input I3, the output A2, must be 0. As O2=1 and A2=0,the other input A1 of the xor-gate must be 1. Because A1 is also the output of an and-gate, its inputsI1 and I2 must be both 1. Hence the output X1 of the �rst xor-gate must be 0, and therefore also theoutput O1 of the second xor-gate must be 0.In this particular case the same behaviour is obtained by applying generalised propagation to the declar-ative speci�cation of and. However the facility to de�ne explicitly what propagation is to take place ona given goal means that tailored propagation behaviour can be obtained for particular applications.4.2.4 Embedding in CLPCHIP was the �rst constraint logic programming language to introduce constructs to specify user-de�nedconstraint propagation. Their need was realised in applications for diagnosis and test pattern generationof digital circuits [SD87, Sim89]. They have been called \demon constructs" [DVS+88] because of theirevent-driven activation. CHIP introduces in addition conditional propagation with the if-then-elseconstruct. A framework for using guarded rules for constraint handling is given in [Smo91].4.2.5 Constraint SolvingTo express constraint solving it is necessary to be able to handle the interaction of multiple constraints.Consequently a multi-headed guarded rule is introduced. A uni�ed approach encompassing single- and16



multi-headed guarded clauses has been developed under the name Simpli�cation Rules [Fr�u92]. Two rulesencoding a solver for the greater constraint are as follows:greater(X,Y) <=> X=Y | fail % irreflexivitygreater(X,Y), greater(W,Z) => Y=W | greater(X,Z) % transitivity(If the second clause is executed it does not replace the goal with the body, it merely augments the currentset of remaining goals with the clause body.)The above rules capture the transitivity and irre
exivity of greater but not its semantics: \less" is alsotransitive and irre
exive! We now add one further guarded rule to check that greater is indeed the sameas the built-in comparator \>":1greater(X,Y) <=> ground(X), ground(Y) | X>Y4.2.6 Concurrent ConstraintsUser-de�ned constraint propagation and simpli�cation is a very active area of research in constraint logicprogramming. A framework including a powerful set of constraint constructors is described in [VD91].The concept of constraint agents, and their transformational semantics underlies much ongoing work,e.g. [Sar92, Van91]. The idea behind all these approaches is to express constraint evaluation in termsof concurrent computations. The �rst such concurrent constraint logic programming language has beensuggested in [Mah87]. In [Sar92] a general framework for these languages has been developed based onthe notion of ask & tell. The basic operation in these languages, besides telling (adding) a constraint tothe constraint store and deciding its consistency, is to ask for a constraint, i.e. to decide if this constraintis entailed (implied) by the constraint store. Algorithms for constraint entailment are extensions ofconstraint solving algorithms. In case of demons above this simpli�es to deciding whether the variablesin the guard have certain values or not.

1Since groundness is a meta-concept, some people prefer to use the delay declaration instead of a guard for this control.The framework of simpli�cation rules supports control by both guards and delays17



5 Search and Optimization in CLPAs outlined above the key idea behind constraint reasoning systems is to tackle complex tasks by incre-mentally inferring properties of the problem solutions and using this information to enforce consistency[Van89]. This deterministic knowledge is acquired in an explicit form. It is therefore possible to prunethe space of possible alternatives, i.e. excluding certain cases (choices) that need not be considered inthe future.As in general the solution cannot be inferred right away after the deterministic reasoning steps someassumptions about the problem solution have to be made. Those assumptions are fed back into theconstraint reasoning scheme, thus yielding more information about the solution. This process continuesuntil a solution is obtained.If an inconsistent solution description is obtained the assumptions have to be withdrawn. In this casethe process has to be continued with alternative assumptions. This process is usually referred to asbacktracking. The nature of this is another reason why constraint propagation �ts well in the Prologlanguage, which supports a backtracking mechanism.Note that the generate and test approach uses the same schema, but the inference engine is only usedwhen complete solutions are obtained, i.e. only a test is done, if a complete solution candidate has beenproduced.The constraints reasoning schema depends crucially on two aspects:� The inference power of the reasoning engine.� The strategy to make the assumptions.In this section we will concentrate on the second aspect. In general this is referred to as the search. Wewill concentrate on the �nite domain case, where this process is also called labelling.5.1 Aspects of SearchIn AI, problem solving is classically seen as a state space search: solving a problem is to �nd a path froman initial state to the goal state - representing the solution. Within that framework search is the generalmechanism that is used when no other, better method is known.Similarly in constraint reasoning we refer to search, if the constraint handler cannot provide us with moreinformation. But note that we deal here with partial solutions: e.g. in each state of the search we knowsome variable values but not all. In a traveling salesman problem (TSP), for example, the instantiatedvariables represent known parts of the route. Once we do a search step we assume that a certain cityshould be visited best at a certain point of the trip.Taking a search step within a constraint reasoning framework involves two decisions:1. On which aspect of the problem do we want to make an assumption ?2. What should that assumption should be ?5.1.1 The Right GranularityIn general it is important that the granularity and the strategy of the search process �ts well with theconstraint handler. The right choices here are crucial for the performance of the overall system. Theassumptions made during search perform two roles. First they are queries about the solution. Secondly,and even more important, they provide input to the constraint handler which performs reasoning on theconstraints and their impact on other problem variables. With the right input the solver will be able toprune large parts of the search space, thus yielding a good problem solving performance.18



5.1.2 DeclarativenessWithin the approaches discussed below the strategy for selecting variables/values can be de�ned declar-atively. This means that the complexity of the program used to de�ne the strategy is independent of thecomplexity of the strategy itself. This has the important consequence that certain real world problemscan still be tackled with this declarative technology, while specialised procedural constructs are hard tobuild. In fact it is has been our experience that CLP solves problems that are new in the sense that theyhave not been solved systematically by software so far - despite the fact that specialised algorithms havebeen known.5.2 Labelling StrategiesWithin the CHIP system the user is free to program his own search strategy. This can be done easilywith the support of the underlying Prolog system. As some general approaches have given good resultsthey are already incorporated into the system. They make labelling based� on individual problem variables and� on single values for those variables.The problem variables in the TSP example are the stops on the tour, the values are the location of thosestops.In many cases it is most e�ective to use the variable with the smallest remaining domain for labelling.This principle is often referred to as �rst fail principle as with fewer choices possible we will �nd outearlier if those were right or wrong. Alternatively the variable which occurs in most constraints can bechosen. Several combinations of these principles are possible [Van89].% label(Problem_variables)label([]).label(Problem_variables) :-deleteff(Var, Problem_variables, Rest_vars),% choose var with minimal choicesindomain(Var),% choose a value from its domainlabel(Rest_vars).Which value then to give that chosen variable is harder to answer in general. For some problems it ispossible to de�ne a metric, with the 'smallest' values being most promising.For the map colouring problem good results have been obtained by rotating the colours used for labelling.I.e. for the country A use the �rst colour, for country B the second and so on. This approach has thee�ect of the intuitively appealing idea of using di�erent colours whenever possible, as connected countrieshave to have di�erent colours.% special labelling routine for map colouring example% label_colour(Countries, Available_Colours)label_colour([],_).label_colour([First|Rest],Colours):-member(First,Colours),rotate(Colours,Colours1),label_colour(Rest,Colours1).rotate([A,B,C,D],[B,C,D,A]). 19



Within the generalised propagation schema it can be very natural to use an entire tuple of values thatsatis�es a constraint, as the tuples satisfying / de�ning a constraint are usually available. E.g. if we wantto solve a crossword puzzle, it makes sense to put (assume) a word in a certain position, which meanslabelling a set of variables with characters at the same time.5.2.1 Labelling with several valuesIn some cases selecting a speci�c value for a variable can be a very strong assumption. It can thereforebe better to make an assumption on the set of possible values of that variable. The classical approachhere is to make a binary chop of the domain. This means that we cut the domain in two halves and thenassume that the value is in one half. This can be done by stating an additional constraint which excludesthe other half. This technique has been used successfully for the cutting stock application [DSV88].% binary chop labelling routinelabel_chop([]).label_chop([X|Vars]):-mindomain(X,Min),maxdomain(X,Max),Mid is (Min + Max)//2,above_or_below(X,Mid),label_chop(Vars).above_or_below(X,Mid) :-X #<= Mid. % set up additional constraintabove_or_below(X,Mid) :-X #> Mid.5.3 Branch and BoundDue to the incremental approach of constraint solving branch and bound strategies �t well with it. Fora constraint problem with minimization the current minimal value of the target function is maintained.As soon as a choice / search step is done that would increase that value again, this is rejected. Thusparts of the search tree need not be considered. If a new minimum value has been obtained a new branchand bound run with that value can be invoked. Note that the previously considered combinations neednot be considered again, as the current minimum is known to be optimal with regard to the search spacealready considered.Given the classical setup of a CHIP program:solve(Vars) :-define_vars(Vars),setup_constraints(Vars),label(Vars).the program for the minimal solution can be written easily: a labelling routine that produces the costvalues is combined with the minimise declaration.% 2-dimensional cutting stock example% Vertical and horizontal cuts, Waste Producedlabel_min(Vert_Hor_Cuts) :-minimise(label_waste(Vert_Hor_Cuts, Waste),20



% labelling routine that also computes the wasteWaste).% minimise Waste valueAs seen in the example in CHIP the declaration to use the branch and bound minimization schema isvery simple to be added to a program. For some problems this approach gives quite good performanceresults.5.4 Optimization and Advanced SearchFor optimization problems it is not always easy to infer deterministic information about the optimalsolution. If fewer inferences can be made the proper choice of assumptions will become more important.5.4.1 Local SearchOne approach is to improve the current assumptions by local search. The idea is here that an initialsolution - satisfying the constraints - is improved in terms of the cost function to be minimised. Anoperator is de�ned that maps one solution to others that are similar (in the sense that most of thevariables retain the same value). The operator must, of course, ensure the constraints are still satis�ed.Search in this framework means applying the operator to the current solution. If the new solution haslower cost it becomes the current solution, and search continues until a solution is reached which cannotbe improved upon by a single application of the operator. The �nal solution is better than its immediateneighbours, but there may be still better solutions in another part of the search space. In other words the�nal solution may only be a \local" optimum. This approach works well for the unconstrained travelingsalesman problem [LLKS90], where a typical operator is one that exchanges two edges of a tour. Toapply this approach to constrained problems, it is necessary to impose constraints on the operator thatmaps solutions to new solutions. Currently available systems do not o�er this feature.5.4.2 Novel Search TechniquesThe so called 'novel search techniques' suggest di�erent ways of moving through the search space, whilemore or less implicitly information about the solution is acquired and used to further guide the search.Currently they o�er the best approaches to solving many important classes of optimization problems, ase.g. the TSP. For an overview of these techniques see [K�uc92b].The main disadvantage of these techniques is their missing completeness and correctness properties. Thereis no guarantee that a certain mechanism will ever �nd an optimal or even constraint satisfying solution.Therefore these approaches are often ruled out for real world applications where certain requirements -hard constraints - de�nitely have to be met. On the other hand it is not necessary to always obtain theoptimal solution with regard to the cost function - which may be very hard to compute - but rather a goodsolution can be su�cient [HT85]. Many real world problems are a mix of constraint satisfaction problemsand optimization problems. A classical example is the vehicle scheduling problem. A 
eet of vehicleshas to deliver goods to customers with minimal e�ort. The problem is related to the TSP-optimizationproblem, but additional constraints also have to be met. Those are for example the capacity constraintsof the vehicles. It may thus be permitted to o�er a solution that is not optimal with regard to the lengthof the proposed tour, but in any case none of the vehicles may be overloaded.In an ideal system for constraint optimization an advanced search mechanism is combined with a con-straint solver. It is a current research topic to consider such a combination in detail.21



6 CLP systemsThis section reviews some constraint programming systems and discusses brie
y their most importantfeatures. This list cannot be complete and is not intended to be. The objective of the single descriptionsis not to be exhaustive, but rather to give a rough idea of the presented system. The interested reader isreferred to the cited literature for each of the systems.6.1 CHIPThe Constraint Logic Programming language CHIP [DVS+88] has been developed at the EuropeanComputer-Industry Research Centre (ECRC). The most important feature of the CHIP system is theintroduction of arithmetic constraints over �nite domains solved by consistency techniques. In additionCHIP provides a rich set of symbolic constraints. Minimization is done by a branch and bound technique.Beside constraints over �nite domains CHIP provides the following constraint solvers:� Boolean constraints are solved with a Boolean uni�cation algorithm� Linear rational constraints are handled by an extended Simplex algorithm.Finally as already mentioned CHIP gives the user the possibility to de�ne his own constraints and controltheir execution. The demon rules are most prominent. Conditional propagation based on an if-then-elseconstruct is another way to control the evaluation of constraints.Based on the CHIP technology there are currently four di�erent commercial products available or underdevelopment. Bull is o�ering the �nite domain technology within its CHARME system, ICL has a productcalled DECISION POWER based on the CHIP/SEPIA compiler [MAC+89, AB91]. Siemens-NixdorfInformationssysteme are currently developing their new version of SNI-Prolog, which will incorporatethe whole CHIP technology. Finally the CHIP interpreter has been productised by the French companyCOSYTEC.CHIP's �nite domain constraints, and generalised propagation, have been integrated into the OR-parallellogic programming platform ElipSys [DSVX91]. Currently a successor to CHIP is under development atECRC. It will provide integration of new constraint solvers [Mon92b]; generalised propagation [LW92b]working on various computation domains; constraint simpli�cation rules [Fr�u92]; and novel search tech-niques [K�uc92a].6.2 CLP(R)The Constraint Logic Programming language CLP(R) [JMSY90] has been developed as a demonstratorfor the CLP(X) scheme at Monash University, IBM Yorktown Heights and Carnegie Mellon University.The constraint domain of CLP(R) is real linear arithmetic. As already mentioned non-linear constraintsare delayed. The underlying constraint solver is an extended Simplex algorithm. Currently there are twoimplementations available from IBM / Carnegie Mellon University, an interpreter and since recently acompiler-based version.6.3 Prolog-IIIPROLOG III [Col90] is the CLP language developed at the University of Marseille and at Prologia inFrance. It includes three new constraint domains: linear rational arithmetic, boolean terms and �nitestrings (or �nite lists).� Linear rational arithmetic is handled via an extended Simplex algorithm.� The boolean constraint-solver is based on a saturation method.22



� The facilities of PROLOG III for �nite string (lists) processing is explained below. The constraintsolver is based on a restricted string uni�cation algorithm.For �nite strings there exists a single function to concatenate two strings, denoted by \." and the onlyconstraint is the equality constraint. To illustrate how these �nite strings may be used consider thefollowing problem (from [Col90]).Find the string(s) Z such that <1,2,3>.Z = Z.<2,3,1>There are in fact an in�nite number of solutions. Hence Prolog III delays the evaluation of such constraintsuntil their length is known. Let us consider the string length 10 (the length operator is in�x in Prolog-IIIand denoted by the operator ::).{ Z :: 10, <1,2,3>.Z = Z.<2,3,1> } ;The system comes back with the single solution:{ Z = <1,2,3,1,2,3,1,2,3,1> }PROLOG III is a commercial product of Prologia, Marseille.6.4 TrilogyTrilogy [Vod88] is a constraint programming language developed at Complete Logic Systems in Vancouver.The constraint domain of Trilogy is integer arithmetic, i.e. it allows linear equations, inequations, anddisequations over integers and integer variables to be expressed. The solver is based on a decisionprocedure for Presburger Arithmetic. Unlike other CLP systems TRILOGY is not integrated into aProlog environment, but it is based on an own \theory of pairs" [Vod88]. Trilogy is compiled into nativecode for PCs as target machines. It can be acquired via Complete Logic Systems in Vancouver.6.5 CAL and GDCCCAL [ASS+88] (Constrainte Avec Logique), developed at ICOT, Tokyo, was the �rst CLP language toprovide non-linear constraints. During the last few years a parallel version of CAL has been developedat ICOT, called GDCC [AH92]. The system can handle constraints in the following domains:� Non-linear real equations are solved with a Gr�obner Base algorithm.� The constraint solver for boolean constraints is based on a modi�ed Gr�obner Base algorithm.� Linear rational arithmetics are again solved with a Simplex algorithm. A branch and bound methodhas been implemented on top of this constraint solver to solve integer optimization problems.Both CAL and GDCC are available from ICOT, Tokyo.6.6 BNR-PrologBNR-Prolog [Bel88] has been developed at Bell-Northern Research, Ottawa. It has been speci�callydesigned for Apple Macintosh. The interesting feature of BNR-Prolog from a CLP point of view is theintroduction of the so called relational arithmetic. This new constraint domain is based on a new intervalvariable representing a real number lying between lower and upper bound of this interval. The constrainthandler is based on interval arithmetic [OV90]. The system can be acquired from Bell-Northern Research,Ottawa. 23



6.7 RISC-CLPRISC-CLP [Hon92] is a prototype system in the domain of real arithmetic terms. It has been developedat the RISC, Linz. It can handle any arithmetic constraints over the reals. The constraint solver behindis an improved version of Tarski's quanti�er elimination method [Hon90].

24



7 ConclusionThis paper aimed at giving an informal introduction into the di�erent concepts of CLP. It tried to explainthe philosophy behind the main ideas in CLP and illustrate them by examples. Emphasis has been puton the practically relevant parts.CLP is successfully employed in a large variety of applications, in particular ones that can be expressed asconstrained search problems. While keeping the main features of logic programming, i.e. declarativenessand 
exibility, CLP brings into these languages� the e�ciency of special purpose algorithms written in imperative languages and� the expressiveness of the di�erent constraint domains it embodies.The main advantage of CLP compared to other approaches is that it drastically reduces development timeand provides more 
exibility o�ered by the solution while showing an e�ciency comparable to solutionswritten in procedural languages.Constraint Logic Programming is moving out of the research labs into the commercial world. A numberof products based on this technology are o�ered today. These products have been applied in a large rangeof very di�erent application which are in use. Amongst them:� At Hongkong International Terminal and in the Harbour of Singapore the resource planning andscheduling system controls ships, cranes, containers and stacks.� At Cathay Paci�c the Movement Control Systems supports the planning and scheduling of theirentire 
eet.� At the French national railway SNCF movements of empty waggons are optimised.� Within Siemens CLP is supporting the circuit designers with their Circuit Veri�cation Environment.� In the ESPRIT projects APPLAUSE, CHIC and PRINCE a large number of applications is cur-rently under development.CLP is still very much under development. The main practical systems are implemented to run on a singleprocessor. Many researchers are studying concurrent constraint handling and parallel implementationsof CLP. Secondly constraints in existing systems need to be well-understood by the end user if he isto obtain maximum bene�t of them in his programs. The development of cleaner and simpler ways tospecify constraint behaviour will be essential for its future industrial acceptance. Thirdly the practicalrequirement to integrate constraint handling with other software techniques and systems is becomingpressing. The current work on integrating CLP with data base technology is an important step in thisdirection.AcknowledgementsThe authors would like to thank the following people for the discussions they had with them and for theirencouragement and support: Abder Aggoun, Nicolas Beldiceanu, Fran�coise Berthier, G�erard Comyn,Mehmet Dincbas, Herv�e Gallaire, Thomas Graf, Micha Meier, Joachim Schimpf, Helmut Simonis, PascalVan Hentenryck, Andr�e Veron. Many thanks to Norbert Eisinger for reading a draft of this paper andsuggesting improvements. 25
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