
Open Architecture for CLP

Micha Meier
Pascal Brisset ECRC-ECRC-95-10

technical report ECRC-ECRC-95-10

Open Architecture for CLP

Micha Meier
Pascal Brisset

European Computer-Industry
Research Centre GmbH
(Forschungszentrum)
Arabellastrasse 17

D-81925 Munich

Germany

Tel. +49 89 9 26 99-0

Fax. +49 89 9 26 99-170

Tlx. 52 69 10

I

cEuropean Computer-Industry Research Centre, 1995

Although every effort has been taken to ensure the accuracy of this report,
neither the authors nor the European Computer-Industry Research Centre
GmbH make any warranty, express or implied, or assume any legal liability for
either the contents or use to which the contents may be put, including any
derived works. Permission to copy this report in whole or in part is freely
given for non-profit educational and research purposes on condition that such
copies include the following:
1. a statement that the contents are the intellectual property of the

European Computer-Industry Research Centre GmbH
2. this notice
3. an acknowledgement of the authors and individual contributors to

this work
Copying, reproducing or republishing this report by any means, whether
electronic or mechanical, for any other purposes requires the express written
permission of the European Computer-Industry Research Centre GmbH. Any
registered trademarks used in this work are the property of their respective
owners.

For more
information

please
contact : michaecrc.de, joachim@ecrc.de

II

Abstract

The usual way to implement an efficient CLP system is to define a set of
primitive constraints which can be accessed from Prolog and to code them very
efficiently, e.g. in C. This approach produces programs that are very fast,
however in the long run it is not productive: the user’s ability to define new
constraints or to modify the existing ones is limited, the system is rigid and
cannot be further extended, merging several constraint solvers in one system is
almost impossible. Our approach is different from the start: we have defined a
minimal extension of Prolog based on attributed variables (metaterms), and this
enables us to code a wide range of different extensions directly in Prolog,
without having to rely on a fixed set of available primitives. This design has
several advantages: it is modular, is allows to define and merge different
extensions in one system, it offers for free all advantages of a full Prolog system
like garbage collection, tracing or profiling, easy parallelisation, and it can be
still compiled down to C or native code. We present this scheme which has
been used in the ECLiPSe system to implement coroutining and several
constraint solvers. We also present benchmark figures showing that the scheme
yields competitive performance.

III

1 Introduction

Constraint Logic Programming (CLP) is attracting more and more interest
among researchers in the LP field as well as in the industry, because it
smoothly combines the declarativeness of the LP approach with the efficiency
of specialised constraint satisfaction methods. CLP systems like CHIP [8, 11],
CLP(R) [15], Prolog III [6], CLAIRE [3] or BNR-Prolog [23] have demonstrated the
validity of the CLP approach and its ability to solve even large real-life
problems.

As far as the implementation of CLP systems is concerned, a variety of different
approaches has been already tried: using a Prolog system with coroutining [26],
using a dedicated system [2] and/or defining extensions to the WAM [16, 7].
Following the CLP semantics described in [15], the dedicated CLP systems
usually make a difference between constraints on one side and normal Prolog
predicates on the other side. The constraints and their propagation are
hardcoded in the implementation language (C) in order to maximise the speed.
Such approach certainly yields a fast CLP system, but it does not leave much
space for modifications and extensions. The experience shows that, e.g. for
combinatorial search problems which are tackled by finite domain constraints
the expressiveness of the underlying system is crucial. When only a fixed set of
hardcoded constraints is available, it is very difficult to develop viable strategies
for new problems and some problems cannot be solved at all, because
constraints with different propagation behaviour or new constraints are needed
to sufficiently reduce the search space.

Our goal is not only to be able to develop an efficient CLP system, but to
obtain a system that can be further modified and extended, and also smoothly
combined with other CLP systems and LP-based extensions. While we see
efficiency as an important property, we have made the experience that
flexibility and open architecture design are more important and a flexible
system can always be compiled down into an efficient one. Following our
work on the SEPIA system [19, 20], we have developed an open architecture
for Prolog extensions. The main features of our architecture are: It is based on attributed variables which allow the basic Prolog operations

like unification and control to be extended and still to write the whole
extension in Prolog. Unification of attributed variables raises an event which is handled by
handlers declared in every involved extension. Attributed variables are
also recognised by a number of meta-level predicates which perform e.g.
the unifiability or instance test and the extensions can also easily modify

1

the results of these operations by declaring handlers for them. Attributed variables are integrated into the language, they have their own
syntax and compilation. Each attributed variable may have a number of
different attributes which are subject to module visibility rules, so that
different extensions can be written independently and in a modular way
and they can be easily merged in one system. No special data structures are used, the extensions use normal Prolog
terms. The architecture is fully compatible with the Prolog environment, so that
e.g. garbage collection, tracing and debugging, profiling or parallel
execution are immediately available. The system can also use this
scheme for coroutining, quantifiers, intelligent backtracking, graphical
display and for other purposes.

This paper is organised as follows: in Section 2 we define the metaterm data
type, in Section 3 we describe the delay mechanism. Section 4 summarises the
properties of our architecture. In Section 5 we describe a sample
implementation of CLP(FD), in Section 6 we compare our design to other
systems and we discuss its impact in Section 7.

2

2 Metaterms

2.1 Definition and Syntax

A metaterm (attributed variable) [22, 14, 13, 20] is a free Prolog variable X with
an associated attribute A, which may be any Prolog term. Its simplest syntax isXfAg.
Our design is aimed mainly at independent extensions, we have adopted a
scheme with multiple attributes [4] and we have furthermore imposed module
visibility rules on the attributes. Each metaterm can thus store different
attributes which are accessed by their names. The attribute name must be
declared before use with the predicate meta attribute(Name,HandlerList), which defines a new metaterm attribute with the name Name
and its corresponding handlers in HandlerList. Name is the name of the
extension module. The full metaterm syntax is thenXfName1 : Attr1;Name2 : Attr2; : : : ;NameN : AttrNg
where Namei are the attribute names and Attri are the corresponding
attribute values. The expression VarfAttrg is a shorthand forVarfName:Attrg where Name is the name of the current module. The
former is called nonquali�ed and the latter quali�ed attribute specification. An
independent extension thus declares an attribute whose name is the source
module name and then it uses unqualified attributes as if no other attributes
existed. An extension is able to access the attribute of another extension by an
explicit qualification.

2.2 Operations

A metaterm can be created by the built-in predicate add attribute(Var,Attribute, Name) and decomposed when it appears in the clause head:p(X{Attr}) :- ...
Metaterms can be read in, written out, stored in the database etc. Many built-in
predicates treat them as variables, meta(T) succeeds iff T is a metaterm.

3

2.3 Invocation of Metaterm Handlers

The unification and some other operations (mainly those used to implement
the ask – type constraints) can be extended when the user declares handlers for
them. In this way, the contents of the attributes can also be taken into account.
For instance, the unification of a finite domain variable should succeed only if
the value is in its domain. In these operations the system extracts all the
involved metaterms and invokes the global handler for this operation. The
global handler then successively calls local handlers declared by each extension
for this operation. If no metaterms are encountered, the operation does not
make any extra processing.

Handlers are currently defined e.g. for the following operations (and it is easy
to add others when needed): unification unifiability and non-unifiability test instance and variant tests term copying

The unification and unifiability handlers receive two arguments, one is theattribute of the metaterm that was bound and the other is the term it was
bound to, because the original metaterm no longer exists. The instance handler
receives the metaterm and the corresponding matched term, the copying
handler receives the metaterm and its matching variable in the copied term.

The extension writer is free to choose which local handlers he wants to specify
and which not; if he does not specify any handler for a particular operation, it
is never notified and the global handler simply ignores this attribute.Example: Coroutining is a simple and straightforward application of the open
architecture. To implement it, we would use the declaration: �meta attribute(suspend; [unify : unify suspend=2])
because only the unification needs to be modified, the other operations remain
unchanged (e.g. suspended goals are not copied).

2.4 Implementation

A metaterm is implemented as a pair of words. The first word is a variable with
a special tag META and a value which is a self-reference, the following one is

4

the attribute. The attribute is always a structure meta(A1, A2, : : :), where theAi’s are the extensions attributes. The number of attributes is known at
compile time. The system keeps track of all declared attributes and makes sure
that every new metaterm is created with enough slots. The attribute names are
translated into positions in the meta/N structure, and so the metaterm
decompositionp(_{mod1:A, mod2:B, mod3:C}) :- ...
is compiled e.g. asp(_{meta(C, A, B)}) :- ...
Whenever a new attribute is declared, the system assigns it a new position,
records it, and then it recompiles all global handlers to insert calls to new locals
handlers.

The compiler recognises metaterms as a separate data type and the WAM
instruction switch on type has a special label for it. The head occurrence of a
metaterm is compiled similarly to a list cell, except that a new WAM instructionget metaAi is used instead of get listAi.
The unification routine checks if a metaterm is being unified with another
metaterm or with a nonvariable. If it is the case, it does the binding but at the
same time it stores the old attribute and the new term in a global list. Before
the next Prolog procedure is called, the system checks if the global list is
non-empty and if so, it invokes the global unification handler.

Other built-in predicates which are sensitive to the presence of metaterms build
an explicit list of metaterms they have found in the processed term and return
it in an additional argument. If the returned list is not empty, the appropriate
local handlers for this operation are directly invoked.

The trail is a value trail, which is a standard technique used in coroutining
Prolog systems. All updates of the suspended lists and of the attributes are
made by backtrackable destructive assignment: we save the address and its old
contents on the value trail and then store the new value. This approach is
semantically equivalent to reserving a free variable for the new value in each
metastructure in [13], but it avoids creating and traversing long reference chains
and inventing mechanisms to shorten them [25].

5

3 Delayed Execution

It is often the case that an extension wants to suspend the execution of a
particular goal until some event occurs. The suspension structure is used for
this purpose. It stores the suspended goal as well as some other data, like e.g.
the address of the procedure descriptor which allows its code to be quickly
found and a flag which marks suspensions that were already woken (needed
for disjunctive suspending). Suspensions which should be woken when a
particular condition occurs, for instance when a metaterm becomes
instantiated, are linked together into suspended lists which are stored in the
metaterm attributes.

A suspension is explicitly created by the predicate make suspension(Goal,Suspension), which takes the goal structure and returns the suspension. The
suspension can then be inserted into a suspended list in an attribute. An
extension may use a number of different suspended lists in the attribute, each
one being woken on a particular event. It is therefore necessary to specify both
the extension name and the position of the list using the predicateinsert suspension(Term, Susp, Index, Name).
It inserts the suspension Susp in every metaterm that occurs in Term, in the
attribute with name Name into the suspended list stored in the Index’th
argument of the attribute structure. (If this predicate encounters a metaterm
whose attribute is uninitialised (i.e. free), it raises an error.) The suspended list
can be either a difference list or a normal list. The whole suspended list can be
later woken using the wake/1 predicate.

The Prolog machine and the debugger keep track of the suspensions, the
former to detect floundering goals, the latter to display the information about
suspended constraints during debugging.Example: Let us continue our coroutining extension example. Suppose we
want a coroutining scheme which can distinguish between binding and
instantiation. The predicate freeze/2 will delay its second argument until the
first one becomes a nonvariable, and �= =2 delays until its two atomic or
variable arguments are identical or non-unifiable. The former must be woken
when a variable becomes instantiated, whereas the latter must be woken also
on variable binding. Obviously, we need two different suspended lists, one for
instantiation and one for binding. The former might be a difference list
because after binding to another metaterm both instantiation lists have to be
concatenated. No other data is needed in the attribute and so the attribute
structure is suspend(Inst, Bound):

6

freeze(Nonvar, Goal) :-nonvar(Nonvar),call(Goal).freeze(Var, Goal) :-var(Var), % succeeds also for metatermsmake_suspension(Goal, Susp),add_suspension1(Var, Susp).add_suspension1(Var{Attr}, Susp) :-compound(Attr), !, % it already has a suspend/2 attributeinsert_suspension(Var, Susp, 1, suspend). % put to the Inst listadd_suspension1(Var, Susp) :- % no suspend/2 attribute yetadd_attribute(Var, suspend([Susp|E]-E, []), suspend).X ~= Y :-nonvar(X), nonvar(Y), !, % if both nonvariable, no delayingX \== Y.X ~= Y :-X \== Y, % fail if identicalmake_suspension(X ~= Y, Susp),add_suspension2(X, Susp),add_suspension2(Y, Susp).add_suspension2(Nonvar, _) :-nonvar(Nonvar). % already instantiated, no suspensionsadd_suspension2(Var{Attr}, Susp) :-compound(Attr), !, % it already has a suspend/2 attributeinsert_suspension(Var, Susp, 2, suspend). % put to the Bound listadd_suspension2(Var, Susp) :- % no suspend/2 attribute yetadd_attribute(Var, suspend(E-E, [Susp]), suspend).
Both predicates first check if they have to delay and if so, they create a
suspension and insert it into the appropriate list(s). Note that �= =2 could be
further refined: if one of its argument is already instantiated, the suspension
can be put into the Inst list instead of the bound list, because a variable
binding cannot make the other argument equal to a nonvariable.

All that remains now is the unification handler. Note that the handler must
make sure that the metaterms passed to it had a nonempty suspend attribute:
since the global handler invokes all declared local handlers no matter if their
attributes were involved or not, the local handlers have to check it themselves.11This seems to be conceptually simpler than to make this testing in the global handler. The

handler must also test if the unification was with a metaterm or with a nonvariable; if this test is

done in the global handler, the local handler would have to repeat it or two separate handlers

would be necessary.

7

% unify_suspend(+Term, Attribute)unify_suspend(_, Attr) :-var(Attr). % Ignore if no attribute for this extensionunify_suspend(Term, Attr) :-compound(Attr),unify_term_suspend(Term, Attr).% We wake every time a variable is touched.unify_term_suspend(Term, suspend(I, B)) :-nonvar(Term), % The metaterm was instantiated, wake allwake(B), % Wake the listwake(I).unify_term_suspend(Y{AttrY}, AttrX) :-unify_suspend_suspend(AttrX, AttrY).unify_suspend_suspend(AttrX, AttrY) :-var(AttrY), % no attribute for this extensionAttrX = AttrY. % keep both lists, do not wakeunify_suspend_suspend(AttrX, AttrY) :-nonvar(AttrY),AttrX = suspend(XI-YI, XB),AttrY = suspend(YI-YI0, YB),setarg(1, AttrY, XI-YI0), % Inst list is concatenatedsetarg(2, AttrY, []), % Bound list is resetwake(XB),wake(YB).

8

4 System Properties

Our architecture defines only one special data type, namely the metaterm, all
other data created and manipulated by the extensions are standard Prolog
terms. Once metaterms are included in the language, all features of the Prolog
environment become immediately available for the extension development and
use: Compilation. Note for instance, that e.g. [7] defines about 40 new WAM

instructions and a corresponding compiler scheme, and these instructions
are not reusable for other extensions, whereas the compiler in our
architecture needs only a small change and all extensions can use it. Direct debugging and tracing. Constraint propagation is performed at the
level of Prolog predicates and thus it can be directly traced and analysed.
The ECLiPSe debugger also offers the possibility to view attributes
attached to metaterms and to define conditional events e.g. to trace
attribute modification. Garbage collection and other low-level features of the Prolog engine
(important e.g. for the rational constraint solver). Built-in predicates; consequently there are no problems with asserting
terms containing metaterms (e.g. finite domain variables), communicating
some extension data to other processes with I/O builtins, or storing
metaterms in an external database system. Profiling. For most CLP programs it is extremely important to know
where are the execution bottlenecks and this information is directly
available with the Prolog profiler. Easy parallelisation. The ECLiPSe team at ECRC is currently working on
OR-parallelising ECLiPSe on shared memory machines as well as
networks of (possibly heterogenous) workstations [21] and the
preliminary results are very promising.1 Due to our design, this work can
proceed independently of the constraints implementation.1Actually, at the time of the conference we should already have a working system ready and

so it should be possible to include also the parallel figures.

9

5 CLP(FD) Example

5.1 Implementation

The implementation of variables with finite integer domains is also quite
straightforward, we follow well-known principles [2, 7]. The FD extension uses
the following metaterm attribute declaration::- meta_attribute(domain, [unify: unify_domain/2,test_unify: test_unify_domain/2,compare_instances: compare_instances_domain/3,copy_term: copy_term_domain/2]).
The unification handler is similar to the one described in [20]: when a finite
domain is unified with a nonvariable, it checks if it belongs to its domain. If it
is unified with another domain variable, it computes the intersection of the two
domains and binds the two variables to a new variable with this new domain.
Depending on the domain update type, it wakes the appropriate lists in the
corresponding attributes.

The test unify domain/2 predicate is similar to the unification handler, but it
does not wake any suspensions. The compare instances handler is used
when checking for variants and for subsumption, it checks if involved
metaterms are finite domains and if so, if their domains pass the instance test.
The handler for term copying copies the domain, but it ignores the suspended
lists; in this way we obtain a fresh copy of the domain variable without
constraints which can be used e.g. for local lookahead [11].

The metaterm attribute is domain(Min, Max, Any, Domain), it stores the
domain information together with several suspended lists: Min: waking when the domain minimum is updated Max: waking when the domain maximum is updated Any: waking when the domain is reduced (no matter how)

While most other CLP(FD) systems use bitfields to implement the finite
domains, we have used normal Prolog structures: a finite domain is
represented by a list of intervals and an explicit size in the form

10

dom([1::5;31::40;90::99];25)
This representation has the obvious advantage that it can store even very large
intervals in the same format as the small ones, and thus no special
representation for large domains is necessary. While it might seem that this
representation is less efficient than bitfields, we were slightly surprised to find
out that in our benchmark programs there was no overhead due to the list
representation, in fact our experimental bitfield representation was slightly
slower than using lists. Apparently, many of the FD programs use interval
arithmetic on linear terms where only the minimum or maximum of a domain
is updated and thus the list representation is more compact than bitfields.
There is also another advantage of using normal Prolog structures: the bitfield
representation suffers from excess trailing and special techniques must be used
to restrict it [1], whereas our implementation does not need them. The reason
for this is the well known difference between sharing and copying: in the
bitfield representation the domain is ’shared’ in the sense that successive
domain updates always use the same storage; this of course requires special
techniques and mechanisms. When using Prolog lists, domain updates simply
copy part of the list (usually reusing the interval structure), and the old list cells
are garbage-collected when no longer needed.

Although the domains are represented as regular Prolog structures, the ECLiPSe
system treats them as ADT, and thus it also includes a set of predicates for
domain manipulation: testing domain inclusion, computing intersection, union,
difference, removing an element or an interval. The users can therefore write
programs which are independent of the actual domain implementation.

The constraints themselves are implemented as ECLiPSe predicates, which
basically do the following: Optional initialisation, e.g. transforming a linear term to a normal form. Checking the domain variables. Depending on the algorithm used, either

only domain bounds are checked or all elements in the domains are
tested. Domain values which are inconsistent with the constraint are
removed from the domain and the appropriate suspended lists are
automatically woken. If the constraint is satisfied for all possible values of the variables, it
succeeds. Otherwise, it creates a new suspension and inserts it into the
appropriate suspended lists of the involved domain variables.

As soon as a domain variable is modified in a way that could be propagated to
other variables, the suspension is woken and restarts its action.

As an example, here is the implementation of the constraint atmost(Number,List, Value) which holds iff at most Number elements of List have the valueValue.
11

% atmost(Number, List, Value)atmost(_, [], _).atmost(N, List, Val) :-filter_vars(N, List, Val, NewList, NewN),length(NewList, VarNo),(NewN >= VarNo -> % solvedtrue; NewN == 0 -> % no other element may beoutof(Val, NewList) % equal to Val; make_suspension(atmost(NewN, NewList, Val), Susp),insert_suspension(NewList, Susp, 1, suspend) % Inst list).% filter_vars(N, List, Val, NewList, NewN)% Return the list of all variables in List which have Val in% its domain, and subtract from N the number of all elements equal to Valfilter_vars(N, [], _, [], N).filter_vars(N, [H|T], Val, NewList, NewN) :-var(H), % succeeds also for metaterms!,process(H, Rest, Val, NewList),filter_vars(N, T, Val, Rest, NewN).filter_vars(N, [Val|T], Val, R, NewN) :-!,N > 0,N1 is N - 1,filter_vars(N1, T, Val, R, NewN).filter_vars(N, [_|T], Val, R, NewN) :-filter_vars(N, T, Val, R, NewN).process(H{domain(_, _, _, D)}, NewList, Val, NewList) :-not dom_check_in(Val, D),!.process(H, Rest, _, [H|Rest]).
Note that this constraint is not woken at every domain update, it shows how
one extension can use the structure of another one. The suspension is inserted
on the first list of the suspend extension, it is therefore woken only when the
variable becomes instantiated. In this way we avoid unnecessary waking each
time a value different from Val is removed from some of the involved domains.
If the amount of propagation was shown to be insufficient, it would be very
easy to change it: we can modify the attribute to include suspended lists to be
woken when a particular value is removed from the domain or when the
variable is instantiated to a particular value. This could even be done in
another extension module.

12

5.2 Efficiency

Although efficiency is not our primary goal, it is still important for us to
demonstrate that our architecture can be compiled into an efficient system. If
the efficiency of our system is lower than that of hardcoded systems, it is still
useful to know the reason for it. It may be caused by the (currently) inefficient
Prolog compilation, by the use of Prolog data structures or by the use of
general algorithms and mechanisms as opposed to the CLP(FD) specific ones.
If the inefficiency source is only Prolog coding, it would of course disappear
with the use of up-to-date and future efficient native Prolog compilers (we
have no doubts that they will appear!).

The overhead of Prolog coding can be eliminated by the use of a native code
compiler. As ECLiPSe does not have one, we have decided to translate some of
the bottleneck primitives by hand to C, to see if this overhead is the only one.
We have chosen predicates that do a lot of arithmetic processing, where Prolog
performance is relatively poor. We have taken care to translate only the low
level predicates which have no interaction with the control, so that the
flexibility of the system is kept: Predicates operating on domain structures, e.g. checking for domain

inclusion, computing domain intersection, removing all elements greater
than a given value etc. The representation of the domain remains of
course a Prolog structure. Predicates computing minimum and maximum values of a linear term
and predicates used in the equality and inequality constraint to remove
inconsistent values from a single domain variable. In Prolog they are
coded with many arithmetic comparisons and conditional expressions
which are not executed efficiently.

The resulting system is still as flexible as the original one, because all
operations are accessible at the Prolog level. This is the implementation
available in ECLiPSe 3.4.

We have compared the efficiency of ECLiPSe 3.4 with CHIP compiler version
2.4 1. We have used two sets of benchmark programs for CLP(FD): the first one
consists of small programs which test one particular constraint or operation, the
second one is a collection of small puzzles and larger real-life search problems.
We have also included the LIPS test to show the raw Prolog speed of both
systems.1We also wanted to include figures for the clp(FD) system, but we unfortunately encoun-

tered some problems with the implementation and were not able to produce enough useful

results.

13

Name CHIPC 2.4 ECLiPSe 3.4
naive reverse 2.28 0.47 (0.20)
equality 2.63 0.17 (0.06)
disequality 0.25 0.63 (2.53)
removing interval bound 0.20 0.13 (0.67)
removing internal value 0.55 0.38 (0.70)
indomain many 4.30 2.43 (0.57)
indomain 0.47 0.58 (1.25)
linear inequation 3.05 8.20 (2.69)
element 1.33 0.17 (0.12)
30 queens 0.70 2.67 (3.81)
send 0.05 0.18 (3.67)
map 0.12 0.15 (1.29)
hexagon 0.17 0.67 (4.00)
cut 3.15 2.15 (0.68)
cars 1.52 1.85 (1.22)
bridge 15.40 12.88 (2.39)
dora 22.77 14.70 (0.65)
team shifts 6.57 6.37 (0.97)
finite algebras 0.93 0.92 (0.98)

Figure 5.2.1: Performance comparison of CHIP and ECLiPSe (seconds)

All benchmarks were run on a SPARCstation IPC(4/40) with a 25Mhz clock,2 the
results are shown in Fig. 1. The numbers in parentheses are ratios compared to
CHIP. We can see that it is quite difficult to compare the performance of CLP
systems. The reason is that although the semantics of the constraint predicates
may be identical, the operational semantics, e.g. the amount of propagation,
may be very different. This is also the reason for the huge factors in the element
benchmark. We have nevertheless made sure that both systems yield the same
first solution in programs where it is significant (e.g. queens, hexagon or cut).

On average, ECLiPSe with partial C translation is about twice as slow as the
CHIP compiler, some elementary operations are even slower. On some
programs, however, ECLiPSe runs faster than the CHIP compiler, the reason is
better propagation for some constraints and higher speed on pure Prolog code.
The reason for the large difference in the equality benchmark is not clear, its
complexity differs in the two systems. The results must be also taken with a
grain of salt because CLP(FD) programs are usually very unstable, a small
change in the way the constraints are stated may have a huge impact on
performance. The reason for poor performance in the queens program is that
ECLiPSe (unlike other systems) has no built-in constraint of the form X + C 6= Y,2A note for reviewers: we are going to make this benchmark suite available for anonymous

ftp and so we refrain from detailed description of all programs.

14

which is crucial for this program (but for hardly any other one).

The profiling of the benchmark execution suggests that with complete native
compilation of all predicates the overhead will disappear completely, which
would mean that our open architecture has no inherent inefficiency compared
to existing dedicated systems. Taking all these considerations into account, the
ECLiPSe architecture was proven to be an excellent solution to our initial goals.

15

6 Related Work

Our design has of course common roots with other approaches, namely in the
idea of programming extensions efficiently in Prolog using minimal low-level
kernel changes. In the SEPIA system [19] we have started to develop a ’glass
box’, i.e. an open architecture for extensions. Similarly to MALI [14], SEPIA
contains attributed variables, but only hardcoded at the system level, they
cannot be used explicitly in Prolog and no handlers for their unification are
available.

Neumerkel [22] defines metastructures and Holzbaur [13] uses them for a CLP
implementation. Their approach uses many different metastructure types and
only one handler for the unification, whose size thus grows exponentially (e.g.
120 clauses for 4 basic metaterm types). Each time a new kind of metastructure
is introduced, the unification handler has to be modified, no independent
development is possible. The metastructures are not fully integrated in the
system, no other built-in operations can be modified, their access is not
compiled. The attribute data is updated by creating chains of values instead of
backtrackable updates, which results in long reference chains.

The control in a number of other systems can be seen as a specialisation of our
architecture, for example a Prolog system with coroutining like [5] uses a
simple attribute which is a comma-list of Prolog goals and a trivial unification
handler, Holzbaur’s system is a single extension which uses many different
attribute structures, the SEPIA system is basically equivalent to our coroutining
example in Section 3 with a source transformation to implement delay clauses.

There have been other proposals for low-level extensions (mainly of the WAM)
to implement CLP systems, e.g. [2, 16, 7]. Low-level WAM extensions may yield
and efficient system, but they are complicated and the result is hard to modify
and extend, no code can be reused for other extensions and the whole Prolog
environment must be updated for them.

16

7 Conclusion and Future Work

We have presented an open architecture for Prolog extensions. We have
identified basic Prolog operations which have to be changed by CLP and many
other extensions, and we have designed an extension of Prolog which is able
to accommodate such changes in a flexible, modular and efficient manner.

This paper is a continuation of our work on architectures for Prolog extensions
[19, 20, 18]. While it might seem that our final architecture is trivial ("attributed
variables are equivalent to pairs (Var, Term) and everything is simply written in
Prolog"), there is in fact much work behind it and its resulting simplicity is a
sign of beauty. Our architecture does not offer complete high-level predicates,
but rather small building blocks that allow to compose predicates with almost
any desired behaviour. In this sense, the ECLiPSe kernel provides an
’assembler’ for extension programming and it has been used both for directly
writing extensions and as a target language for compilation of higher-level
languages [9, 24, 10] and for metaprogramming [17]. The simplicity of our
architecture has another potential impact – existing Prolog systems, which up
to now offer no constraints propagation, can implement this architecture in
order to upgrade to CLP systems. The main features of our design are Simplicity. Our scheme is based on one generic data type (metaterm) and

on explicit processing of suspensions. Flexibility. The whole extension, e.g. a constraint solver, is written in the
high-level language, and it can be easily extended and modified. Instead
of working with a fixed set of primitives, or looking for new better
constraints [12], new primitives and constraints can be tailored for each
problem, quickly programmed and tested. Modularity. Extensions can be written independently and easily merged
in one system and they can also interact with each other by the explicit
attribute qualification. Completeness. We present a complete architecture where attributed
variables are integrated into the whole system, no ad hoc primitives and
mechanisms are used. Efficiency. We are no LIPS crunchers, our first aim is not efficiency.
Instead of freezing the design by coding the system or its parts in C, we
code the whole extension at the high level. However, this approach has
two crucial advantages as far as efficiency is concerned:{ At any point in time, even if an efficient (native code) Prolog

compiler is not available, some of the primitives can be rewritten in

17

C. This does not freeze the design, because the data structures and
control stays in Prolog. The figures comparing ECLiPSe with other
CLP(FD) systems show that its performance even on real-life
problems is quite realistic.{ In an OR-parallel system the overhead of Prolog execution, if any,
disappears.

With the new release of ECLiPSe , we have in fact obtained a system which is
very powerful. It already includes several constraint solvers and other
extensions, like Constraint Handling Rules (CHR) [9], generalised propagation
Propia [24], linear rational constraints, or set constraints (Conjunto) [10]. Our
next future task will be to evaluate its potential for real-life applications. The
possibility to define and quickly prototype new constraints and solving
methods will also have an impact on programming methodology - the
CHIP-like programming with a fixed primitive set seems to be quite different.
The ECLiPSe system is also available to all academic institutions for a nominal
fee and we invite all interested researchers to use it for experiments and
research in the CLP area.

18

Acknowledgements

We thank to Mark Wallace, Alexander Herold and Joachim Schimpf for helpful
discussions and for comments of previous versions of this paper. This work has
partly been supported by the Esprit project 5291 CHIC.

19

Bibliography

[1] Abderrahmane Aggoun and Nicolas Beldiceanu. Time stamps techniques
for the trailed data in constraint logic programming systems. In
S. Bourgault and M. Dincbas, editors, Programmation en Logique, Actes du8�eme S�eminaire, pages 487–509, Trégastel, May 1990.

[2] Abderrahmane Aggoun and Nicolas Beldiceanu. Overview of the CHIP
compiler system. In Koichi Furukawa, editor, Proceedings of the EighthInternational Conference on Logic Programming, pages 775–789, Paris,
France, 1991. The MIT Press.

[3] Bruno De Backer and Henry Beringer. A CLP language handling
disjunctions of linear constraints. In David S. Warren, editor, Proceedings ofthe Tenth International Conference on Logic Programming, pages 550–563,
Budapest, Hungary, 1993. The MIT Press.

[4] Pascal Brisset. Metaterms with several attributes. In Proceedings of theILPS'93 Workshop on Methodologies for Composing Logic Programs,
Vancouver, October 1993.

[5] Mats Carlsson. Freeze, indexing and other implementation issues in the
WAM. In Proceedings of the 4th ICLP, pages 40–58, Melbourne, May 1987.

[6] Alain Colmerauer. An introduction to Prolog-III. Communication of theACM, 33(7):69–90, July 1990.

[7] Daniel Diaz and Philippe Codognet. A minimal extension of the WAM for
clp(FD). In David S. Warren, editor, Proceedings of the Tenth InternationalConference on Logic Programming, pages 774–790, Budapest, Hungary,
1993. The MIT Press.

[8] M. Dincbas, P. Van Hentenryck, H. Simonis, A. Aggoun, T. Graf, and
F. Berthier. The constraint logic programming language CHIP. InInternational Conference on FGCS 1988, Tokyo, November 1988.

[9] T. Frühwirth and P. Hanschke. Terminological reasoning with constraint
handling rules. In First Workshop on Principles and Practice of ConstraintProgramming, Newport, Rhode Island, USA, April 1993.

[10] Carmen Gervet. Set and binary relation variables viewed as constrained
objects. In Proceedings of the ICLP'93 Workshop on Sets, Budapest, June
1993.

[11] Pascal Van Hentenryck. Constraint Satisfaction in Logic Programming.
MIT Press, 1989.

20

[12] Pascal Van Hentenryck and Yves Deville. The cardinality operator: A new
logical connective for constraint logic programming. In Proceedings of theEighth International Conference on Logic Programming, pages 745–759,
Paris, 1991.

[13] Christian Holzbaur. Specification of constraint based inference mechanism
through extended unification. Technical report, TU Wien, Oktober 1990.
PhD Thesis.

[14] Serge Le Huitouze. A new data structure for implementing extensions to
prolog. In PLILP, pages 136–150, 1990.

[15] Joxan Jaffar and Jean-Louis Lassez. Constraint logic programming. InProceedings of the ACM POPL Conference, pages 111–119, Munich, 1987.

[16] Joxan Jaffar, Spiro Michaylov, Peter J. Stuckey, and Roland H. C. Yap. An
abstract machine for CLP(R). In Proceedings of the ACM SIGPLANSymposium on Programming Language Design and Implementation(PLDI), San Francisco, pages 128–139, June 1992.

[17] Pierre Lim and Joachim Schimpf. A conservative approach to
meta-programming in constraint logic programming. In PLILP, Tallinn,
Estonia, August 1993.

[18] Micha Meier. Better late than never. In Proceedings of the ICLP'93Workshop on Practical Implementations and Systems Experience in LogicProgramming, Budapest, June 1993.

[19] Micha Meier, Abderrahmane Aggoun, David Chan, Pierre Dufresne,
Reinhard Enders, Dominique Henry de Villeneuve, Alexander Herold,
Philip Kay, Bruno Perez, Emmanuel van Rossum, and Joachim Schimpf.
SEPIA - an extendible Prolog system. In Proceedings of the 11th WorldComputer Congress IFIP'89, pages 1127–1132, San Francisco, August 1989.

[20] Micha Meier and Joachim Schimpf. An architecture for prolog extensions.
In Proceedings of the 3rd International Workshop on Extensions of LogicProgramming, pages 319–338, Bologna, 1992.

[21] Shyam Mudambi and Joachim Schimpf. Parallel CLP on heterogenous
networks. In Proceedings of the ICLP'94, 1994.

[22] Ulrich Neumerkel. Extensible unification by metastructures. In Proceedingsof META'90, 1990.

[23] W. Older and F. Benhamou. Programming in CLP(BNR). In Proc. PPCP,
Rhode Island, 1993.

[24] Thierry Le Provost and Mark Wallace. Constraint satisfaction over the CLP
scheme. In FGCS'92, Japan, July 1992.

21

[25] Dan Sahlin and Mats Carlsson. Variable shunting for the WAM. InProceedings of the NACLP'90 Workshop on Prolog Architectures andSequential Implementation Techniques, Austin, October 1990.

[26] Danny De Schreye, Dirk Pollet, Johan Ronsyn, and Maurice Bruynooghe.
Implementing finite-domain constraint logic programming on top of a
Prolog-system with delay-mechanism. In Proceedings of the ESOP'90,
pages 106–117, 1990.

22

