
Compilation of
Compound Terms in
Prolog

Micha Meier ECRC-ECRC-95-12



technical report ECRC-ECRC-95-12

Compilation of Compound Terms in Prolog

Micha Meier

European Computer-Industry
Research Centre GmbH
(Forschungszentrum)
Arabellastrasse 17

D-81925 Munich

Germany

Tel. +49 89 9 26 99-0

Fax. +49 89 9 26 99-170

Tlx. 52 69 10

I



cEuropean Computer-Industry Research Centre, 1995

Although every effort has been taken to ensure the accuracy of this report,
neither the authors nor the European Computer-Industry Research Centre
GmbH make any warranty, express or implied, or assume any legal liability for
either the contents or use to which the contents may be put, including any
derived works. Permission to copy this report in whole or in part is freely
given for non-profit educational and research purposes on condition that such
copies include the following:
1. a statement that the contents are the intellectual property of the

European Computer-Industry Research Centre GmbH
2. this notice
3. an acknowledgement of the authors and individual contributors to

this work
Copying, reproducing or republishing this report by any means, whether
electronic or mechanical, for any other purposes requires the express written
permission of the European Computer-Industry Research Centre GmbH. Any
registered trademarks used in this work are the property of their respective
owners.

For more
information

please
contact : michaecrc.de

II



Abstract

The execution of a compiled Prolog program can spend a significant amount of
time in the unification of compound terms. We show that in the Warren
Abstract Machine [7], the approach to compile this unification may be
unnecessarily inefficient. When we analyse what are the redundant operations
that the WAM executes, we can see that the inefficiency is mainly caused by thebreadth-�rst approach to traverse the structures during the unification. We
present here a method to compile the unification of compound terms which is
based on a depth-�rst approach and show that it is both more general and
more efficient than that of the original WAM. Furthermore we present a more
efficient approach to compile compound terms in the body and also describe
several possible optimizations. Our method was used in the implementation of
the SEPIA system [4] developed at ECRC.

III



1 Introduction

The execution of Prolog programs consists mainly of procedure invocation and
unification. The unification itself is estimated to account for about 70 % - 80 %
of the execution time. The unification of compound terms, i.e. expressionsf(arg1; : : : ; argn), may consume a considerable amount of time, because
during the unification these compound terms have to be constructed or
scanned. For example, on a set of 15 large benchmark programs measured
with an emulator-based Prolog system [4], about 25 % of all emulated abstract
instructions accounted for the unification of compound terms.

The WAM [7] presents a complete and compact scheme to compile compound
terms, both in head and subgoal arguments. We have analyzed the WAM
behavior during the unification of compound terms and have found that
sometimes it is not efficient enough, because redundant operations are
executed. We will first describe the problems in the WAM and then present a
different scheme which tries to avoid them. The reader is assumed to be fluent
in the WAM, for a good introduction see e.g. [1].

1



2 Compound Argument Unification in the
WAM

In compiled Prolog, the compound arguments are handled differently in the
head and in the body of a clause. A compound term in the clause body is
compiled into a sequence of instructions that actually create this term on the
heap and put a reference to it into an argument register. A compound term in
the head is compiled into instructions which perform the unification with the
corresponding argument in the register. The unification is a general two-way
matching procedure, which can result in binding variables both in the caller
and in the callee. Therefore, the unification instructions must be able to both
decompose the caller argument and check if it matches with the clause head,
and to create the representation of a compound term on the heap in case that
the corresponding slot in the caller argument is a variable. This is the so-calledstructure copying as opposed to structure sharing where new structures are not
explicitly created, but shared instead.

2.1 Head Arguments

A compound head argument represents a tree structure which has to be
traversed during the unification with the caller. The main contribution of the
WAM here is the introduction of the mode flag to which some instructions are
sensitive. This makes it possible to generate only one instruction per source
item and the bytecode is very compact. If the procedure argument is being
decomposed in the unification, that is, when its main functor is identical with
the main functor of the head argument, the machine is said to be in read mode.
Conversely, if the caller argument is a variable, the machine is in write mode
where the structure will be constructed on the heap. The unify instructions
that are emitted for the arguments of the structure depend on the current
mode: in the read mode they test the type of the caller argument, in the write
mode the argument is created on the heap. The arguments of a structure are
unified in the same mode as the structure functor. When the structure is being
constructed on the heap, its arguments are pushed using the heap top pointerH, when an existing structure is decomposed, the S pointer is used to point to
the currently unified argument. For example, the head structure inp(f(g(...), h(...), k(...))) :- : : :
is in the WAM compiled into

2



get structure f/3, A1unify variable X1unify variable X2unify variable X3get structure g/n1, X1unify : : : <arguments of g>: : :get structure h/n2, X2unify : : : <arguments of h>: : :get structure k/n3, X3unify : : : <arguments of k>: : :
If this procedure is called with ?- p(f(g(a), B, C)), the first and second block
of unify instructions is executed in read mode because the head compound
term matches the corresponding functors f/3 and g/n1 in the caller. The
remaining two blocks of unify instructions are executed in write mode,
because the structures h/n2 and k/n3 must be constructed and bound to B
and C respectively.

Let us consider this example from another point of view. We can see that the
code generated by the WAM is the same as the code for (when =/2 is
expanded in-line)p(f(X1, X2, X3)) :- X1 = g(...), X2 = h(...), X3 = k(...).
where X1, X2 and X3 are temporary variables. The unification of the main
structure is completely separated from the unification of its compound
arguments. As the unification of the temporaries can be written in any order,
the traversal of the rest of the tree can be made in any manner, as long as this
way of assigning compound arguments to temporaries is kept.

This model is very easy to understand and efficient enough to implement on
bytecode emulators, however it has several inherent problems: The write mode is not propagated to the substructures. Whenever a

structure is unified in write mode, it is clear that all its substructures will
also be unified in write mode. The WAM does not use this property, in a
substructure in write mode the following is executed:{ the instruction unify variable pushes a new free variable on the

heap and stores a pointer to it in a temporary variable{ The instruction get structure later dereferences this variable, finds
out that it is uninstantiated (although this is known at compile time),

3



and thus it sets the write mode. The variable is then bound to a
new structure on the heap and for this binding even a trail test has
to be performed.

Several memory accesses, dereferencing, tag test and trail test are
redundant. This is the consequence of the fact that the unification of a
term is completely separated from the unification of its compound
arguments. References to all substructures are saved into temporary variables.
Although Prolog programmers do not seem to like deeply nested
structures (except for tail-recursive ones like lists), often their arity might
be quite high [3] and so many temporaries are necessary. This increases
the number of used registers, or causes additional memory accesses for
temporaries allocated in memory. Every unify instruction must test the mode bit. In fact every unify
instruction is just a shorthand for two different instructions, one read and
one write. In native code implementations, and especially on processors
with an instruction pipeline, these frequent tests break the instruction
flow and slow down the execution. Most commercial systems split theunify instructions explicitly to avoid the tests. In a term like f(g(a), h(b), i(c)), the code starts withget structure f/3, Aiunify variable X1unify variable X2unify variable X3
If the caller argument is f(g(b), B, C), the unification of g(a) and g(b)
fails and so the two unify variable instructions were useless. The same
effect could be achieved by just saving a pointer to the second argument. If the information about the instantiations of the arguments is available,
e.g. in the form of mode declarations, it can be used only if the unify
instructions are explicitly divided into read and write instructions. The
compiler can then suppress generation of code that would never be
executed. This sort of breadth-first traversal can be always simulated using a
bounded depth-first traversal, however the converse is not true.
Therefore the depth-first is more general and a better candidate for the
compilation technique.

2.2 Body Arguments

In the WAM, compound terms in subgoal arguments are compiled using the
same unify instructions like in the clause head. The only difference is that the

4



structures are built bottom-up, without the get instructions, so that
dereferencing and trail tests are avoided. The other problems remain, though.
Although it is known that the instructions will be executed in write mode,
each unify instruction tests the mode flag. It is also necessary to use temporary
variables to build the structure. However, it is known at compile time that the
structure will be created in consecutive locations at the heap top, and all
pointer offsets are fixed. Therefore, no temporary variables are really necessary
to create the structure.

5



3 Depth-First Method

Our method has the following differences compared to the WAM: an explicit distinction between read and write instructions is made, the
compiler generates separate read and write mode sequences, nested structures are unified in a depth-�rst manner, no code is duplicated, the execution can switch from the read to thewrite sequence and back, the body compound arguments are built top-down in a breadth-�rst
manner, no temporary variables are necessary.

3.1 Head Arguments

While the WAM saves all compound arguments into temporary variables, in the
depth-first approach it is enough to save a pointer to the argument following a
compound one. No temporary variable is needed for the last structure
argument. Note for example, that no temporaries are necessary to unify a list
containing only constants. The temporaries can be viewed as a return stack
whose depth is known at compile time. When the unification of a substructure
is finished, the execution proceeds with the next argument whose address is
saved in the corresponding temporary variable.

Since the two sequences are now compiled separately, the get structure andget list instructions are slightly modified. For the write mode the execution
continues in sequence, for read mode a branch to a given label is executed. At
the end of the write mode sequence there is a branch instruction that causes
a branch to the end of the read mode sequence.

Even when the two sequences are split, it is not possible to avoid some tests.
Since part of the structure may be unified in read and part in write mode,
branches from one sequence to the other one might be necessary (unless one
wants to duplicate the code, but this is exactly what we try to avoid when
compiling into native code). The basic observation is as follows: If a structure
is unified in read mode, all its parent and sibling structures are also unified inread mode. Therefore, when the unification of this structure is finished, the
execution continues directly in the read mode sequence. This is the upwardpropagation of the read mode. The compound arguments of a structure,
however, might have to be unified in write mode if they are matched with a

6



free variable. Hence at the beginning of the unification of a structure in read
mode it is necessary to perform a test and possibly branch into the write mode
sequence.

If a structure is unified in write mode, all its substructures are also unified inwrite mode, i.e. the write mode is propagated downwards, but its parent
structure might be unified in read mode. Therefore, at the end of each
structure unified in write mode the system has to test if a branch back into theread mode sequence has to be made. The condition when to jump from thewrite mode sequence back to the read sequence is as follows: at the end of
every compound term the address of the next argument to unify is obtained
from a temporary variable. The tag of this variable stores a flag which decides
whether to jump back to the read mode sequence or whether to continue with
the next instruction.

In write mode the whole structure skeleton has to be pushed on the heap at
once since the structure arguments are not unified and accessed consecutively.
Therefore the write structure pushes the functor on the heap and incrementsH by the arity of the structure. To access structure arguments, both in read
and write mode the S register is used. The read and write mode instruction
sequences are very similar except that the former contains the read and the
latter the write variants of the unification instructions.

Below we present an example how to implement our method in the WAM.
Note that for bytecode emulators these instructions are too low-level, several
instructions could be merged into one to avoid the dispatching overhead. For
native code, on the other hand, the generated code must be postprocessed to
remove redundant operations.read down Xi
This instruction is generated be-
fore a compound term which is
not the last argument. A ref-
erence to the next argument is
stored into the temporary.Xi = S + 1; write down Xi

Like read down, but the modewrite is marked into the tag of
the temporary.Xi = tag struct(S + 1);

7



read structure F
A substructure in read mode. If
the term pointed to by S is a
structure pointer and the functor
of the structure is equal to F, S is
set to point to its first argument,
else a failure occurs.if (tag(*S) != tag struct jjS = val(*S), *S++ != F)Fail;

write structure F
A substructure in write mode. A
pointer to a new structure skele-
ton with functor F is stored in the
location pointed to by S and S is
set to point to the first argument
of the new structure skeleton.*S = tag struct(H);H++ = F;S = H;H += arity(F);read up Xi

This instruction is generated at
the end of a structure which is
itself a (not last) argument of a
compound term. The S pointer
is restored from the temporary.S = Xi; write up Xi

This instruction is generated at
the end of a structure in write
mode which is not the last argu-
ment. The S pointer is restored
from the temporary.S = val(Xi);read list

Corresponds to read structure
for lists.if (tag(*S) == tag list)S = val(*S);elseFail; write list

Corresponds to write structure
for lists.*S = tag list(H);S = H;H += 2;read test LabW

This instruction precedes a sub-
structure in read mode. S is
dereferenced. If the result of
dereferencing is a free variable, it
is trailed if necessary and a jump
to LabW is executed.S = Deref(S);if (tag(S) == tag ref) ftrail(S);P = LabW;g

write test Xi, LabR
This instruction is generated af-
ter a write up instruction. If the
tag of Xi is not write, a jump to
LabR is executed.if (tag(Xi) != tag struct)P = LabR;

8



read constant C
A constant argument of a com-
pound term in read mode. The
contents of S is dereferenced and
unified with C. After a successful
unification S is incremented.if (Unify(*Deref(S), C))S++;elseFail;

write constant C
A constant argument of a com-
pound term in write mode. C is
stored into the location pointed
to by S and S is incremented.*S++ = C;

3.1.1 Compilation Example

Note that the WAM uses less abstract instructions, however they are more
complicated than ours. When expanded, the WAM code is always longer.f(g(X), b)Our Code WAM Codeget structure Ai, LabR get structure Aiwrite down X1 unify variable X1W1: write structureg/1 unify constant bwrite variable Y1 get structure g/1, X1write up X1 unify variable Y1write test X1, R1write constant bbranch EndsLabR:read down X1read test W1read structureg/1read variable Y1read up X1R1: read constant bEnds:
As we can see, the code generated for read and write mode is very similar,
temporary variables are the same in both sequences and the correspondence of
labels for branches between the two sequences is straightforward.

3.2 Body Arguments

Unlike head arguments, the compound terms to be constructed in the clause
body are known at compile time, they are going to be pushed onto

9



consecutive heap locations. Therefore, when the compound term is created
top-down, in a breadth-first manner, one pointer is completely sufficient to
build it, no temporary variables are necessary.

The instructions work as follows: the generation starts with the topmost
structure, first the functor is pushed at the heap top using the H pointer, then
the structure arguments are pushed, followed by the next substructure etc.
Whenever a compound subargument is encountered, a structure pointer to it is
pushed on the heap and then the next argument is built. Thus each new
structure is put at the end of a queue and built when it is at its beginning.put structure F, Ai This instruction corresponds to the beginning of a

compound argument of a body subgoal. A functor is pushed on the
heap, a structure pointer to it is stored into Ai.Ai = tag struct(H);*H++ = F;push constant C The constant C is pushed on the heap. Note that C can also
be a functor of a compound term.*H++ = C;push structure O�set This instruction corresponds to a compound
subargument. A structure pointer to H + O�set is pushed on the heap
top.*H = tag struct(H + O�set);H++;push list O�set This instruction corresponds to a compound subargument
which is a list.*H = tag list(H + O�set);H++;

An example of a body goal compilation:test :- do(parse(s(np, vp), [birds, y], [])).Our Code WAM Code (from [7])put structure parse/3, A1 put structure s/2, X2push structure 3 unify constant nppush list 5 unify constant vppush constant [] put list X4push constant s/2 unify constant y
10



push constant np unify nilpush constant vp put list X3push constant birds unify constant birdspush list 1 unify value X4push constant y put structure parse/3, A1push constant [] unify value X2execute do/1 unify value X3unify nilexecute do/1
It can be seen that to achieve the same effect the WAM needs 3 temporary
variables and more code than our method.

11



4 Optimizations

The above presented methods are the basic schemata only, there are many
optimizations to be applied on them. In the sequence of up, down and test abstract instructions in the

generated native code usually several machine instructions can be
omitted, which is easy to do in a peephole optimizer. The unify local value WAM instruction has only its write counterpart,
in the read sequence the normal read value instruction is used. When the head structure contains void variables, it is often possible to
omit part of the read sequence, provided that no nonvoid argument
follows the void one(s). For example, the term[ j ]
can be simply compiled intoget list Ai, Endswrite void 2Ends: Ground compound terms in the clause body should not be compiled into
a sequence of instructions - even with a structure copying method they
can be shared. The compound term can be created once at compile time
and in the clause body the put constant instruction just puts a
corresponding structure or list pointer to it.

Similarly, ground compound terms in the head should be constructed at
compile time and treated like constants in the write sequence, e.g.f(g(a), g(b)) is compiled intoget structure f/2, Ai, LRwrite constant < g(a) >write constant < g(b) >branch EndsLR: read down X1: : :Ends: If the compound argument is the indexed one, a branch directly to theread sequence can be executed:

12



append([], L, L).append([XjL1], L2, [XjL3]) :-append(L1, L2, L3).Our Code WAM CodeLa: switch on typeA1,list:Ll,nil:Ln,default:fail switch on typeA1,list:Ll,nil:Ln,default:failLv: get nil A1 Lv: get nil A1Ln: get value A2, A3 Ln: get value A2, A3proceed proceedget list A1, Ll Ll: get list A1write variable X4 unify variable X4write variable A1 unify variable A1branch E1 get list A3Ll: read variable X4 unify value X4read variable A1 unify variable A3E1: get list A3, Lr execute append/3write value X4write variable A3branch LaLr: read value X4read variable A3branch La When more information is available about the instantiation of the caller
arguments, e.g. from abstract interpretation, the compiler can omit certain
instructions and regroup the others, so that a simple peephole
optimization yields optimal native code. For example, if the clausep(g(f(X), h(X))).
is always called with an instantiated argument, but the arguments of g/2
are known to be unbound, a mixture of read and write sequence can be
generated, the compiler can replace some of the read instructions bywrite ones:

13



g(f(X),h(X))Default Mixtureget structure g/2, Ai, LR get structure g/2, Ai, L1write down X1 L1: read down X1W1:write structuref/1 read test L2write variable X2 write structure f/1write up X1 write variable X2write test X1, R1 read up X1W2:write structureh/1 read test X1, L3write value X2 L3:write structure h/1branch Ends write value X2LR: read down X1read test W1read structure f/1read value X2read up X1R1: read test W2read structure h/1read value X2Ends:
Note also that the depth-first approach is even more flexible - the compiler
might decide to compile e.g. the last argument depth-first and the other ones
breadth-first etc.

14



5 Discussion

Optimizing the unification of compound terms in Prolog is a challenging task.
One of the problems of Prolog efficiency is exactly this - inefficient handling of
structures. Often a compound term is created before calling a goal only to
decompose it in the called procedure, which is a severe overhead. Thestructure sharing systems have an advantage here, because the structures do
not have to be explicitly created. On the other hand, structure sharing has
other disadvantages like poor locality of references and creating long reference
chains, so that the only way currently being followed is to optimize the
structure copying mechanism.

Despite the problems in the WAM handling of compound terms, there has been
very little work published about alternative approaches1. Current emulated
systems seem to use the WAM code since it is compact, but the emulator
contains separate versions of the unify instructions for read and write mode.
The mode flag is not used because each concerned instruction knows to which
version of the next instruction it should continue.

Native code systems often use a scheme similar to [6], where explicit read andwrite sequences are generated, e.g. for f(g(a), g(b))get structure f/2, Ai, LRwrite variable X1write variable X2branch S1LR: read variable X1read variable X2S1: get structure g/1, X1: : :
In this way the use of the mode flag is not necessary, however nested
structures are still unified separately from the main term and so all the
problems with the write mode remain. If the last argument is compound, it
can be unified directly, without a write variable instruction and so the write
mode can be propagated to it. Propagating the write mode to other
substructures is obviously difficult with breadth-�rst traversal, but it is a trivial
task when the depth-�rst approach is used.

Turk [6] describes an approach where the write mode is propagated using a
branch into the middle of the get instruction, to omit dereferencing and testing.
The write mode can thus be directly propagated only to the first compound1Our work presented in this paper is based on [2].

15



argument, its first compound subargument etc. The following arguments have
to push a free variable on the heap and the get instruction has to dereference
and test it like in the basic WAM. In our method the number of branches
depends on the actual data, how often it is necessary to switch between the
two sequences; the write mode is propagated everywhere.

Recently, Van Roy [5] described a lower-level abstract language for the
unification which generates separate sequences for the read and write mode.
The write mode sequences use a breadth-first approach similar to ours for
body terms, but the whole skeleton is pushed at once, so that some of thepush instructions need two offsets as arguments, which is less efficient for
bytecode and for some machines. The read mode sequences use depth-first
traversal, but the code is not shared between the two sequences, except for the
last argument, and so the write mode instructions appear also inside the read
mode sequence. In this way, Van Roy’s write mode sequence does not contain
any redundant operations, however for the expense that this code cannot be
shared. For complex structures the size of the generated code grows
exponentially. When we use the push instructions instead of the write ones,
except for the last argument, and generate an additional write sequence for
every label in read test using the push instructions, we obtain a method
which is very similar to the Van Roy’s one.

Our methods have the following advantages over the WAM or the above
derivatives: Since we are using the depth-first approach, our method for head

unification needs less temporary variables than the WAM for wide or
shallow structures. We generate explicit read and write sequences and for every source
item (including parentheses) there is at most one read and one write
instruction. The code size is proportional to the term size, no code is
duplicated. The write mode is automatically propagated to all head substructures, no
intermediate free variables are pushed on the heap in order to save and
restore the mode information. If it is necessary to save the mode
information, most often this is done in a register. Our method thus
performs less memory accesses than the pure WAM. Our method uses the H and S register in a uniform way both in read
and write instructions. It is therefore possible to jump from one
sequence tothe other one, or generate directly mixed code. Our method can be used both for depth-first and breadth-first structure
traversal. After performing the global analysis of the program, the
compiler can generate the appropriate code and omit sequences or parts
of them which are not necessary.

16



 The code for constructing compound terms in the body is optimal. For
general head terms the length of our code is (after postprocessing)
minimal.

The drawbacks of our method concern the following cases: For left-balanced head structures like f(g(h(a), b), c) where each
structure has only one compound argument which is not the last one, our
method needs more temporary variables than the WAM. Prolog
programmers normally prefer right-balanced structures which can be
processed using tail-recursive loops. When a structure is unified in read mode and all its arguments are
unified in write mode, two branches are executed for each argument. In
this case, either breadth-first approach can be used, or the compiler can
generate a mixture of read and write sequences.

17



Acknowledgements

The author would like to thank to Dominique Henry de Villeneuve, Alexander
Herold, Jacques Noye, Bruno Poterie and Joachim Schimpf for fruitful
discussions about this topic and for commenting previous versions of this
paper and to the referees of the submitted paper for interesting comments
about up-to-date systems. Many of the ideas presented here are probably
already part of Prolog folklore and so the author would also like to
acknowledge all people that have contributed to their development.

18



Bibliography

[1] John Gabriel, Tim Lindholm, E. L. Lusk, and R. A. Overbeek. A tutorial on
the warren abstract machine for computational logic. Technical Report
ANL-84-84, Argonne National Laboratory, 1984.

[2] Micha Meier. The compilation of compound term unification in Prolog.
Internal Report IR-LP/lpp1, ECRC, May 1987.

[3] Micha Meier. Analysis of Prolog procedures for indexing purposes. In ICOT,
editor, Proceedings of the International Conference on Fifth GenerationComputer Systems, pages 800–807, Tokyo, November 1988.

[4] Micha Meier, Abderrahmane Aggoun, David Chan, Pierre Dufresne,
Reinhard Enders, Dominique Henry de Villeneuve, Alexander Herold, Philip
Kay, Bruno Perez, Emmanuel van Rossum, and Joachim Schimpf. SEPIA -
an extendible Prolog system. In Proceedings of the 11th World ComputerCongress IFIP'89, pages 1127–1132, San Francisco, August 1989.

[5] Peter Van Roy. An intermediate language to support Prolog’s unification. In
Ewing L. Lusk and Ross A. Overbeek, editors, Proceedings of the NACLP'89,
pages 1148–1164, Cleveland, October 1989.

[6] Andrew K. Turk. Compiler optimizations for the WAM. In ThirdInternational Conference on Logic Programming, pages 657–662, London,
July 1986.

[7] David H. D. Warren. An abstract Prolog instruction set. Technical Note 309,
SRI, October 1983.

19



A Program to Compile Compound Terms% Compile a head compound termhead(Term) :-functor(Term, F, A),compile_args(Term, 1, A, 1, Code,[branch(lab(_)), label(LR)|ReadCode]),read_seq(Code, ReadCode, []),pwrite([get_structure(F/A, reg(i), lab(LR))|Code]).% Compile a compound subgoal argumentbody(Term) :-functor(Term, F, A),A1 is A + 1,compile_body([Term|Cont], Cont, A1, [_|Code], []),pwrite([put_structure(F/A, reg(i))|Code]).% Write sequence for the arguments of a compound termcompile_args(Term, A, A, Reg) -->{arg(A, Term, Arg)},compile_arg(Arg, Reg, last).compile_args(Term, I, A, Reg) -->{I < A, arg(I, Term, Arg), I1 is I + 1},compile_arg(Arg, Reg, notlast),compile_args(Term, I1, A, Reg).% Generate the write sequence for one argumentcompile_arg(Struct, Reg, last) -->{compound(Struct), functor(Struct, F, A)},[label(_), write_structure(F/A)],compile_args(Struct, 1, A, Reg).compile_arg(Struct, Reg, notlast) -->{compound(Struct), functor(Struct, F, A), Reg1 is Reg+1},[write_down(reg(Reg)), label(_), write_structure(F/A)],compile_args(Struct, 1, A, Reg1),[write_up(reg(Reg)), write_test(lab(_))].compile_arg(Const, _, _) -->{atomic(Const)},[write_constant(Const)].% Generate the read sequence and fill in the labelsread_seq([branch(lab(L))|_]) -->
20



[label(L)].read_seq([write_down(R)|T]) -->[read_down(R)],read_seq(T).read_seq([label(L), write_structure(S)|T]) -->[read_test(lab(L)), read_structure(S)],read_seq(T).read_seq([write_up(R), write_test(lab(L))|T]) -->[read_up(R), label(L)],read_seq(T).read_seq([write_constant(C)|T]) -->[read_constant(C)],read_seq(T).% Compile a queue of body structurescompile_body([], [], _) --> {true}.compile_body([Struct|Rest], Cont, Off) -->{functor(Struct, F, A), Off1 is Off - 1},[push_constant(F/A)],compile_struct(Struct, 1, A, Off1, NewOff, Cont, NewCont),compile_body(Rest, NewCont, NewOff).% Compile one body structurecompile_struct(Struct, A, A, Off, NewOff, Cont, NewCont) -->{arg(A, Struct, Arg)},compile_body_arg(Arg, Off, NewOff, Cont, NewCont).compile_struct(Struct, I, A, Off, NewOff, Cont, NewCont) -->{I < A, arg(I, Struct, Arg), I1 is I + 1},compile_body_arg(Arg, Off, NO, Cont, NC),compile_struct(Struct, I1, A, NO, NewOff, NC, NewCont).% Compile one argument of a body structurecompile_body_arg(Const, Off, NewOff, C, C) -->{atomic(Const), NewOff is Off - 1},[push_constant(Const)].compile_body_arg(Struct, Off, NewOff, [Struct|C], C) -->{compound(Struct), functor(Struct, _, A),NewOff is Off + A},[push_structure(Off)].% Print the generated codepwrite([]).pwrite([label(Lab)|Rest]) :-write(Lab),write(:),pwrite(Rest).pwrite([Instr|Rest]) :-
21



put(9),functor(Instr, F, A),write(F),name(F, LS),length(LS, Length),tab(20-Length),writeargs(Instr, 1, A),nl,pwrite(Rest).writeargs(Instr, A, A) :-arg(A, Instr, Arg),writearg(Arg).writeargs(Instr, I, A) :-I < A,arg(I, Instr, Arg),writearg(Arg),write(', '),I1 is I + 1,writeargs(Instr, I1, A).writearg(lab(L)) :-write(L).writearg(reg(R)) :-write('X'),write(R).writearg(Arg) :-write(Arg).

22


