
Recursion vs. Iteration in
Prolog

Micha Meier ECRC-ECRC-95-13

technical report ECRC-ECRC-95-13

Recursion vs. Iteration in Prolog

Micha Meier

European Computer-Industry
Research Centre GmbH
(Forschungszentrum)
Arabellastrasse 17

D-81925 Munich

Germany

Tel. +49 89 9 26 99-0

Fax. +49 89 9 26 99-170

Tlx. 52 69 10

I

cEuropean Computer-Industry Research Centre, 1995

Although every effort has been taken to ensure the accuracy of this report,
neither the authors nor the European Computer-Industry Research Centre
GmbH make any warranty, express or implied, or assume any legal liability for
either the contents or use to which the contents may be put, including any
derived works. Permission to copy this report in whole or in part is freely
given for non-profit educational and research purposes on condition that such
copies include the following:
1. a statement that the contents are the intellectual property of the

European Computer-Industry Research Centre GmbH
2. this notice
3. an acknowledgement of the authors and individual contributors to

this work
Copying, reproducing or republishing this report by any means, whether
electronic or mechanical, for any other purposes requires the express written
permission of the European Computer-Industry Research Centre GmbH. Any
registered trademarks used in this work are the property of their respective
owners.

For more
information

please
contact : michaecrc.de

II

Abstract

We outline methods of compiling recursive procedures in Prolog to yield code
which is close to that of imperative languages. Recursion is compiled into
iteration which keeps loop invariants unchanged and uses destructive
assignment on the stack variables. We also adentify various recursion types,
depending on the stack frame type which is involved, namely environments,
choice points and suspended goals.

III

1 Introduction

Prolog, like any other programming language, usually spends most of its
execution time in a small portion of the program code, executing loops. It does
not have the loop constructs heavily used in procedural languages, e.g. while
or for, repetitive actions and loops (without side effects) are expressed using
recursive procedures. Today, when it seems more and more likely that Prolog
will reach a speed not much different from imperative languages, we have to
reconsider the way we treat loops in Prolog. Although exploiting tail recursionoptimization is usual in WAM [5], this is not enough because there is still a
significant overhead on the execution time even if the recursive procedures use
constant space.

Ideally, it should be possible to compile loops in Prolog so that we obtain code
which is very close to that one generated by imperative languages, because this
is the only way to achieve competitive speed on traditional hardware.

This paper presents an overview of the main problems in compiling recursive
procedures into the WAM, and hints how these problems could be solved. In
the section 2 we illustrate the problem on an example, and generalize it by
extending to different data types. In the next sections we treat each of the data
type, namely environments, choice points and suspended goals. In the last
section we discuss the results and outline future work.

1

2 Iteration and Recursion

We first present a simple example to illustrate how tail-recursive procedures are
normally compiled into the WAM, and what are the drawbacks compared to an
imperative language, represented by C. We do not try here to optimize any
other Prolog features, especially we do not try to use registers for permanent
variables, but we sometimes assume that the compiler has some knowledge
that can be obtained only from the global analysis of the program. We assume
that the arithmetic and other simple built-in predicates are compiled in-line and
that they do not require an environment creation. For simplicity we often
assume that the procedure is always called with arguments of correct type, as is
the case in most imperative languages and that its arguments are dereferenced.
Completing the code to include these features is obvious. We assume a
thorough knowledge of the WAM throughout the whole paper.

When listing the code generated by the compiler, we deliberately mix WAM
code, destructive assignment expressed by the := operator, C-like syntax for
expressions which cannot be expressed in the WAM like e.g. if-then-else, and
macros with understandable mnemonic names. To save space, we sometimes
do not list complete sequences of put and call instructions, but we denote a
call of a Prolog procedure just by call proc(Arg1, : : : , Argn), where Argi is
the register or variable holding the argument value.

2.1 Tail Recursion in Regular Prolog Procedures

Tail recursive calls in regular clauses, i.e. those which use environments, are
compiled rather inefficiently in the WAM. For example, let us consider a
procedure that prints a list to a given stream: Its C code would look as follows:print_list(stream, list)int stream;register struct pair *list;{ while (list){ print_item(stream, list->head);list = list->tail;}}
The Prolog definition is very simple

2

print_list(_, []).print_list(Stream, [H|List]) :-print_item(Stream, H),print_list(Stream, List).
however its normal translation to the WAM is not satisfactory:print list/2:if (A2 = nil)proceed* allocate* get variable Y1, A1get list A2unify variable A2unify variable Y2call print item/2* put value Y1, A1* put value Y2, A2* deallocateexecute print list/2
Like in the C version, the procedure uses only two variables, but in Prolog the
environment is deallocated after each print item/2 call and allocated
immediately afterwards. We have marked by an asterisk those instructions,
which are unnecessarily repeated on every iteration.

The environment allocated by the recursive subgoal is almost identical to the
deallocated one, with exception of Y2. Clearly, the procedure can be
simplified to reuse the same environment and save much of the data traffic.

The first clause can be entered both with and without an environment, and so
we either duplicate its code, or allocate even for empty lists, like in C. In this
example the first clause is trivial, so we prefer the former.print list/2:if (A2 = nil)proceedallocateget variable Y1, A1get variable Y2, A2L1:get list Y2unify variable A2unify variable Y2

3

put value Y1, A1call print item/2if (Y2 = nil) fdeallocateproceedggoto L1
Note that the variable Stream is kept in the environment without change,
whereas List is destructively changed like in the C version. The control part of
the environment, CE(E) and CP(E) remains unchanged during the whole
loop. Thus we can see that if a recursive call reuses its environment, it does not have to allocate a new environment, and it can keep the loop invariants in the environment.

These two modifications can save considerable amount of data traffic during
the loop execution.

4

3 Recursion Types

In the above example, it was possible to use the fact that an environment in
the stack was overwritten with an almost identical environment. Instead of
popping and pushing an environment, we could modify the existing one.

Similar optimizations can be performed with other frames in the Prolog
machine, provided that a similar situation occurs. In this paper we describe
optimizations involving the following frame types: environments choice points delayed environments. A delayed environment is a frame used to store the

data needed to resume a goal which was suspended.

5

4 Iteration with Environments

In the above example, we were able to compile the recursive procedure in an
efficient way, without any WAM modifications. A necessary condition for this
kind of optimizations is that an environment is popped, and another, very
similar one is pushed on its place sooner than it is overwritten by another
frame. This means that

1. for instance, the last call is directly tail-recursive,

2. the state on deallocation must be deterministic, otherwise the old
environment remains in the stack,

3. no environment or choice point must be pushed before the recursively
called procedure allocates its environment.

When is the new environment sufficiently "similar"? Obviously, it must have at
least the same size, the same control information is guaranteed because it is the
last call. Note that even if the call is not recursive, but it calls another
procedure with the same environment size, the deallocating and allocating can
be optimized away, however this might be easier done using source
transformations, e.g. partially eveluating the last call.

Let us consider the third condition more in detail. A choice point can overwrite
the deallocated environment in the WAM because both are allocated on the
same local stack. The alternative is to use the split stack model where the local
stack is separated into environment and choicepoint stack.

Another environment can overwrite the deallocated one only if the last call is
not directly recursive, or if the recursive procedure consists of several clauses
and the recursive call matches another clause, which also creates an
environment. For example (the Browse program by T.Dobry):match([],[]) :- !.match([X|PRest],[Y|SRest]) :-var(Y),!,X = Y, match(PRest,SRest).match(List,[Y|Rest]) :-nonvar(Y),Y = star(X),!, concat(X,SRest,List),match(SRest,Rest).match([X|PRest],[Y|SRest]) :-(atom(X) -> X = Y; match(X,Y)),match(PRest,SRest).

6

Here at least the third and fourth clause require an environment, and so
environment reusing is not straightforward. In such procedures, all clauses
requiring an environment have to be merged into one clause. Although this
may require a bigger environment, there is no overhead because the
environment is allocated only once and only the relevant variables are
accessed.

To summarize, here are the main points about environments reusing: The tail call has to be recursive. If the recursion is indirect, partial
evaluation can be used to convert it into a direct one. The state when making the tail recursive call has to be deterministic.
Often a cut precedes it, or the left-hand subgoals are only deterministic
built-in predicates so that it is straightforward to check this condition.
Otherwise, global analysis of the program is necessary. Even procedures
which are not deterministic might not be intended to return several
solutions, because either their choice point is cut by an ancestor or the
program really is nondeterministic, but it should not be so. The global
analysis should not only find out if a procedure is deterministic, but it
should also check if the choice point of nondeterministic procedures will
(or should) ever be used. If the procedure contains several regular clauses, they have to be merged
into a single clause using disjunctions. At the beginning of the loop, the argument registers are saved into the
environment. The loop invariants stay there unchanged, the other values
are destructively rewritten as soon as the old value is not necessary. At
the loop end, the arguments of the recursive call have to be stored into
the appropriate cells in the environment rather than in argument registers.
On machines with sufficient number of hardware registers the permanent
variables should be stored in registers. The end condition for the loop is often very simple, most frequently it
represents the end of a list or the final value of an index. Then no choice
point is necessary for the end loop test. If the procedure is expected to
satisfy the end condition frequently enough, or if there is no special
action at the loop end, the code for the end clause can be duplicated,
once outside of the loop, without allocating an environment, and once
inside the loop, where it deallocates the environment and terminates.

7

5 Iteration with Choice Points

In Prolog, the only way to express a condition is to use alternative clauses, or
the if-then-else construct. If the condition is not a simple built-in predicate, a
choice point must be pushed before executing it and popped right after. Then,
if a tail recursive call follows, we can perform similar optimizations as with the
environments. For example (from ILI by S.Haridi):deref(X,E,T) :- binding(X,E,T1), !,deref(T1,E,T).deref(X, ,X).
A code generated according the guidelines in the previous section would bederef/3:allocateget variable Y1, A1get variable Y2, A2get variable Y3, A3L1:Y5 := Btry me else L2put variable Y4 A3call binding(Y1, Y2, A3)cut Y5put value Y4, Y1goto L1L2: trust meget value Y1, Y3deallocateproceed
As we can see, a choice point is created at the beginning of each cycle,
popped after the binding/3 call and then pushed again in the next cycle with
almost identical contents. Let us look at the data contained in this choice point.
In the split stack model, the choice point contains the following fields: BCP - code continuation BCE - environment continuation

8

 A' - top of the environment stack BP - address of the alternative clause TR' - trail top pointer H' - global stack top pointer Argument registers

In the above example, however, the choice point can store less information,
and instead of pushing and popping we can just update its contents, exactly as
we do with the environments. BCP is identical with CP(E), so it is
redundant, the arguments are also contained in the environment. Therefore,
only BCE, A', TR', H' and BP have to be stored in the choice point, and
only TR', H' might have to be updated after each cycle. The optimized code
then looks as follows:deref/3:allocateget variable Y1, A1get variable Y2, A2get variable Y3, A3Partial ChP(E, A, L2)Y5 := BL1:Update ChP(TR, H)put variable Y4 A3call binding(Y1, Y2, A3)cut Y5put value Y4, Y1goto L1L2: trust meget value Y1, Y3deallocateproceed
If binding/3 is known not to bind any variables and not to push any
structures on the global stack, TR' and H' can be omitted in the choice point
and Update ChP is void. If it is known to be deterministic, A' can be
omitted and the cut is also void.

In this way, a series of choice points can be collapsed into one. This is
possible only under the following conditions:

9

 When the recursive call is made, there must be no choice point left, so
that the state is as when entering the procedure for the first time. This
also means that the subgoals must either be deterministic, or there must
be a cut before the tail recursive call. There must be no failure between popping the choice point and pushing
a new one. The choice point can be popped either by the implicit cut in
in if-then-else, by a normal cut, or in the last clause.

To optimize choice point handling in procedures likeloop :- (end -> stop; process, loop),process/0 must be deterministic and must be known to always succeed, since
when it fails, the whole procedure must fail but we still keep a choice point forloop/0.

A slightly different situation can occur with simple predicates like member/2:member(X, [X|]).member(X, [|T]) :-member(X, T).
If member/2 is used to generate values, the choice point can obviously be
reused, because after popping it and making a recursive call, an almost
identical choice point is pushed again. When the second argument is not a list,member/2 must fail, however when the choice point is reused, it is always
there and so it has to be popped explicitly.

The recursive choice point is identical to the previous one except for the value
of A2. Although it would be possible to make a destructive change in the
choice point itself, a more suitable method is again to use an environment to
hold the arguments:member/2:allocateget variable Y1, A1get variable Y2, A2try me else L3L1:get list Y2retry me else L2unify value Y1unify variable Y2proceed

10

L2: retry L1L3: trust mefail
Note how BP(B) is handled to make the whole predicate fail if the second
argument is not a list.

We have measured the frequency of reusable environments and choice points
on a set of small programs from similar work by Touati and Despain [4] and on
a set of middle-to-large programs. We list the total number of environmentsEnv and choice points ChP and the percentage of reusable ones.

Small Program Env ChP Reusable Env Reusable ChP
concat 2 5 0.0 % 80.0 %
differen 23 62 0.0 % 19.4 %
hanoi 509 255 0.0 % 24.9 %
mumath 203 562 0.0 % 69.0 %
nrev1 30 0 0.0 % 0.0 %
palin25 105 76 72.6 % 80.3 %
primes 362 842 73.0 % 57.1 %
qsort 50 229 51.0 % 86.0 %
queens 64 201 21.5 % 3.0 %
query 27 676 0.0 % 0.0 %

Program Env ChP Reusable Env Reusable ChP
Boyer 132517 138628 42.0 % 0.31 %
Browse 210919 251899 35.4 % 57.1 %
General 13075 24033 (26.85 %) 9.7 % (63.35 %) 12.0 %
TT 27140 14710 0.02 % 16.5 %
ILI 4145 2949 5.23 % 8.13 %
Edf 5857 29040 (22.55 %) 9.1 % 74.8 %
Spreadsheet 42655 13895 23.3 % 23.0 %
Plm Compiler 92401 164619 18.2 % 49.4 %
Pdbs 29196 82897 57.3 % 74.7 %
Mvv 96443 6596 0.24 % 36.1 %
Toesp 375221 194836 17.8 % 16.3 %
SB Prolog 138883 255929 20.0 % 55.0 %
Tp 114027 128479 80.2 % 64.6 %
Chat 43821 42877 22.9 % 21.1 %
Theorem Prover 50036 61122 22.7 % 39.3 %
Sicstus 15546 17391 26.0 % 30.3 %
Aunt 123483 176054 55.1 % 49.9 %
Simulator 20209 35794 32.9 % 20.1 %

11

We can see among others, that measuring small programs can differ
significantly from large ones. The ratio of reusable choice points is sufficiently
high, for environments it is sometimes necessary to perform program
transformations to achieve maximal effect.

Our figures for environments differ from Touati ones, both on identical
programs and on the average of reusable environments in larger programs. The
reasons for this, as far as we can tell, are Touati assumes that an environment is allocated for every clause with at

least two subgoals. We, on the other hand, assume that most of the
built-in predicates can be handled differently, as is the case in SEPIA [2],
and so we allocate less environments. Touati assumes that failure in the body of the tail-recursive goal prevents
environment reusing, and so e.g. inloop(X) :- end(X), !.loop(X) :- process(X, X1), loop(X1).
the environment is not counted as reusable. However, if we reuse the
choice point, the environment can be reused as well.

Due to the same reason, Touati does not count procedures with several
regular clauses, but we do count them.

1Almost all of the involved choice points are created only by an inefficient compilation, with

improved clause selection there would be only about 500 choice points.2This program is highly nondeterministic and it includes indirect recursion and metacalls.

When it is partially evaluated, it uses only a fraction of the environments and choice points.3This program uses heavily a procedure that applies a substitution on a term. Since the term

arguments are converted to lists using =../2, no actual tail recursion takes place. This could

be improved by program transformation.4This program simulates parallel execution by its own version of the bagof/3 predicate

which uses heavily the metacall, and this always allocates an environment.5The numbers in parentheses result from cosmetic changes in the original programs, e.g.

removing an obsolete cut or replacing assert/retract by a counter.

12

6 Iteration with Suspended Goals

Prolog systems that support goal suspension can also benefit from efficient
loops. When a goal delays, some data has to be pushed on one of the stacks,
which enables the system to resume the goal later. This data, called in SEPIA adelayed environment, must always contain at least the goal arguments and the
procedure identification. When a delayed goal is woken by binding of a
variable, its arguments are fetched from the delayed environment and the goal
is resumed. If there is no choice point younger than its delayed environment,
the delayed environment is no longer accessible and it becomes garbage
(because it might not be at the stack top and so it cannot be popped).
However, if the resumed goal makes a recursive call which itself delays, instead
of pushing a new delayed environment it is possible to reuse the old one,
which not only decreases the amount of garbage, but it also saves memory
accesses because the procedure identification is the same and so can be some
of the arguments. Here is a simple example:int list(N, [N|L]) :-N1 is N + 1, int list(N1, L).primes :-sieve(L), int list(2, L).delay sieve(L) if var(L).sieve([X|L]) :-write(X), write(' '),�lter(X, L, L1), sieve(L1).delay �lter(, Li,) if var(Li).�lter(P,[N|LI], LL) :-(N mod P =\= 0 ->LL = [N|NLI], �lter(P,LI, NLI); �lter(P,LI, LL)).
This program generates a list of all prime numbers. Each call to sieve/1
removes from the lazily generated list all integers divisible by a new prime.
Both sieve/1 and �lter/3 are suspended when they are first called. When the
corresponding variable is instantiated, they are woken, call their body subgoals
and finally a tail recursive call is made which again delays. After waking each
goal, its delayed environment is not accessible and can be reused when
delaying the recursive call. We have measured with the SEPIA system the gain
of this modification when generating all primes less than 10000:

13

Copying Reusing Gain
Number of GC 193 55 72 %
Total amount of garbage 96620016 27556424 72 %
Time spent in GC 36.8s 12.8s 65 %
Total elapsed time 187.7s 170.0s 10 %

In programs that use coroutining, tail-recursive procedures that always delay is
a fairly common case. If the delayed environment can be reused, the program
can benefit from destructive assignment at the implementation level, while
being completely declarative at the source level.

14

7 Conclusion and Future Work

We have described in this paper how repetitive actions in Prolog can be
compiled efficiently, so that the generated code is close to that of imperative
languages. Since the only way to express such actions in Prolog is recursion,
the Prolog compiler has to be particularly careful when compiling recursive
procedures, because most often Prolog programs spend a considerable amount
of time in them.

Recent work of Millroth [3] shares several features with our work. It is more
complex because it expands the recursion into parallel iteration, it considers
nonlinear recursion as well and he presents an actual algorithm for the
compilation. On the other hand, its approach is simpler because it considers
only loops with environments, where the iteration is made only by
decrementing an integer variable.

To achieve a satisfactory compilation of recursive procedures, there is still a lot
of work to be done. This includes mainly: Classification of possible recursion types, possibly mixing environment,

choice points and suspended goals and designing code patterns to be
generated for them. Analysing existing Prolog programs and designing program
transformations that are necessary for the compiler to compile loops
efficiently. Often a simple transformation, like adding or removing a cut,
can considerably speed up the loop execution.

The number of environments can be often drastically reduced by
unfolding non-recursive procedures. Program transformations similar to
that one in [1] which convert non-tail recursive loops into tail recursive
ones prove extremely useful. Specifying what information the compiler needs to compile the loops.
Some of this information can be local to a procedure, some can be
provided only by global flow analysis. Change the way backtracking is compiled. As we have seen in the
examples, some of the choice point accesses can be avoided, resulting in
faster code, however the WAM is not fine-grained enough for this
purpose. Design the actual algorithms to compile recursive procedures and
implement them.

15

Acknowledgements

The author would like to thank Joachim Schimpf for valuable comments in
many discussions about the WAM and Prolog and Alexander Herold for
thorough reading and commenting a previous version of the paper.

16

Bibliography

[1] Saumya K. Debray. Unfold/fold transormations and loop optimizations of
logic programs. In Proceedings of the SIGPLAN'88 Conference onProgramming Language Design and Implementation, pages 297–307, Atlanta,
June 1988.

[2] Micha Meier, Abderrahmane Aggoun, David Chan, Pierre Dufresne,
Reinhard Enders, Dominique Henry de Villeneuve, Alexander Herold, Philip
Kay, Bruno Perez, Emmanuel van Rossum, and Joachim Schimpf. SEPIA -
an extendible Prolog system. In Proceedings of the 11th World ComputerCongress IFIP'89, pages 1127–1132, San Francisco, August 1989.

[3] Håkan Millroth. Reforming Compilation of Logic Programs. Uppsala Theses
in Computer Science. UPMAIL, 1990. Ph.D. thesis.

[4] Hervé Touati and Alvin Despain. An empirical study of the Warren Abstract
Machine. In Proceedings 1987 Symposium on Logic Programming, pages
114–124, San Francisco, September 1987.

[5] David H. D. Warren. An abstract Prolog instruction set. Technical Note 309,
SRI, October 1983.

17

