
Debugging Constraint
Programs

Micha Meier ECRC- ECRC-95-15



technical report ECRC- ECRC-95-15

Debugging Constraint Programs

Micha Meier

European Computer-Industry
Research Centre GmbH
(Forschungszentrum)
Arabellastrasse 17

D-81925 Munich

Germany

Tel. +49 89 9 26 99-0

Fax. +49 89 9 26 99-170

Tlx. 52 69 10

I



cEuropean Computer-Industry Research Centre, 1995

Although every effort has been taken to ensure the accuracy of this report,
neither the authors nor the European Computer-Industry Research Centre
GmbH make any warranty, express or implied, or assume any legal liability for
either the contents or use to which the contents may be put, including any
derived works. Permission to copy this report in whole or in part is freely
given for non-profit educational and research purposes on condition that such
copies include the following:
1. a statement that the contents are the intellectual property of the

European Computer-Industry Research Centre GmbH
2. this notice
3. an acknowledgement of the authors and individual contributors to

this work
Copying, reproducing or republishing this report by any means, whether
electronic or mechanical, for any other purposes requires the express written
permission of the European Computer-Industry Research Centre GmbH. Any
registered trademarks used in this work are the property of their respective
owners.

For more
information

please
contact : micha@ecrc.de

II



Abstract

Constraint programming (CP) is in its substance non-algorithmic programming,
not last because it is often being applied to problems for which no efficient
algorithms exist. A not immediately obvious consequence of this fact is that
debugging CP programs is principally different from debugging algorithmic
programs, including imperative, functional or Prolog programs. It is also more
difficult. Moreover, it is frequently necessary to apply performance debugging to
CP programs, which are correct but too slow to be feasible. The whole area of
CP debugging is still lacking both methodology and tools to support users in
improving their programs.

In this paper, we present a paradigm for tracing constraint programs and the
design and implementation of Grace, a graphical environment for tracing
CLP(FD) programs on top of ECLiPSe.

III



1 Introduction

Developing CLP applications is a difficult task. This is to a large extent due to
the fact that CLP is usually being applied to combinatorial search problems for
which no efficient algorithms are known. Instead of following some
well-known rules, the users have to experiment with various models,
approaches and strategies to solve the problem. Apart from handling the usualcorrectness debugging of their programs, users are also facing the problem ofperformance debugging, i.e. finding a way to execute CLP programs efficiently.
To date, there exists no satisfactory methodology for debugging CLP programs.
There are basically two ways to approach the problem: either try to apply all
available methods exhaustively, last resort being simplification and
downscaling of the problem, or to analyse the behaviour of the program and
try to understand what is the reason for its poor performance. The current CLP
systems unfortunately offer little support for this task and there are no widely
available tools which would support tracing and (performance) debugging CLP
programs.

Our goal is to contribute to the methodology of performance debugging of
constraint programs and to develop an environment to support it. Although
much of what we present here applies to the whole CP area, our primary target
is performance debugging of CLP(FD) programs and more specifically,
programs based on labeling finite domain variables and backtracking search.

In this paper, we first analyse the features of debugging constraint programs as
opposed to algorithmic ones and draw the conclusions about the features of a
debugging system. Next we present the functionality of the Grace system and
show some examples of its use. We also discuss implementation issues and
show how an advanced debugging environment can be implemented on top ofECLiPSe, using its control features. Finally we discuss the possible extensions
of the environment both in the CLP(FD) area and in other areas of constraint
programming.

2 Debugging Constraint Programs

To support debugging of constraint programs, we first have to analyse the main
features of CP as opposed to more conventional, algorithmic programs.

2.1 Features of Constraint Programs

The constraint programming paradigm is inherently different from imperative,
functional or Prolog-type logic programming, since it is non-algorithmic. Even
in Prolog (without delays), and more so in conventional languages, the

1



program execution follows a fixed scheme which implements a particular
algorithm, no matter if the program is declarative or not. CP however, only
states constraints and then looks for a solution that satisfies them. The search is
rather data-driven than program-driven.

A consequence of these facts is that debugging CP programs is inherently
different from debugging algorithmic programs: Debugging algorithmic programs is itself also algorithmic, it can follow a

particular debugging algorithm, which guarantees success. Even the
debugging itself can be automated. It is local, each program piece, e.g. a function, can be considered and
debugged separately and without the execution history. It is possible to decide at any execution point if the current state is
correct or not. Source-level (e.g. for C) or invocation-based (Byrd box for Prolog)
debuggers are well suitable for this kind of debugging.

On the other hand: CP debugging, and especially performance CP debugging is not
algorithmic and it can hardly be automated. It is mostly global, it is necessary to consider the whole program and also
the execution history. Especially for performance debugging it is not possible to decide if a
particular execution state is correct or not. The execution state is a point
in the search space and we cannot decide if the solution will be quickly
found or not. Similarly to the search for a solution which is performed by the program,
the debugging itself is also a search problem. The debugger to support it
must therefore be highly interactive and open. Debugging paradigms for
algorithmic languages are not suitable for constraint debugging, it makes
little sense to extend source-level or Byrd-box debuggers for constraints.

2.2 Approaches to Debugging

We can divide the debugging approaches into experimental and analytic ones.
A debugging environment must support both of them in a satisfactory way.

2



2.2.1 Experimental Debugging

Experimental debugging does not necessarily assume a deep knowledge of the
methods used. All that is needed is a large repository of available methods with
which the user can experiment. This approach is quite appropriate for
non-expert users or for the first estimation of a given problem and it is of
course applicable only to performance debugging.

When we consider the particular area of CLP(FD), we can divide a program
into three main parts:

1. The model, which, among others, specifies all variables, their domains
and their interpretation. It also specifies the conceptual constraints
imposed on the variables.

2. The actual constraints which are used to express the properties of the
solution in the particular model and system.

3. The labeling strategy which is used to search for the solution(s). This
includes both selection of variables to label and value ordering in the
selected variable domains.

Experiments on each of these items should be well supported by the
debugging environment:

1. While a debugging environment cannot directly support the user in
modelling the problem and switching from one model to another, it
should at least be able to compare different models, especially to
compare two programs running concurrently with different models.

2. The debugging environment must be able to show the effect of using
particular constraints, the amount of propagation achieved, and it also
has to allow dynamic adding of new or redundant constraints.

3. The environment should have a large repository of available strategies
and heuristics which are easy to use and to combine. Interestingly,
CLP(FD) can be used as a unifying framework for various other CP
approaches based on finite domains, e.g. local repair or statistical
methods and an ideal debugging environment would allow to experiment
with various such methods to look for the most suitable combination for
the particular application.

2.2.2 Analytic Debugging

Analytic debugging assumes a more thorough knowledge of the mechanisms
that are involved in the constrained search and it is the only way to perform

3



correctness debugging. An appropriate debugging environment allows to filter
and structure the tracing data at various conceptual levels, so that the user is
able to infer new information and use it to improve the performance. Some
typical analytic debugging approaches are: Looking for redundant constraints. In most CLP(FD) systems each

constraint is considered separately, the only constraint which is used in
combination with others is the variable domain itself. It may often
happen that some information is not encoded in the constraints because
it seems obvious. For instance, fromX + Y = 10X + Y + Z = 12
a CLP(FD) system is not able to deduce that Z = 2. A debugging
environment must make it as easy as possible to spot similar cases. Developing new labeling strategies. When the search path is being
displayed in a suitable way, the user may be able to see the reasons for
not finding the solution quickly or for not finding a good solution first. Finding the appropriate propagation amount. A modification of
one variable’s domain triggers some of the constraints that are attached to
this variable. Finding exactly the right amount of constraints to trigger is
an important part of performance debugging. If some of the woken
constraints make no propagation or only an insignificant one, they only
slow down the execution. On the other hand, if the domain update does
not trigger enough constraints, the pruning will be insufficient and the
search space remains too large. Finding the reason for a failure. This is important both for
correctness and performance debugging. For correctness debugging it
helps to find the reason for not finding the correct solution. For
performance debugging it helps to find out how some branches in the
search space are pruned away. As a result, the user may realise that the
reason for pruning is different than expected and that e.g. some
constraints which were expected to cause the pruning were not triggered. Finding the reason for a wrong solution. If the program is about to
consider a wrong solution, some of the constraints are wrong or missing.
A debugger must assist in fixing this problem.

2.3 Support from the Debugging Environment

The support expected from a CLP(FD) debugging environment can be seen
from several different angles.

4



2.3.1 Display

The displayed data is obviously very important for analytic debugging. The
debugger must display all necessary information, but it must also apply displayeconomy: the information to display is potentially very complex and large and
thus the display must contain only the very necessary data so that more
information can fit on the screen. In contrast, see the output of the ECLiPSe
debugger in a CLP(FD) program:

S (61396) 20 RESUME qeq(0, 2575, T g71094f[0..2575]g) (dbg)?- creep
S (61396) 20 EXIT qeq(0, 2575, 0) (dbg)?- creep
(65874) 20 RESUME 3000 - C g517524f[19..74]g - C g518588f[0..560]g -
C g519550f[20..36]g-0 - C g523442f[22..35]g - C g524476f[15..33]g -
C g525540f[9..39]g - C g526604f[0..510]g - C g527566f[0..650]g -
C g528528f[15..70]g - C g529592f[6..45]g - C g530634f[8..49]g - C g531698f[10..61]g
- C g532762f[0..680]g - : : :#>=0 (dbg)?- creep
(65878) 20 DELAY 3000 - C g517524f[19..74]g - C g518588f[0..560]g -
C g519550f[20..36]g - C g523442f[22..35]g - C g524476f[15..33]g -
C g525540f[9..39]g - C g526604f[0..510]g - C g527566f[0..650]g -
C g528528f[15..70]g - C g529592f[6..45]g - C g530634f[8..49]g - C g531698f[10..61]g
- C g532762f[0..680]g - : : :#>=0
(65874) 20 EXIT 3000 - C g517524f[19..74]g - C g518588f[0..560]g -
C g519550f[20..36]g - C g523442f[22..35]g - C g524476f[15..33]g -
C g525540f[9..39]g - C g526604f[0..510]g - C g527566f[0..650]g -
C g528528f[15..70]g - C g529592f[6..45]g - C g530634f[8..49]g - C g531698f[10..61]g
- C g532762f[0..680]g - : : :#>=0 (dbg)?- creep
(65877) 19 EXIT indomain(0) (dbg)?- creep
(65879) 19 CALL instantiate([D g5234f[0..10]g, D g1544f[0..10]g, D g7284f[0..10]g,
D g4824f[0..10]g, D g7694f[0..10]g, D g8514f[0..10]g, D g8924f[0..10]g,
D g9334f[0..10]g, D g9744f[0, 1]g, D g10154f[0, 1]g]) (dbg) ?-

Due to the size of problems we are aiming at, it might not be feasible to
display the whole constraint network like e.g. [11]; even displaying parts of the
network may not necessarily help the user. On the other hand, displaying all of
the problem variables is necessary. In case that some data is not or can not be
displayed by default, it must be possible to display it on demand.

The debugging environment needs both fixed and user-definable displays. The
fixed ones give a structure to the display and to the debugging process itself,
the user-definable displays are added to support a particular user and a
particular application.

The analytic debugging needs data from different conceptual levels so that
more global or more detailed information about the application becomes
visible: Solution. Displays only the solution, its cost, search time, number of

backtracks etc. This is also suitable for methods which are not based on
backtracking search or which are available only as a black box.

5



 Search path. Displays the path in the search space that leads to the
solution. For CLP(FD) this is the sequence of labelled variables and their
values. Selected data. At this level the value of selected variables, expressions
and terms is displayed on each step. The expressions must be
user-definable, e.g. the current cost estimate, the current value of some
particular constraints, number of constraints which are already satisfied
and those that are not etc. All data. Displays the current value of all involved variables. Domain updates. The sequence of domain updates which are caused
by the last labeling step is displayed, either step by step or together as a
sequence of events. Constraint propagation. At this most detailed level the sequence of
constraints propagation becomes visible. The environment shows which
constraints were triggered and re-evaluated by the most recent labeling
step and what was the result of their re-evaluation.

2.3.2 Interaction

The debugging environment must be highly flexible and interactive. Most of
the user actions should be mouse-oriented, choices supported by buttons and
menus. Usual debugger commands like single-stepping through labeling steps,
skipping, jumping, retrying, setting breakpoints etc. would be the main vehicle
for analytic debugging, choices and comparisons of various strategies would be
used for the experimental one. Changing to other conceptual display levels
and dynamically modifying the displayed information has to be made easy.

2.3.3 Integration

Ideally, the debugging environment would be another process which would
control the user application, run and stop it and extract data from it. This is
however possible only with a very low-level programming approach and it is
completely machine-dependent. On the other hand, the debugging
environment which we expect to be most useful has different properties: It is open, the user can extend it, define new primitives and use new

debugging approaches. It is easily maintainable and programmed in a high-level language,
possibly in CLP(FD) itself.

6



 It consists of two basic layers: the environment itself is written on top of
basic building blocks which allow to access, display and modify data and
which are available to the user for extensions. Since performance debugging usually handles long programs, the
execution overhead caused by debugging must be minimal or, because
displays slow down the execution in any case, at least it should depend
only on the amount of data displayed.

Particularly, it must be possible to place breakpoints on variable changes.
This is feasible only when the debugger is tightly connected with the
object program. Using another process (like in dbx) makes efficient
variable breakpoints very difficult.

3 Grace Features

The above considerations have led us to the implementation of Grace, a
graphical constraint tracing environment on top of the ECLiPSe system [5].
The special control primitives available in ECLiPSe [9] make it possible to
implement the whole environment in ECLiPSe itself and still to meet most of
the requirements stated above. The graphical part was developed using theProTcl [6] interface to the Tcl/Tk toolkit [10]:

3.1 FD Variable Display

The FD variables in Grace are displayed as active fixed-size buttons with the
variable domain as button text:

To be able to spot different displays of the same variable on the screen, each
variable is a hyperlink: when the cursor enters the variable display, the button
is highlighted and, if there are other displays of the same variable on the

7



screen, they are highlighted as well:

When pressing the first mouse button in the variable display, a menu pops up
with various options depending on the window type in which the variable is
located:

The middle mouse button causes a separate display of the whole domain and
its size, which is useful if the domain is too long to fit into the button:

Each variable has an attached print daemon which updates the display if the
domain of the variable changes and undoes this change on backtracking:% display_handler(Var, OldDomain, VarID)display_handler(Var, _, ID) :-var_domain(Var, D),<Display in Tk the domain D at the location ID>(var(Var) ->% wake when domain of Var changesdelay(display_handler(Var, D, ID)); true).display_handler(_, Old, ID) :-<Display in Tk the domain Old at the location ID>

8



fail.
In this way, the display can be incrementally updated on both forward and
backward execution. This is a well-known CLP(FD) trick to keep the variable
display valid, available in languages which can attach a daemon to a FD
variable which is triggered on variable domain updates.

3.2 Variable Matrices

The FD variables represent the actual state of the computation and it is
therefore important to display them all. Grace displays variables in
two-dimensional variable matrices in a spreadsheet format, because this allows
to display a large number of variables in a dense and structured way:

The user can put all variables into one matrix or split them into several
matrices. Each matrix can be displayed or hidden independently and when it is
resized, the appropriate font is selected.

3.3 Variable Identification

When the user wants to query or modify data attached to a variable, two cases
may occur: If the data is directly attached to one displayed variable, then the

operation can be performed with the mouse. This concerns e.g.
modifying the domain of a variable, selecting for the next labeling step,
listing constraints attached to a variable etc.

9



 If the data concerns more than one variable or if it involves typing in
additional information, a textual identification of the variable(s) is used 1.

Variables cannot be usually identified by their name because in most CLP(FD)
applications they are created dynamically with the same name, e.g. in a
recursive predicate. Grace therefore uses a different naming scheme, which is
shared by the control and the graphics part. Each variable is identified by the
name of its matrix and its position, e.g. the highlighted variable in the picture
above is a string "d.1.4". Then, for example, the expression 5 �D1;4 + 3 � P1;4
would be typed in as5 * "d.1.4" + 3 * "p.1.4"

3.4 Search Path DisplayGrace uses the variable stack to display the current position in the search
space and the previous and remaining choices:

Each row in the variable stack represents one variable that has been already
labelled. The bar to the left represents the variable domain, to the right there is
the depth in the search space and the variable position (’312’ etc. happen to be
the matrix names). The colours in the domain bar have the following meaning
(increasing lightness in black and white display):red - current variable value,blue - values in the domain to be still tried,gray - values that have been already tried (and failed),1A more mouse-oriented approach would be to type in an expression without variables and

when it is displayed, to use a drag and drop operation to insert the appropriate variables. This

requires more user actions than typing in, moreover a fully programmable environment needs a

textual representation of variables in any case, so that displays can be pre-programmed.

10



white - values already removed from the domain before the variable was
selected.

Each row has a popup menu which allows to retry the labeling at this depth,
skip to the next value of this variable and fail to the next value of the variable
(e.g. to speed up the execution if there is no solution for this label).

3.5 Terms and Expressions DisplayGrace displays the value of selected terms and expressions in a separate
window. Terms are arbitrary Prolog terms which are displayed in their usual
form except that the variables in them are displayed as hyperlinks and their
display is updated when the variable domain changes. This form can be used
e.g. to display the current state of a specified constraint2:
Constraints attached to a particular variable can be listed from its menu and
with a mouse click they are moved to the expression display.Expressions, on the other hand, are being re-evaluated each time one of their
variables becomes instantiated and the display is updated accordingly. For
example, the following picture shows a sequence of updates to a cost
expression:

3.6 Execution and Display ControlGrace is being controlled from the Control Panel window. It contains a
number of buttons to control the execution, checkbuttons that control display2Note that it does not matter how the constraint is actually implemented. Even if it is compiled

into a sequence of machine or abstract instructions, or decomposed into a number of primitive

constraints, we only need its structure.

11



of variable matrices, and several status items. There are two basic modes for
the execution, step and run. In the step mode, the execution stops before every
labeling step and the whole display is updated. In the run mode, the execution
stops only on breakpoints or when a solution is found or when the user types
Ctrl-C. The display updates in the run mode are controlled by Display options
in the control panel:none - the display is not updated at all, the program is running with maximal

speed. With this option, the overhead of the debugging environment is
minimal (less than 3 %) but whenever the execution stops, the complete
execution state can be displayed. This feature alone is extremely helpful
for tracing CLP programs.variable stack - only the display of the variable stack is updated every time a
new variable is labeled or when the program backtracks. This is relatively
fast and it gives the user an animated view of the execution.expressions - in addition to the variable stack, the expression display is
updated as well. The user has thus the possibility to see the animation of
certain variables or expressions which is still faster than to display all
variables.all - on each labeling step, the whole display is updated, including all visible
variable matrices. This mode is provided mainly for demonstrations.

The execution can also be traced in fine-grained steps: Stepping through domain updates. The execution stops each time a
variable is updated, this variable is highlighted and the old domain is
printed in the status display. When the propagation fails, the system
warns the user and then it waits for the next user command. In this way,
the variable configuration directly before failure can be inspected. Stepping through woken constraints. All constraints which are triggered
and re-evaluated up to the next labeling step are displayed in a separate
window in a way which is similar to Prolog debuggers, with the CALL and
EXIT or FAIL ports. This display is user-defined, the system may stop at
every constraint invocation and update the display, or stop on failure, etc.

At any time, all matrices can also be printed on the printer for a more thorough
or off-line analysis of their state.

3.7 Running Two Programs Concurrently

With Grace it is possible to compare two different strategies applied to the
same problem. Both applications are started with Grace and one of them, the

12



slave, is then attached to the other one, the master, by clicking on the Attach
button. From now on, most of the control commands executed in the master
will be communicated to the slave so that both processes are synchronised.
Moreover, the variable selected for labeling in the master will also be selected
in the slave. At each labeling step it is then possible to see the comparison of
the current values in variable matrices: identical domains are unchanged,
smaller domains are displayed in lighter colour whereas larger domains use
darker colour. Variables whose domains are not comparable are displayed in a
different colour. This mechanism gives the user rudimentary facilities for
comparison of two different approaches to solve the problem.

3.8 Interface

The interface between Grace and the user CLP(FD) program consists of
several predicate calls that have to be inserted into the user program at
appropriate places: grace start(Title, MatrixList) - start Grace with a given title and a

list of variable matrices. grace label(Var, Rest, NewVar, NewRest) is inserted into the
labeling predicate just before labeling the variable Var. Since the
selected variable can be modified by the user, this predicate returns the
newly selected variable and the rest as separate arguments. The labeling
predicate then looks for instance as follows:labeling([]).labeling(Vars) :-deleteff(Var, Vars, Rest),grace_label(Var, Rest, NewVar, NewRest),indomain(NewVar),labeling(NewRest). grace display term(Term, Name) displays the given term in the
Expression display. grace solution is called when a solution has been found. It stops and
displays the execution state.

4 Implementation Issues

The implementation of an efficient and flexible debugging environment is a
challenging task. The more functionality is required from the system, the more
of complex and low-level coding is necessary to implement it. Low-level

13



coding, however, is not compatible with flexibility, maintainability and
extensibility. High-level coding, on the other hand, usually causes an
unacceptable execution overhead. For example, the otherwise excellent
OPIUM system [2] gives the user a wide spectrum of ways to debug Prolog
programs, however it can hardly be used for real-time debugging, due to the
time and space overhead.

The ECLiPSe system [4, 3] based on Sepia [8] is a logic programming system
which has been designed to support a wide range of extensions. To implement
the extensions in an efficient way, the system provides high-level interfaces to
low-level kernel primitives so that the whole extension code can be written inECLiPSe itself. ECLiPSe also provides several CLP libraries for various
domains.Grace has been fully implemented in ECLiPSe and in Tcl/Tk and its
implementation has benefited to a large extent from the special control and
extension primitives available in ECLiPSe. In this section, we will list the most
interesting features of the implementation and the ECLiPSe primitives which
were exploited. We will at the same time refrain from describing the complex
issues of display and events handling which were tedious to implement but are
not of particular interest for the CP community.

4.1 Logical vs. Extralogical Primitives

Although a CLP program is declarative, a CLP debugger cannot be completely
declarative, otherwise all user actions would be undone on backtracking and
some features would be difficult or impossible to implement. On the other
hand, some user actions, like setting a breakpoint on a variable update, can be
undone on backtracking without much harm. We have therefore decided to
implement Grace as declaratively as possible, without defining special
primitives to support imperative actions of the debugger.

4.2 Global DataECLiPSe provides two kinds of global data: global variables which are in fact
destructively updatable arrays and which can be used to store ground terms,
and global references which can also be updated but their value is restored on
backtracking and they can contain terms with variables. All permanent
debugger data have been implemented with the former type, for instance the
current execution mode, current execution priority and breakpoints not related
to variables (e.g. search depth or goal number).

The backtrackable global references have been used to store all variable
matrices. In this way, the matrices are accessible everywhere in the program
without having to pass them as arguments to all predicates. The current search

14



depth is also implemented using this mechanism, because it has to be restored
on backtracking.

4.3 Variable Attributes

The attributed variables available in ECLiPSe [5] make it possible to associate
transparently attributes to variables. Grace uses this mechanism for several
purposes: to associate the variable identification (i.e. matrix name and position)

with the variable, to remember the initial variable domain which is necessary for the display
in the variable stack implicitly, to associate daemons with variables; this was done using the
coroutining primitives which are themselves built on top of the attribute
scheme. The system uses various daemons: to update the display of
variables, to recompute and redisplay expressions, to set a breakpoint on
a variable and to step through domain updates.

4.4 Execution Priority

A major issue in implementing Grace was the question of minimal execution
overhead. With our scheme of associating print daemons with each variable it
is not straightforward to suppress their execution in case we want to run the
program with maximum possible speed. Fortunately, the new waking scheme
in ECLiPSe which is based on suspension priorities [9] could be used for this
purpose. Every suspended goal in ECLiPSe (suspension) has an associated
priority. When the goal is woken, e.g. by updating the domain of a variable, it
is not immediately executed, but it is passed to the waking scheduler instead.
The scheduler takes care that all woken suspensions are executed in their
priority order and that a suspension with lower priority does not interrupt the
execution of predicates with higher priority.

This scheme could be directly exploited in Grace: the various daemons have
different priorities and the program is also assigned a given priority depending
on the amount of display updates which are required. When no updates and
maximum speed is required, the program priority is set to a value which is
higher than that of any display daemon. Whenever a domain variable is
updated, its associated print daemon is woken and passed to the waking
scheduler, but since its priority is not high enough, it is never actually executed,
the display is not updated and also no new daemon is placed on the variable
from its body. The overhead is therefore reduced to the first waking of the

15



daemon of each variable, which is a simple operation. By setting the program
priority to different values the amount of display updates can be controlled.

4.5 Stepping through Domain Updates

Showing the successive changes of variable domains is also implemented using
the waking priority scheme. When this execution mode is first entered, the
system places another display daemon with a very high priority on each
variable. When a domain variable is updated, this daemon will be the first
attached suspension to be woken (before all the constraints). It will update the
display and then wait for user action, i.e. clicking on a button. Then it places a
new daemon on the variable and exits. In this way, all domain updates can be
successively traced no matter how many constraints are invoked inbetween.

4.6 Breakpoints on Variables

The ECLiPSe finite domain constraint solver [5] allows to set up suspensions
which are woken when a variable is constrained in various ways: the minimum or maximum of its domain changes, any element is removed from the domain variable is instantiated variable is bound to another constrained variable

This mechanism is used to set breakpoints on these events for a particular
variable: when the suspension is woken (its priority is higher than that of therun mode), it changes the mode to step and prints information about the break
into the status line. Note that this approach imposes no execution overhead.

4.7 Interrupting the Execution

When the program executes in the run mode, no X events are served (because
of efficiency) and thus it cannot be stopped by clicking on a button. Instead,
the handler for the keyboard interrupt signal is modified to set the step mode
so that the execution stops on the next labeling step.

4.8 Stepping through Woken Constraints

Constraints are implemented in ECLiPSe as suspensions which wait for a
modification of one of their variables. When the variable is modified, the

16



suspension is woken and the constraint is thus re-evaluated. As we said before,
the waking does not happen directly, but through the waking scheduler. When
stepping through woken constraints is required, Grace redefines the built-in
waking scheduler with a predicate which is equivalent, but enhanced with
printing the debugging information before and after calling the woken
suspension. When this stepping is no longer required, the built-in waking
scheduler is restored again.

The waking is thus temporarily enhanced and slowed down, which is exactly
what is needed. Moreover, the user can define her own way to trace the
woken constraints.

4.9 Listing Constraints Attached to a Variable

The constraints mechanism in ECLiPSe is fully accessible to the user and it is
thus possible to obtain the list of constraints attached to a particular domain
variable using available primitives.

4.10 Restoring a Previous State

For the retry command it is necessary to restore a previous execution state and
restart it. Grace creates an additional choice point on each labeling step,
which is used to count the number of backtracks. This choice point can also be
exploited to restore a previous state, if the execution fails up to this point. This
failure, however, is not always easy to enforce: Grace can of course force the
current labeling step to fail and to fail each time it obtains control until the
target depth is reached, however the user program obtains control after each
labeling step and after failure it retries another value in the domain of the
labeled variable (see the labeling/1 predicate on p. 13). This means that
when executed declaratively, the program would perform a potentially large
number of backtracks before it fails to the right choice point. Experiments have
shown that this overhead is not acceptable and we thus had to use an impure
primitive, nonlocal cut to handle this case. ECLiPSe offers two primitives,get cut/1 and cut to/1 which implement a nonlocal cut. get cut/1 marks
the current execution state and returns this mark, whereas cut to/1 removes
all choice points up to a specified mark. This mechanism is used to remove all
user choice points in each labeling step so that retrying is an operation which
is only proportional to the depth in the search space, but not to the size of
involved domains.

17



4.11 Comparing Two Grace Processes

The Tk toolkit has a send command which allows one Tk application to
communicate with another Tk process. This mechanism has been used to
attach one Grace process to another and to synchronise their labeling.

4.12 Handling Window Events

Most of the GUI events are handled in ECLiPSe. When the execution stops,
the system blocks and waits for an X event. When it arrives, it is served by theECLiPSe code and, depending on its type, the execution either continues,
possibly in new mode, or it waits for another event.

The events which have no influence on the CLP data or execution (e.g.
highlighting a variable when the cursor enters it) are handled by the Tk toolkit
itself, so that the Prolog and Tcl code is cleanly separated.

5 Conclusions and Future Work

We have presented some basic principles for debugging CLP programs and
from them we have concluded the properties of a system to support them. The
design and implementation of Grace was surprisingly easy, taken into account
the expected functionality and complexity. On preliminary tests [7] it showed
to be quite useful and helpful for CLP tracing and debugging. As soon as the
system is stable and foolproof enough, it will be released for public use.

There are many possible ways to enhance the current version of Grace,
ranging from cosmetic ones to significant extensions. The most interesting ones
are: Support for conditional breakpoints and user-definable breakpoints. Save/restore facility. Display the propagation steps in a graph format, similar to the Causality

Graphs of [1]. It might also be interesting to explore the possibility of
displaying selected parts of the constraint network as a graph. Since the
actual constraints used to implement the application may be at a too low
conceptual level, we see a need for more global and generalised
representation of the constraint network which would give the user a
good overview at the required conceptual level. Create a sophisticated repository of evaluation and labeling strategies and
integrate them seamlessly into the Grace tracing paradigm.

18



 Support for parallel execution. The ECLiPSe system is able to perform
OR-parallel search on shared-memory multiprocessors and in its next
version it will be able to perform parallel search also on a network of
workstations. The search paradigm in this context is slightly different
from the sequential one - variables no longer have one value, because
different processes explore different search paths in parallel and give the
variables different values. On the other hand, the variable stack could be
enhanced to visualise the search in all processes concurrently. With support for parallel execution it becomes very interesting to run
several different strategies in parallel, possibly with some limited
communication among the parallel processes. Rapid prototyping or
experimental debugging in this context is an important area to explore. Inclusion of other methods than labeling based on backtracking search.
Ideally, the debugging environment would also provide a number of
other methods, e.g. local repair or statistical methods and it would allow
to combine them into new and possibly very powerful strategies.

19



Bibliography

[1] Michael Dahmen. A Debugger for Constraints in Prolog. Technical Report
ECRC-91-11, ECRC, 1991.

[2] M. Ducassé. Opium+, a meta-debugger for Prolog. In Proceedings of theEuropean Conference on Arti�cial Intelligence, Munich, August 1988.

[3] ECLiPSe.
URL http://www.ecrc.de/eclipse/eclipse.html, 1995.

[4] ECLiPSe 3.5 User Manual, 1995.
URL http://www.ecrc.de/eclipse/html/umsroot/umsroot.html.

[5] ECLiPSe 3.5 Extensions User Manual, 1995.
URL http://www.ecrc.de/eclipse/html/extroot/extroot.html.

[6] Micha Meier. ProTcl, the Prolog interface to the Tcl/Tk toolkit.
URL http://www.ecrc.de/eclipse/html/protcl.html.

[7] Micha Meier. Visualizing and solving finite algebra problems. In Workshopon Finite Algebras, ECRC, Munich, March 1994.

[8] Micha Meier, Abderrahmane Aggoun, David Chan, Pierre Dufresne,
Reinhard Enders, Dominique Henry de Villeneuve, Alexander Herold,
Philip Kay, Bruno Perez, Emmanuel van Rossum, and Joachim Schimpf.
SEPIA - an extendible Prolog system. In Proceedings of the 11th WorldComputer Congress IFIP'89, pages 1127–1132, San Francisco, August 1989.

[9] Micha Meier and Joachim Schimpf. Control in ECLiPSe. Technical Report
ECRC-95-07, ECRC, February 1995.
URL http://www.ecrc.de/eclipse/html/reports.html.

[10] John K. Ousterhout. Tcl and the Tk Toolkit. Addison-Wesley, 1994.

[11] Michael Sanella. Analyzing and debugging hierarchies of multi-way local
propagation constraints. In Proceedings of the 1994 Workshop onPrinciples and Practice of Constraint Programming, 1994.

20


