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(e.g. X>Y,Y>X <=> false). Propagation adds new constraints which are logi-cally redundant but may cause further simpli�cation (e.g. X>Y,Y>Z ==> X>Z).Repeatedly applying CHRs incrementally simpli�es and �nally solves constraints(e.g. A>B,B>C,C>A leads to false). A third, hybrid kind of rules, called simp-agation CHRs is usefull for expressing subsumption (e.g. X>YnX>=Y <=> true)and relative simpli�cation (e.g. X=T1nX=T2 <=> T1=T2).The usual abstract formalism to describe a constraint system, i.e. inferencerules, rewrite rules, sequents, formulas expressing axioms and theorems, can bewritten as CHRs in a straightforward way. Starting from the executable speci�-cation obtained from the formalism, the rules can be re�ned and adapted to thespeci�cs of the application.In the next section, we give the syntax and semantics of constraint han-dling rules. Readers familiar with CHRs can skip this section. Then we discussbasic principles of for their sequential or concurrent implementations in (concur-rent) (constraint) logic programming languages (including Prolog) [Sha89, VH91,Sar93, JaMa94]. The compilation from CHRs into clauses of the logic host lan-guage does not e�ect any atoms other than the user-de�ned constraints. Thebasic translation proceeds rule by rule and can thus be used for incrementalcompilation.We �rst show that all three types of CHRs can be transformed into multi-headed and further into single-headed simpli�cation rules, i.e. in the guardedrules of a typical logic concurrent committed-choice language - provided it canaccess delayed goals and has deep guards. Guards are deep if they allow foruser-de�ned predicates. Then we implement such guarded rules in a logic pro-gramming language without guards and committed-choice constructs, i.e. in aCLP language. We concentrate on languages with a delay-mechanism (coroutin-ing), since the constraint goals will be modeled as goals that can delay.The implementation scheme given in this technical report is somewhat biasedtowards the most advanced implementation of CHRs utilizing advanced featuresof ECLiPSe. In the appendix a comprehensive generic example of the result ofcompilation in the actual CHRs library of ECLiPSe [B*95] is given and explained.It di�ers from the translation scheme described by a number of optimizations,mainly to exploit head matching and produce more deterministic code. We alsoshow the result of applying the transformations proposed in this paper to a simpleexample in appendix 3. Last but not least, appendix 2 lists the abstracted codeof the �rst interpreter for CHRs.2 Syntax and SemanticsIn this section we give syntax and semantics for constraint handling rules thatextend a constraint logic programming language (including Prolog) following[Fru95]. We include syntax and semantics of built-in labeling for the �rst time. It2



should be stressed that the host language for CHRs need not be a CLP language.Indeed, work has been done at DFKI with LISP as the host language [Her93].2.1 SyntaxWe assume some familiarity with constraint logic programming (CLP). Thereare two classes of distinguished predicates, built-in constraints and user-de�nedconstraints (those written in CHRs). In most CLP languages there is a binarybuilt-in constraint for syntactic equality over terms, =/2, performing uni�cation.The built-in constraint true, which is always satis�ed, can be seen as an ab-breviation for 1=1. false (short for 1=2) is the built-in constraint representinginconsistency.A CLP+CHR program is a �nite set of clauses from the CLP language andfrom the language of CHRs. A CLP clause is of the formH:- B1; : : : Bn: (n � 0)where the head H is an atom but not a built-in constraint, the body B1; : : :Bnis a conjunction of literals called goals. A query is a CLP clause without head.There are two basic kinds of CHRs. A simpli�cation CHR is of the formH1; : : :Hi <=> G1; : : :Gj j B1; : : :Bk.where (i > 0; j � 0; k � 0) and the multi-head H1; : : :Hi is a conjunction ofuser-de�ned constraints and the guard G1; : : :Gj is a conjunction of literals.A propagation CHR is of the formH1; : : :Hi ==> G1; : : :Gj j B1; : : :Bk.A third, hybrid kind is called simpagation CHR and is of the formH1; : : :Hi n : : :Hl <=> G1; : : :Gj j B1; : : :Bk. (0 < i < l)where 'n' separates the head atoms into two non-empty groups.When embedded in logic languages with backtracking, CHRs can provide built-in labeling. A labeling declaration for a user-de�ned constraint HL is of the formlabel with HL if G1; : : :Gj .The labeling declaration restricts the use of CLP clauses of user-de�ned con-straints for built-in labeling. There can be several labeling declarations for aconstraint. 3



2.2 Declarative SemanticsDeclaratively, CLP programs are interpreted as formulas in �rst order logic. Ex-tending a CLP language with CHRs preserves its declarative semantics1.A CLP+CHR program P is seen as a conjunction of universally quanti�edclauses. A CLP clause is an implicationH  B1 ^ : : :Bn.Since we assume that a predicate is de�ned completely, we can strengthen theabove using Clark's completion. Let (H1:- B11; : : : Bn1); : : : ; (Hs :- B1s; : : : Bns);(1 � s) be all the clauses with the same predicate p in the head. Then the logicalreading of the predicate p is:H $ (H = H1 ^B11 ^ : : :Bn1) _ : : : _ (H = Hs ^B1s ^ : : :Bns):H is of the form p(X1; : : : ;Xr) where X1; : : : ;Xr are new, di�erent variables.A simpli�cation CHR is a logical equivalence provided the guard is satis�ed(G1 ^ : : : Gj)! (H1 ^ : : :Hi $ B1 ^ : : :Bk).A propagation CHR is an implication provided the guard is satis�ed(G1 ^ : : : Gj)! (H1 ^ : : :Hi ! B1 ^ : : :Bk).A simpagation CHR is a logical equivalence provided the guard is satis�ed(G1 ^ : : : Gj)! (H1 ^ : : :Hi n : : :Hl $ H1 ^ : : :Hi ^B1 ^ : : :Bk).A labeling declaration is a precondition on the CLP clauses de�ning a constraint(HL = H ^ G1 ^ : : : Gj ^ labeling)! (H $ (B1 _ : : :Bs)).where (H $ B1 _ : : : Bs) is Clark's completion of the constraint predicate. Thelabeling phase is entered by calling the built-in predicate labeling/0 (that iswhy it appears in the premise of the implication).2.3 Operational SemanticsThe operational semantics of CLP+CHR program can be given by a transitionsystem. A computation state is a tuple< Gs;CU ; CB >,1Even though guarded rules in general cannot be given a �rst order declarative semantics,CHRs admit one when we restrict their use to handling user-de�ned constraints, see also [Mah87,Smo91]. 4



where Gs is a set of goals, CU and CB are constraint stores for user-de�ned andbuilt-in constraints respectively. Let a set of atoms represent a conjunction ofatoms. A constraint store is a set of constraints.The initial state consists of a query Gs and empty constraint stores,< Gs; fg; fg >.A �nal state is either failed (due to an inconsistent built-in constraint store rep-resented by the unsatis�able constraint false),< Gs;CU ; ffalseg >,or successful (no goals left to solve),< fg; CU ; CB >.The union of the constraint stores in a successful �nal state is called conditional(quali�ed) answer for the query Gs, written answer(Gs), meaning that the queryis true under the condition that the conjunction of constraints is true.The following computation steps are possible to get from one computationstate to the next.Solve< fCg [Gs;CU ; CB > 7�! < Gs;CU ; C 0B >if (C ^ CB)$ C 0BThe built-in constraint solver updates the constraint store CB if a new constraintC was found in Gs. To update the constraint store means to produce a newconstraint store C 0B that is logically equivalent to the conjunction of the newconstraint and the old constraint store.We will write H =set H 0 to denote equality between the sets H and H 0, i.e.H = fA1; : : : ; Ang and there is a permutation of H 0, perm(H 0) = fB1; : : : ; Bng,such that Ai = Bi for all 1 � i � n.Introduce< fHg [Gs;CU ; CB > 7�! < Gs; fHg [ CU ; CB >if H is a user-de�ned constraintSimplify< Gs;H 0 [ CU ; CB > 7�! < Gs [B;CU ; CB >if (H <=> G j B) 2 P and CB ! (H =set H 0) ^ answer(G)Propagate< Gs;H 0 [ CU ; CB > 7�! < Gs [B;H 0 [ CU ; CB >if (H ==> G j B) 2 P and CB ! (H =set H 0) ^ answer(G)Simpagate< Gs;H 0P [H 0S [ CU ; CB > 7�! < Gs [B;H 0P [ CU ; CB >if (HP nHS <=> G j B) 2 P and CB ! ((HP [HS ) =set (H 0P [H 0S))^answer(G) 5



The rules are applied to user-de�ned constraints in CU and Gs whenever theymatch (they are instances of) the head atoms and the guard is satis�ed. A guardG is satis�ed if the result of its local execution, answer(G), is entailed (implied)by the built-in constraint store CB. To introduce a user-de�ned constraint meansto take it from the goal literals Gs and put it into the user-de�ned constraintstore CU . To simplify user-de�ned constraints H 0 means to replace them by B ifH 0 matches the head H of a simpli�cation rule (H <=> G | B) and the guardG is satis�ed. To propagate from user-de�ned constraints H 0 means to add B toGs if H 0 matches the head H of a propagation rule (H ==> G | B) and G issatis�ed. To simpagate from user-de�ned constraints H 0 means to add B to Gsif H 0 matches the head composed of HP and HS of a simpagation rule (HP nHS<=> G | B) and to remove the constraints from H 0 that match HS , providedG is satis�ed.The last two transitions deal with don't know indeterminism in the CLP+CHRlanguage.Unfold< fH 0g [ Gs;CU ; CB > 7�! < Gs [B;CU ; fH = H 0g [ CB >if (H :- B) 2 P and H is not a user-de�ned constraintTo unfold an atomic goal H 0 in Gs means to look for a CLP clause (H: � B) andto replace the H 0 by (H = H 0) and B. As there are usually several clauses fora goal, unfolding is nondeterministic and thus a goal can be solved in di�erentways using di�erent clauses.The clauses for user-de�ned constraints can only be unfolded during built-inlabeling to produce choices. The built-in labeling is invoked by calling the CHRbuilt-in predicate labeling/0 (no arguments).Label<labeling[Gs; fH 0g [ CU ; CB > 7�!<labeling[Gs[B;CU; fH = H 0g [ CB >if (H :- B) 2 P and (label with H 00 if G)2 P andCB ! (H 0 = H 00) ^ answer(G)3 Embedding CHRs in CHRsThe operational semantics are still far from the actual workings of an e�cientimplementation. In this section we show that every type of CHRs can be trans-formed into single-headed simpli�cation rules. We require that the concurrenthost language has deep guards and allows to access delayed goals. For simplicityof presentation, we will transform CHRs with exactly two head atoms. The caseof one head atom is a simple specialization of it, the case of more than two headatoms a simple generalization. Consequently, we have to deal with the followingthree CHRs, one for each kind: 6



% Simplification CHRsHead1,Head2 <=> Guard | Body.% Simpagation CHRHead1\Head2 <=> Guard | Body.% Propagation CHRsHead1,Head2 ==> Guard | Body.An example application of the transformations described in this section canbe found in appendix 3.3.1 EmbeddingsSimpli�cation and propagation rules can embed each other. First, assume thatwe want to implement all kinds of CHRs with propagation rules only. Just replac-ing simpli�cation by propagation rules preserves failure and logical equivalence.However, such a naive translation e�ects e�ciency and termination, since con-straints are no longer removed. The solution is to ignore constraints that shouldhave been removed with the help of a variable KF representing a kill ag thatis added to each user-de�ned constraint. We denote the constraint Head withone extra argument KF added by Head(KF)2. The predicate var/1 checks if itsargument is a free (unbound, uninstantiated) variable, kill/1 just binds the killag variable.% Head1,Head2 <=> Guard | Body.Head1(KF1),Head2(KF2) ==> % Kill flags not set so farvar(KF1),var(KF2),Guard|kill(KF1),kill(KF2), % Bind kill flags to kill head constraintsBody.% Head1\Head2 <=> Guard | Body.Head1(KF1),Head2(KF2) ==>var(KF1),var(KF2),Guard|kill(KF2), % Kill second head constraint onlyBody.% Head1,Head2 ==> Guard | Body.Head1(KF1),Head2(KF2) ==>var(KF1),var(KF2),Guard|Body.2Actually, this is HiLog [CKW89] syntax, where arbitrary Herbrand terms can be functionand predicate symbols. 7



In the converse case, which is the typical one for an implementation in a logiclanguage, we implement every kind of CHR with simpli�cation rules. Logically,a propagation rule (H ! B) is the same as the simpli�cation rule (H $ B ^H). However, just adding the head constraint again in the rule body wouldcause looping, since the same head constraint is recursively called again andagain. To avoid such trivial non-termination it is remembered - in the constraint- that a propagation rule �red. We add a list3 PL to remember applications ofpropagation rules to each user-de�ned constraint. Furthermore, each rule getsa unique identi�er, n. Initially, the constraints are called with an empty listHead([]). Simpli�cation rules stay unchanged.% Head1\Head2 <=> Guard | Body.Head1(PL1),Head2(PL2) <=>Guard|Body,Head1(PL1). % no looping, since Head2 is removed% Head1,Head2 ==> Guard | Body.Head1(PL1),Head2(PL2) <=>not_member(n-Head2-2,PL1), % rule n with second head Head2 applied ?not_member(n-Head1-1,PL2), % rule n with first head Head1 applied ?Guard|Body,Head1([n-Head2-2|PL1]), % rule n with second head Head2 appliedHead2([n-Head1-1|PL2]). % rule n with first head Head1 appliedThe auxiliary predicate not member(E,L) fails if E is an element of the list Land succeeds otherwise.not_member(E,[]) <=> true.not_member(E,[E1|L]) <=> not (E=E1), not_member(E,L).As an optimization the head constraints Head1, Head2 in the propagationlist PL can be replaced by their identi�ers.3.2 Multiple Head AtomsThe di�cult part of a CHRs implementation is multiple head atoms, which con-straint logic programming languages usually do not support. To illustrate theimplementation idea, let us �rst assume that the concurrent host language pro-vides for don't know indeterminism in the form of backtracking that can be usedin guards. The built-in predicate delayed constraint(C) uni�es C with a de-layed constraint goal that matches C. If there are more such goals, it returns3Whereever we use a list, in practice a more sophisticated data structure can be used tominimize the cost of searching for elements. 8



them on backtracking. note that in a concurrent implementation we have tomake sure that constraints are returned even if their guards are currently triedfor satisfaction. The predicate remove/1 removes a delayed constraint. It can beimplemented using the kill ag approach from above, this time really removingkilled constraints with the rule:Head(KF) <=> not var(KF) | true. % remove killed constraintTwo-headed CHRs are replaced by single-headed ones, one for each head atomin a rule.% Head1,Head2 <=> Guard | Body.Head1(PL1) <=>delayed_constraint(Head2(PL2)), % find delayed partner constraintGuard|remove(Head2(PL2)), % remove partner constraintBody.Head2(PL2) <=> % same for second head constraintdelayed_constraint(Head1(PL1)),Guard|remove(Head1(PL1)),Body.% Head1\Head2 <=> Guard | Body.Head1(PL1) <=>delayed_constraint(Head2(PL2)),Guard|remove(Head2(PL2)), % remove second head constraintBody,Head1(PL1). % revive first head constraintHead2(PL2) <=>delayed_constraint(Head1(PL1)),Guard|Body.% Head1,Head2 ==> Guard | Body.Head1(PL1) <=>delayed_constraint(Head2(PL2)),not_member(n-Head2-2,PL1),not_member(n-Head1-1,PL2),Guard|Body,Head1([n-Head2-2|PL1]). % revive first head constraintHead2(PL2) <=>delayed_constraint(Head1(PL1)),9



not_member(n-Head2-2,PL1),not_member(n-Head1-1,PL2),Guard|Body,Head2([n-Head1-1|PL2]). % revive second head constraintNow we do away with the don't know indeterminismof delayed constraint/1.This means we have to program the search for a partner constraint ourselves. Ifthe concurrent host language provides for disjunction, this is trivial. Otherwise,it complicates the translation. The idea is to create a sub-process for each poten-tial partner, to check it for applicability, and to quit all processes once a partnerhas been found by one of the processes. As soon as one process �nd a partner, itsets a shared ag, so that all the other processes can �nish and the main processis noti�ed.The predicate delayed constraints(L) returns a list of all delayed con-straints. For each rule n, an instance of the recursive predicate try each partner/5is introduced. The predicate goes through the list of partner constraints and triesto apply the rule to them. If head matching succeeds and the guard is satis�able,the partner constraint found is returned. The guards from the code above,delayed_constraint(Head2),Guard % including optional not_member/2 checksare changed intodelayed_constraints(Head2List),not Head2List=[], % at least one partner candidatetry_each_partner(n,Head1,Head2List,Head2,FoundFlag),not var(FoundFlag) % wait for FoundFlag to be setwithtry_each_partner(N,Head1,[Head2|Head2L],Partner,Found) <=>try_one_partner(N,Head1,Head2,Partner,Found), % try nexttry_each_partner(N,Head1,Head2L,Partner,Found).try_each_partner(N,Head1,[],Partner,Found) <=> true. % all triedtry_each_partner(N,Head1,[],Partner,Found) <=>not var(Found) | true. % partner already foundtry_one_partner(_N,Head1,Candidate,Partner,Found) <=>not var(Found) | true. % partner already foundtry_one_partner(n,Head1,Head2,Partner,Found) <=> % one for each CHR nvar(Found), % partner not found yetGuard|Found=true, % set FoundFlag to notify othersPartner=Head2. % return partner constraint found10



What is missing from the above implementation is the treatment of the casethat no partner at all has been found. Then the partner search should fail. Forthis reason, we introduce an additional argument to try one partner/5, a agthat is set if the candidate is not a partner.try_one_partner(n,Head1,Candidate,Partner,Found,NotFound) <=>not ( % cannot be partner or already foundCandidate=Head2,var(Found),Guard)|NotFound=true. % set NotFoundFlagtry_one_partner(n,Head1,Head2,Partner,Found,NotFound) <=>... % same as beforeThe predicate try one partner/5 could also be implemented using a simpleconditional construct if available (see later section).In the predicate try each partner/6, a NotFoundFlag variable for each sub-process try one partner/6 is created and kept in a list.try_each_partner(n,Head1,[Head2|Head2L],Partner,Found,NFL) <=>NFL=[NF|NFL1], % collect NotFoundFlags in list NFLtry_one_partner(n,Head1,Head2,Partner,Found,NF),try_each_partner(n,Head1,Head2L,Partner,Found,NFL1).try_each_partner(n,Head1,[],Partner,Found,NFL) <=> NFL=[]. % close listTo the initial guard we add a negated check that the list consists of set ags(i.e. true) only. In an actual implementation, the head constraints passedas arguments can often be replaced by the list of their variables. If available,try one partner/6 can also be implemented using a if-then-else construct.For propagation rules (and the second rule resulting from simpagation rules)the coding can be substantially optimized by taming the recursive calls of the headconstraint. First note that through this recursion a propagation rule eventuallyis correctly applied to all constraints that qualify as a partner, not to just one.We can therefore collect all partners in a revised predicate try each partner/6and execute all the associated bodies after the commit. The collection can beimplemented using a list of �xed length (one element for each candidate) as streamon which the subprocesses either return a matching partner or a noti�cation thatnone has been found.The recursive call of the head constraint also reconsiders all previous rulesagain, whereas one could continue just after the propagation rule that was triedin the previous round. If the rules are tried in the order of their identi�ers, thisbehavior can be achieved by only allowing CHRs with the same or higher identi�erin the recursive, continued execution of the head constraint. Optimizing furtherthis leads away from rule by rule compilation to a global compilation of the whole11



rule set. See the ECLiPSeimplementation in appendix 1 for the �nal outcomeand appendix 3 for an example following the transformations proposed here.Regarding program size, the translation scheme only incurres an overheadfor multi-headed CHRs. In that case it introduces a guarded rule (single-headedsimpli�cation CHR) for each head constraint in the CHR and two rules de�ningthe instance of try one partner/6 for each head of multi-headed rules. Thismeans at three rules for each head constraint in a multi-headed CHRare resultingfrom the transformation.3.3 Propagation CHRs as ConditionalsIn this subsection we discuss an alternative way to implement propagation CHRs.However, in the end it will turn out that it leads to basically the same �nal trans-lation. The idea is that propagation CHRs with a single head can be implementedby conditionals. Such a construct is available in most concurrent logic languages.A simple conditional is of the formCondition -> Consequencewhere Condition is a guard and Consequence a body. If Condition is sat-is�ed, the Consequence is executed, if Condition does not hold, the conditionalsucceeds without further computation. A conditional can be implemented withsimpli�cation CHRs:(Condition -> Consequence) <=> Condition | Consequence.(Condition -> Consequence) <=> not Condition | true.Depending on the overall implementation, the second rule can be specializedor dropped. The problem with this simple de�nition is that it makes each variableoccurring in Condition global, since it also occurs in the head of the simpli�ca-tion CHR. However, the actual global variables of the conditional are only thoseappearing both in the conditional and the surrounding context. To overcome thisproblem, we introduce an argument for the global variables and use a predicaterename local/3 to rename the remaining, local variables into new variables.GlobalVars:(Condition -> Consequence) <=>rename_local(GlobalVars,Condition,Condition1), % rename local varsCondition|Condition=Condition1, % unify old and new local variablesConsequence.GlobalVars:(Condition -> Consequence) <=> not ... % analogous positive caseIn another solution, each call to a conditional, Condition ->Consequence,can be replaced by a new, auxiliary constraint whose arguments are the globalvariables. In the following, for simplicity, we do not mention the global variablesof a conditional explicitly.A set of n single-headed propagation rules for the constraint c/m12



Head1 ==> Guard1 | Body1....Headn ==> Guardn | Bodyn.can be rewritten as a conjunction of conditionals and placed in the body of asimpli�cation ruleHead <=> Head', (Head=Head1,Guard1 -> Body1),...,(Head=Headn,Guardn -> Bodyn).Head is of the form c(X1,...Xm) where X1,...Xm are new, disjoint variables.Head' is the same as Head except that c/m is renamed to c'/m to avoid a trivialloop. Consequently, the same renaming has to be applied to the heads of allsimpli�cation rules. Note that the global variables of the conditionals are exactlythe variables occurring in Head.In the original CHRs, once a simpli�cation rule has been applied to a con-straint, no subsequent propagation involving this constraint is possible, since ithas been removed by the simpli�cation. This is not the case in the translationabove, since only Head' will be removed, but not the conditionals associated withthe constraint Head. To simulate the original behavior, we introduce a kill agvariable in an additional argument of c'/m. When a simpli�cation rule appliesto c'/m+1, the kill ag variable is bound. The translation is now as follows:Head <=> Head'(KF), (var(KF),Head=Head1,Guard1 -> Body1),..., (var(KF),Head=Headn,Guardn -> Bodyn).With the kill ag, we can specialize the second simpli�cation rule used tode�ne the conditional into a more e�cient, but more lazy rule:(Condition -> Consequence) <=> not var(KF) | true.We have already shown how to implement multi headed CHRs. It may seemthat for propagation rules, conditionals would result in a di�erent translation.However it turns out that this is not really the case. In the Condition we needa predicate to try each partner constraint. That means for each potential part-ner given by delayed constraints/2 the predicate creates a new conditional.The predicate is very similar thus to try each partner/6 for propagation CHRs,except that the rule bodies are not collected but used to form the Consequenceparts of the conditionals. Since delayed constraints/2 may return new can-didates on a later call, we have to replace Head'(KF) by a direct recursive callHead(KF) and once again use a propagation list to avoid trivial loops. Anotherpossibility would be a variant of delayed constraints/2 that returns a streamof delayed constraints. The main di�erence with the previous approach is thatthe conjunctive treatment of propagation CHRs with many delayed conditionalsis \more concurrent". Therefore such a translation seems to be more suitable fora inherently concurrent logic language, while in sequential CLP languages thecost of delaying goals is high as compared to backtracking.13



3.4 Built-In LabelingLast but not least, we show how to implement built-in labeling in a CHR. Labelingis the only point which requires the host language to o�er don't know indeter-minism. Assume that a form of disjunction denoted by the binary operator or/2is available. Let (H $ B1 _ : : :Bs) be Clark's completion of the constraintpredicate. From a labeling declarationlabel_with Head if Guard.and Clark's completion of the associated constraint predicate, a simpli�cationrule involving the built-n predicate labeling/0 is produced:labeling, Head <=> Guard | Head=H, (B1 or ... Bs), labeling.Note the use of recursion in labeling/0 to enforce further labeling afterexecuting the disjunction which has introduced some choices and subsequentconstraint handling. This formulation relies on the left-to-right execution modelcommon to logic programming languages. A simpagation CHR with the samedeclarative semantics as the above simpli�cation CHR can be written. However,the operational semantics di�er, since there is no guarantee that the simpagationrule is executed only after all other rules for all constraints have been tried.4 Implementing Guarded Rules in CLPIn this section we show how to implement guarded rules (corresponding to single-headed simpli�cation CHRs), i.e. a committed-choice language, in a CLP lan-guage without guards. Such translations have been investigated before, i.e. com-pilation of matching in committed-choice languages, L. Naish's successive imple-mentations of delaying declarations [Nai85], S. K. Debray's e�cient implemen-tation of QD-Janus [Deb93] in Prolog. The translation proposed in this sectionis based on ideas of Joachim Schimpf and is geared towards ECLiPSeand theactual implementation. It requires that the CLP language is equipped with adelay-mechanism.A delay-mechanism can be implemented in any logic programming languageby passing the list of delayed goals around in additional arguments of each pred-icate (a DCG grammar could be used). A complete delay mechanism can beimplemented this way - at the cost of e�ciency, of course.The only built-in predicates needed are for delaying a goal on variables andfor accessing the delayed goals. The built-in predicate delay(L,G) delays a goalG on the variables in the list L until one of the variables is touched. A variableis touched if takes part in a uni�cation or if it gets more constrained by built-inconstraints. 14



In a sequential CLP implementation, backtracking is e�cient while delayingis usually more expensive than in inherently concurrent languages. Thereforeit is more e�cient to reexecute guards instead of delaying them and executingthem incrementally. In our ECLiPSe implementation we also found that thereis no gain in distinguishing between failure and delaying of a guard. If a guardis not satis�able, it simply fails. Overall, using this approach in ECLiPSe wegained about one order of magnitude in speed as compared to a fully concurrentimplementation we were initially aiming at. The e�ciency tradeo� may no longerhold for very complex guards or other host languages.Under these assumptions, a constraint goal fails if no rule was applicable (allguards failed). In such a case, we redelay the goal on its variables. When avariable is touched, the goal will be resumed and reexecuted. To achieve thisbehavior, for each constraint Head, the last clause is:Head :- extract_vars(Head,VarList),delay(VarList,Head).where the predicate extract vars(T,L) returns the list L of free variables ofthe term T.We now implement head matching and guard execution. Head matching canbe made explicit by adding the goal Goal=Head to the guard. Instead of theguarded rulec(t1,...tn) <=> Guard | Body.we use the guarded rulec(X1,...Xn) <=> c(X1,...Xn)=c(t1,...tn), Guard | Body.where X1,..Xn are new, disjoint variables. If we do not delay guards, theequality can be optimized by using a built-in predicate like instance(Goal,Head)that checks if Goal is an instance (i.e. matches) Head and then uni�es them. SinceHead is known at compile-time the call to instance/2 can be further optimized.In ECLiPSe, there is no need for a transformation, since head matching is directlysupported.Clearly if the execution of a guard further constrains global variables (thosefrom the head(s) of the rule), it cannot be satis�ed at the moment and has todelay. A variable is more constrained if it is touched or if new goals delay on it.Since we also fail a delayed guard, we would like to fail in those cases.One way to protect the global variables from being touched is to replace themwith new variables in the execution of the guard. The predicate copy term/2copies a term with new variables. Then we could use the following translationHeadC <=> copy_term(HeadC,Head), Guard, instance(HeadC,Head) | Body.15



where HeadC is a copy of Head with new variables. Once again, the instancecheck can be optimized. The problem with this translation is that the wholeGuard is executed before it is checked that global variables have been touched.Since touching global variables may cause a cascade of constraint handling, thissolution is too expensive. Remember that if a variable is touched, all the goalsthat delay on it are woken. Thus we can delay a failing goal, i.e. simply false,on the global variables to avoid that they are touched.extract_vars(Head,GlobalVars),delay(GlobalVars,false),Guard,remove(false)Note that the two goals will pre�x every Guard and thus can be factored outusing an auxiliary predicate Head' for the rest of the code.Head :- extract_vars(Head,GlobalVars), delay(GlobalVars,false), Head'.To detect if delayed goals have been added, we check whether the list of de-layed goals is still the same. We use the built-in predicate delayed constraints/1to compare the list of delayed goals before and after the execution of the guard.At this point, we reach the border-line of where a high-level implementation cango, since a low-level check will be considerably more e�cient and independent ofthe size of the list of delayed goals.c(X1,...Xn)' :-c(X1,...Xn)'=Head', % match the head with the actual goaldelayed_constraints(CL) % get all delayed constraint goalsGuard, % execute guarddelayed_constraints(CL) % no new delayed constraint addedremove(false), % no global vars have been touched!, % commit by cuttingBody.5 Existing ImplementationsThe �rst implementation of CHRs in 1991 was an interpreter written in ECRC'sconstraint logic programming platform ECLiPSe(see appendix 1). At the mo-ment, there exist two sequential implementations, one prototype in LISP [Her93],and one fully developed CHRs library in ECLiPSe[B*95]. At DFKI Saarbr�ucken,an implementation of CHRsin the concurrent object-oriented language OZ [SmTr94]is on the way.The LISP implementation does not provide for simpagation rules, but of-fers some interesting extensions. First, rules can be given priorities (encodedas integers). Second, indeterminism is introduced by disjunction in rule bodies.This extension also allows to express Prolog clauses. Rules with disjunction aretranslated into simpli�cation rules explicitly creating choice-points and perform-ing backtracking. Rules with disjunction usually get the lowest priority. The16



algorithm for executing CHRs is somewhat similar to the �rst implementation ofCHRs in Prolog (see appendix 2). However, matching a head constraint in a rulewith several heads dynamically adds a new rule with the matched head removedand the variables instantiated as in the matching. In [B*95], constraint handlersfor terminological reasoning with negation and concrete domains, further equalityover Herbrand terms, inequalities, �nite domains, linear polynomial inequalitiesusing Fouriers algorithm and an implementation of the terminological languageTAXLOG are described as applications.In the CHRs library in ECLiPSe, ECLiPSe and CHRs statements can be freelycombined. A complete committed-choice language is available as a side-e�ect.The library includes a compiler, a run-time system with two debuggers, manyexample solvers as well as a full color demo using geometric constraints in a real-life application for wireless telecommunication. The compiler is about 450 clauses,2700 lines, 26kB of code, the run-time system is about 360 clauses, 1900 lines,17kB of code including comments. The code produced by the compiler from acomprehensive rule set can be found in the appendix. About 20 constraint solverscurrently come with the release (see �gure 1) - among them solvers for �nite do-mains over arbitrary ground terms, reals and pairs, incremental path consistency,temporal reasoning (quantitative and qualitative constraints over time points andintervals [Fru94]), for solving linear polynomials over the reals and rationals, andlast but not least for terminological reasoning [FrHa95]. A successful real-lifeapplication making essential use of CHRs is described in [MBF95].Typically it took only a few days to produce a reasonable prototype solver,since one can directly express how constraints simplify and propagate withoutworrying about implementation details. The average number of rules in a con-straint solver is as low as 24.To reect the complexity of a program in the number of CHRs, at most twohead constraints are allowed in a rule. This forces the programmer to rewritea rule with more than two head constraints into several two-headed rules. Therestriction to two head atoms makes complexity for search of the head constraintsof a single CHR quadratic in the worst case. On average, linear complexity canbe achieved based on the observation that usually the head atoms are connectedthrough common variables appearing in both head atoms, which means thatonly the constraint goals that delay on a particular variable have to be searched.Complexity can be reduced by using a more sophisticated data structure thanlists for the delaying constraints.On a range of solvers and examples, the slow-down for our declarative andhigh-level approach turned out to be within an order of magnitude in comparisonto dedicated built-in solvers (if available). On some examples (e.g. those involving�nite domains with the element-constraint), our approach is faster, since one canexactly de�ne the amount of constraint handling that is needed. For performanceand simplicity the solver can be kept as incomplete as the application allows it.Some solvers (e.g. disjunctive geometric constraints in the phone demo) would17



be very hard to recast in existing CLP languages.Domain Algorithm C? Library File Si Sp PrTerm Manipul. yes term 10 8 7Terminologies no kl-one 25 4 13Rational Trees Uni�cation no tree 9 2 1Lists Extend. Uni�cation no list 9 0 0Sets Consistency no set 18 10 13Comparisons Algebraic Laws yes minmax 11 22 6Equalities Gaussian Elimin. yes math-gauss 1 1 0Inequalities Gaussian + Slacks no math-lazy 19 6 0Inequalities Gaussian + Slacks no math-eager 19 6 0Inequalities Gaussian + Fourier yes math-fourier 21 6 1Booleans Value Propagation no bool 56 19 0Finite Domains Forward Checking no domain 61 7 14Binary Relations Path Consistency no time-pc 10 1 3Time Path Consistency no time-point 4 0 2Time Path Consistency no time 0 2 0Space yes geons 0 1 0Prime Numbers primes 11 3 0Sound Control control 6 0 0Rounded Average no 16 5 3Figure 1 The constraint solvers of the CHRs library in ECLiPSe.46 ConclusionsConstraint handling rules (CHRs) are a language extension for implementing user-de�ned constraints. We have given basic principles on how to implement CHRsin logic programming languages and we have shown what the result of compilingCHRs into ECRC's constraint logic programming platform ECLiPSe is. It turnedout that CHRs can be easily implemented in any constraint logic programminglanguage, be it concurrent or sequential.According to our experience, e�ciency depends mainly on updating delayedconstraint goals and the search for a partner constraint. Both issues can betackled by using a more sophisticated data structure than a list of delayed goals.To avoid redundant computations in the guards, they could be compiled intodecision graphs. Furthermore, the constraints generated by propagation CHRscould be garbage collected (i.e. removed from the constraint store) when theconstraints they were generated from have been rewritten or unfolded.4C? stands for Complete?; Si, Sp, Pr are the numbers of Simpli�cation, Simpagation andPropagation rules respectively. 18
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Appendix 1 - Complete Compilation ExampleCompiling the following generic CHR code (which contains all types of rules)% all options are turned off for simplicity?- nodbgcomp. % no code for debugger producedoption(check_guard_bindings, off). % simple guard checkoption(already_in_store, off).option(already_in_heads, off).constraints p/3,q/3.rule1 @ p(a,X,Y) ==> guard(a,X,Y,G) | body(a,X,Y,G,B).rule2 @ p(b,X,Y) <=> guard(b,X,Y,G) | body(b,X,Y,G,B).rule3 @ p(c,X,Y),q(c,Y,Z) ==> guard(c,X,Y,Z,G) | body(c,X,Y,Z,G,B).rule4 @ p(d,X,Y),q(d,Y,Z) <=> guard(d,X,Y,Z,G) | body(d,X,Y,Z,G,B).rule5 @ p(e,X,Y)\q(e,Y,Z) <=> guard(e,X,Y,Z,G) | body(e,X,Y,Z,G,B).label_with p(f,X,Y) if guard(f,X,Y,G).p(g,X,Y) :- body(g,X,Y,B).yields the code given below (edited for readability, all directives have beenremoved, some predicates renamed, comments have been added, variables havebeen renamed automatically). Turning the option check guard bindings o�means that it is not checked if global variables are touched. The optional 'rule1@' piece of syntax allows to give names to rules.Note that in the compiled code the order of the rules has changed, singlehead atoms are moved ahead of multiple head atoms and simpli�cation CHRsahead of propagation CHRs for e�ciency reasons. The code is cluttered sinceintroduces a number of auxiliary predicates due to optimizations like exploitinghead matching and indexing as much as possible and avoiding nondeterministiccode. Furthermore, conjunctions are kept is short is possible by moving righthand side subgoals down into the de�nitions of left hand side subgoals wherepossible. The implementation of built-in labeling has not been optimized.The built-in predicates used are =/2, var/1 and nonvar/1. The low-levelpredicates used are execute guard/1, delay/2, get delayed goals/2 andcheck and mark applied/2. Their code is not given here. execute guard/1 ba-sically wraps a low-level check (that the delayed goals did not change) aroundthe execution of a guard. To optimize the search for a partner constraint,get delayed goals/2 gets only the goals that delay on a variable occurring inthe �rst argument. The code of labeling/0 is not given here, it makes use of thelabel with/3 clauses produced for each constraint. Code starts on next page.21



%%% The following code has been produced by the CHR compiler% constraints p/3,q/3.p(A, B, C) :- % entry point for constraint callp_3(p(A, B, C), KillFlag, FiredPropagationCHRsList, Identifier).% Identifier used in debuggers onlyq(A, B, C) :-q_3(q(A, B, C), D, E, F).%%% Label_with declaration for p / 3% label_with p(f,X,Y) if guard(f,X,Y,G).label_with(p(f, A, B), C, D) ?-execute_guard(guard(f, A, B, E)), % check the guard!,C = clause_p(f, A, B). % return associated Prolog predicate%%% Prolog clauses for p / 3% p(g,X,Y) :- body(g,X,Y,B).clause_p(g, A, B) :- % Prolog clause for constraintbody(g, A, B, C).%%% CHR Rules for p / 3p_3(p(A, B, C), D, E, F) :-nonvar(D), % KillFlag set, constraint removes itself!.% rule2 @ p(b,X,Y) <=> guard(b,X,Y,G) | body(b,X,Y,G,B).p_3(p(b, A, B), C, D, E) ?-execute_guard(guard(b, A, B, F)),!,C = true, % set KillFlagbody(b, A, B, F, G). % execute body% rule4 @ p(d,X,Y),q(d,Y,Z) <=> guard(d,X,Y,Z,G) | body(d,X,Y,Z,G,B).p_3(p(d, A, B), C, D, E) ?-get_delayed_goals(B, F), % get constraints delaying on Bp_3_1(F, [B], [G], H), % look for partner constraintexecute_guard(guard(d, A, B, G, I)),!,C = true,body(d, A, B, G, I, J).p_3(p(A, B, C), D, E, F) :- % go for propagation CHRsp_3_0(p(A, B, C), D, E, F).p_3_1([q_3(q(d, A, B), C, D, E)|F], [A], [G], H) ?- % found partner in listvar(C), % KillFlag of partner has not been set[C, B, E] = [true, G, H]. % kill partner, return its arguments, idp_3_1([A|B], C, D, E) :- % search for partner in constraints listp_3_1(B, C, D, E). 22



% rule1 @ p(a,X,Y) ==> guard(a,X,Y,G) | body(a,X,Y,G,B).p_3_0(p(a, A, B), C, D, E) ?-var(C), % KillFlag has not been setcheck_and_mark_applied(p_3_0, D), % check if rule has been applied% before, if not, add info to list Dexecute_guard(guard(a, A, B, F)),!,p_3_2(p(a, A, B), C, D, E), % try other CHRsbody(a, A, B, F, G).p_3_0(A, B, C, D) ?- % previous propagation CHR not applicablep_3_2(A, B, C, D). % try other propagation CHRs% rule5 @ p(e,X,Y)\q(e,Y,Z) <=> guard(e,X,Y,Z,G) | body(e,X,Y,Z,G,B).p_3_2(p(e, A, B), C, D, E) ?-var(C),!,get_delayed_goals(B, F), % get constraints delaying on Bp_3_2_4(F, C, p(e, A, B), D, E). % look for partner constraintsp_3_2(p(A, B, C), D, E, F) :- % previous propagation CHR not applicablep_3_2_5(p(A, B, C), D, E, F). % try other propagation CHRsp_3_2_4([q_3(q(e, A, B), C, D, E)|F], G, p(e, H, A), I, J) ?- % found partnervar(C), % KillFlag of partner has not been setexecute_guard(guard(e, H, A, B, K)),!,C = true, % kill partnerp_3_2_4(F, G, p(e, H, A), I, J), % try to apply rule to other partnersbody(e, H, A, B, K, L).p_3_2_4([A|B], C, D, E, F) :- % search for partner in list of constraintsp_3_2_4(B, C, D, E, F).p_3_2_4([], A, B, C, D) :- % all constraints tried, continue with next CHRp_3_2_5(B, A, C, D).% rule3 @ p(c,X,Y),q(c,Y,Z) ==> guard(c,X,Y,Z,G) | body(c,X,Y,Z,G,B).p_3_2_5(p(c, A, B), C, D, E) ?-var(C),!,get_delayed_goals(B, F),p_3_2_5_6(F, C, p(c, A, B), D, E).p_3_2_5(p(A, B, C), D, E, F) :-p_3_2_5_7(p(A, B, C), D, E, F).p_3_2_5_6([q_3(q(c, A, B), C, D, E)|F], G, p(c, H, A), I, J) ?-var(C),check_and_mark_applied(rule3, G, C, I, D), % check if rule has been% applied before, if not, add info to lists I and Dexecute_guard(guard(c, H, A, B, K)),!,p_3_2_5_6(F, G, p(c, H, A), I, J),body(c, H, A, B, K, L). 23



p_3_2_5_6([A|B], C, D, E, F) :-p_3_2_5_6(B, C, D, E, F).p_3_2_5_6([], A, B, C, D) :-p_3_2_5_7(B, A, C, D).% last clause for redelaying the constraintp_3_2_5_7(p(A, B, C), D, E, F) :-( var(D) % KillFlag still not set-> delay([D, A, B, C], p_3(p(A, B, C), D, E, F)) % delay constraint; true).%%% Rules handling for q / 3% Compiled for q/3 are rule3, rule4 and rule5% Analogous to p/3 except for rule5% rule5 @ p(e,X,Y)\q(e,Y,Z) <=> guard(e,X,Y,Z,G) | body(e,X,Y,Z,G,B).q_3(q(e, A, B), C, D, E) ?-get_delayed_goals(A, F),q_3_10(F, [A], [G], H),execute_guard(guard(e, G, A, B, I)),!,C = true,body(e, G, A, B, I, J).q_3(q(A, B, C), D, E, F) :-q_3_8(q(A, B, C), D, E, F). % continue...q_3_10([p_3(p(e, A, B), C, D, E)|F], [B], [G], H) ?-var(C),[A, E] = [G, H].q_3_10([A|B], C, D, E) :-q_3_10(B, C, D, E).% In the run-time system, built-in labeling is definedlabeling :-( delayed_constraint(Constraint, KF),label_with(Constraint, Goal, Nb),!,KF = true,call(Goal),labeling; true). 24



Appendix 2 - First ImplementationHere we shortly present an abstracted Prolog code for the �rst - now obsolete -implementation of CHRs, a combination of a simple compiler and an interpreterwritten in ECLiPSe in summer 1991. There were no simpagation CHRs. Firstsimpli�cation and propagation CHRs are preprocessed as follows, distinguishingbetween single- and multi-headed rules:Propagation ChrsSingle-headedHead => Guard | Bodychr(propag,Guard,Body)Multi-headedHead,Partner => Guard | Bodychr(propag,CommonVar,Partner,Guard,Body)Simplification ChrsSingle-headedHead <=> Guard | Bodychr(simplif,Guard,Body)Multi-headedHead,Partner <=> Guard | Bodychr(simplif,CommonVar,Partner,Guard,Body)For each user-de�ned constraint occurring as a head of a CHR, the followingconstraint goal is producedconstraint(ConstraintGoal,Schrs,Mchrs,Call,flags(Fired,Multi,Choice))where Schrs is the list of single-headed rules, and Mchrs the list of multi-headed rules in the chr format as given above.A constraint goal is activated if a variable in it or one of the ags Fired,Multi, Choice gets bound.% Fired flag got boundconstraint(Goal,Schrs,Mchrs,Call,flags(Fired,Multi,Choice)):-nonvar(Fired),!.% Choice flag got boundconstraint(Goal,Schrs,Mchrs,Call,flags(Fired,Multi,Choice)):-nonvar(Choice),!,(label_with_ok(Call) ->Fired=fired,call(Call); 25



true),constraint(Goal,Schrs,Mchrs,Call,flags(Fired,Multi,Choice1))).% Variable in constraint got boundconstraint(Goal,Schrs,Mchrs,Call,flags(Fired,Multi,Choice)):-got_bound(Goal),!,do_single(Schrs,Fired,Schrs1),constraint(Goal,Fired,Schrs1,Mchrs,Call,flags(Fired,Multi,Choice)).do_single(Schrs,Fired,Schrs1):- nonvar(Fired),!,Schrs1=[].do_single([],Fired,Schrs1):-Schrs1=[].do_single([Schr|Schrs],Fired,Schrs1):-Schr=chr(Kind,Guard,Body),evaluate(Guard,Result),(Result=success ->(Kind=simplif ->Fired=fired; true),Schrs1=Schrsb,call(Body);Result=suspend ->Schrs1=[Schr|Schrs2]);Result=failure ->Schrs1=Schrs2),do_single(Schrs,Fired,Schrs2).% Multi flag got boundconstraint(Goal,Schrs,Mchrs,Call,flags(Fired,Multi,Choice)):-nonvar(Multi),!,do_multi(Mchrs,Fired,Multi,Mchrs1),constraint(Goal,Schrs,Mchrs1,Call,flags(Fired,Multi1,Choice)).do_multi(Mchrs,Fired,Multi,Mchrs1):-nonvar(Fired),!,Mchrs1=[].do_multi([],Fired,Multi,Mchrs1):-Mchrs1=[]. 26



do_multi([Mchr|Mchrs],Fired,Multi,Mchrs1):-Mchr=chr(Kind,Var,Partner,Guard,Body),copy_term(Mchr,MchrCopy),delayed_constraints(Var,Constraints),find_goal(Partner,FiredPartner,Constraints),evaluate(Guard,Result),(Result=success ->Multi=multi(fired),(Kind=simplif ->Fired=fired,FiredPartner=fired,Mchrs1=Mchrs2;Kind=propag ->MchrCopy=chr(Kind,Var,PartnerC,GuardC,BodyC),GuardC1=(PartnerC=\=Partner,GuardC),Mchrs1=[chr(Kind,Var,PartnerC,GuardC1,BodyC)|Mchrs2]),call(Body); Mchrs1=[Mchr|Mchrs2]),do_multi(Mchrs,Fired,Multi,Mchrs2).In the interpreter, �rst all single-headed CHRs are executed, then all mutli-headed rules and last the built-in labeling routine. This is achieved by a goal forschedule/0 that is added to the end of each query and that activates constraintgoals to reduce with multi-headed rules or by built-in labeling by setting theappropriate ags.% Scheduling CHRs and Built-In Labeling (Making Choices)% ?- Query,schedule.schedule:- wake_multi,make_choice.% Activate multi_headed Chrswake_multi:-delayed_constraints(Constraints),wake_multi(Signal,Constraints). % activate a constraint to reduce% with multi-headed ruleswake_multi(Signal,Constraints):-get_candidate(flags(Fired,Multi,Choice),Constraints,Constraints1),var(Fired), % constraint not killed yetvar(Multi), % multi-headed rules not applied yet!,Multi=multi(Signal), % activate constraint for multi-headed ruleswake_multi(Signal,Constraints1). % look for more constraintswake_multi(Signal,_Constraints):- % no more constraints found(var(Signal) -> true ; wake_multi). % restart if a rule fired27



% Make a choice% analoguous to wake_multi/0make_choice:-delayed_constraints(Constraints),make_choice(Constraints).make_choice(Constraints):-get_candidate(flags(Fired,Multi,Choice),Constraints,Constraints1),var(Fired),var(Choice),!,Choice=choice,(var(Fired) -> make_choice(Constraints1) ; schedule). % If constraint% not killed, find other constraint to label, else restart schedulemake_choice(_Constraints). % no more constraints for labeling found
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Appendix 3 - ExampleIn this appendix we show the result of applying the translations to guarded rulesproposed in section 3 to three CHRs taken from a solver for inequalities (minmax).The translation may di�er in minor, unessential details from the one proposedin the main body of the paper. All code is written in ECLiPSeusing the CHRslibrary.handler trchr. % declare name of constraint handler% original set of sample CHRs for inequalities -------------------------------constraints lt/2,le/2. % declare constraintslt(X,Y),le(Y,X) <=> writeln(fail) | fail.lt(X,Y)\le(X,Y) <=> writeln(true) | true.lt(X,Y),le(Y,Z) ==> writeln(trans) | lt(X,Z).% a test query:- subcall((lt(A,B),le(B,C),le(A,C),(true;le(C,A))),R),writeln(R),fail ; true.% CHRs embedded in propagation rules -----------------------------------------% KillFlag introducedlt(A,B):- lt(A,B,_).le(A,B):- le(A,B,_).constraints lt/3,le/3.% Head1,Head2 <=> Guard | Body.lt(X,Y,KF1),le(Y,X,KF2) ==> % Kill flags not set so farvar(KF1),var(KF2),writeln(fail)|dead=(KF1),dead=(KF2), % Bind kill flags to kill head constraintsfail.% Head1\Head2 <=> Guard | Body.lt(X,Y,KF1),le(X,Y,KF2) ==>var(KF1),var(KF2),writeln(true)|dead=(KF2), % Kill second head constraint onlytrue.% Head1,Head2 ==> Guard | Body.lt(X,Y,KF1),le(Y,Z,KF2) ==>var(KF1),var(KF2),writeln(trans)|lt(X,Z,KF3).% CHRs embedded in simplification rules --------------------------------------% PropagationList introducedlt(A,B):- lt(A,B,[]).le(A,B):- le(A,B,[]).constraints lt/3,le/3. 29



lt(X,Y,PL1),le(Y,X,PL2) <=>writeln(fail)|fail.% Head1\Head2 <=> Guard | Body.lt(X,Y,PL1),le(X,Y,PL2) <=>writeln(true)|true,lt(X,Y,PL1).% Head1,Head2 ==> Guard | Body.lt(X,Y,PL1),le(Y,Z,PL2) <=>not_member(trans-le(Y,Z)-2,PL1), % rule n with second head Head2 applied ?not_member(trans-lt(X,Y)-1,PL2), % rule n with first head Head1 applied ?writeln(trans)|lt(X,Z,[]),lt(X,Y,[trans-le(Y,Z)-2|PL1]),le(Y,Z,[trans-lt(X,Y)-1|PL2]).not_member(E,[]) ?- true.not_member(E,[E1|L]) ?- not (E==E1), not_member(E,L).% CHRs as guarded rules with search by backtracking in guard -----------------% delayed_constraint/2 introducedlt(A,B):- lt(A,B,[]).le(A,B):- le(A,B,[]).constraints lt/3,le/3.lt(X,Y,PL1) <=>delayed_constraint(le(Y,X,PL2),KF),writeln(fail)|dead=KF,fail.le(Y,X,PL2) <=>delayed_constraint(lt(X,Y,PL1),KF),writeln(fail)|dead=KF,fail.% Head1\Head2 <=> Guard | Body.lt(X,Y,PL1) <=>delayed_constraint(le(X,Y,PL2),KF),writeln(true)|dead=KF,true,lt(X,Y,PL1).le(X,Y,PL2) <=>delayed_constraint(lt(X,Y,PL1),_KF),writeln(true)|true.% Head1,Head2 ==> Guard | Body.lt(X,Y,PL1) <=> 30



delayed_constraint(le(Y,Z,PL2),_KF),not_member(trans-le(Y,Z)-2,PL1),not_member(trans-lt(X,Y)-1,PL2),writeln(trans)|lt(X,Z,[]),lt(X,Y,[trans-le(Y,Z)-2|PL1]).le(Y,Z,PL2) <=>delayed_constraint(lt(X,Y,PL1),_KF),not_member(trans-le(Y,Z)-2,PL1),not_member(trans-lt(X,Y)-1,PL2),writeln(trans)|lt(X,Z,[]),le(Y,Z,[trans-lt(X,Y)-1|PL2]).not_member(E,[]) ?- true.not_member(E,[E1|L]) ?- not (E==E1), not_member(E,L).delayed_constraint(Constraint, KF) :-delayed_goals(DG),member(C, DG),C =.. [_Pred, Constraint, KF, _PA, _Nb].% CHRs as guarded rules with explicit search for partner constraint -----------% delayed_constraints/1, try_each_partner/4, try_one_partner/4 introducedoption(check_guard_bindings, off). % needed for nested guardslt(A,B):- lt(A,B,[]).le(A,B):- le(A,B,[]).constraints lt/3,le/3.fail @ lt(X,Y,PL1) <=>delayed_constraints(List),try_each_partner(fail,lt(X,Y,PL1),List,le(Y,X,PL2)-KF),nonvar(PL2)|dead=KF,fail.fail @ le(Y,X,PL2) <=>delayed_constraints(List),try_each_partner(fail,le(Y,X,PL2),List,lt(X,Y,PL1)-KF),nonvar(PL1)|dead=KF,fail.% Head1\Head2 <=> Guard | Body.true @ lt(X,Y,PL1) <=>delayed_constraints(List),try_each_partner(true,lt(X,Y,PL1),List,le(X,Y,PL2)-KF),nonvar(PL2)|dead=KF,true,lt(X,Y,PL1).true @ le(X,Y,PL2) <=>delayed_constraints(List),try_each_partner(true,le(X,Y,PL2),List,lt(X,Y,PL1)-KF),nonvar(PL1)| 31



true.% Head1,Head2 ==> Guard | Body.trans @ lt(X,Y,PL1) <=>delayed_constraints(List),try_each_partner(trans1,lt(X,Y,PL1),List,le(Y,Z,PL2)-KF),nonvar(PL2)|lt(X,Z,[]),lt(X,Y,[trans-le(Y,Z)-2|PL1]).trans @ le(Y,Z,PL2) <=>delayed_constraints(List),try_each_partner(trans2,le(Y,Z,PL2),List,lt(X,Y,PL1)-KF),nonvar(PL1)|lt(X,Z,[]),le(Y,Z,[trans-lt(X,Y)-1|PL2]).not_member(E,[]) ?- true.not_member(E,[E1|L]) ?- not (E==E1), not_member(E,L).delayed_constraints(List) :-delayed_goals(DG),delayed_constraints(DG,List).delayed_constraints([],[]).delayed_constraints([C|DG],[Constraint-KF|List]) :-C =.. [_Pred, Constraint, KF, _PA, _Nb],!, delayed_constraints(DG,List).delayed_constraints([C|DG],List) :-delayed_constraints(DG,List).constraints try_each_partner/4, try_one_partner/4.try_each_partner(N,Head1,[H|HL],Partner) <=>try_one_partner(N,Head1,H,Partner), % try next candidatetry_each_partner(N,Head1,HL,Partner).try_each_partner(N,Head1,[],Partner) <=> true. % all candidates triedisfree(le(_,_,PL)-_KF) ?- var(PL).isfree(lt(_,_,PL)-_KF) ?- var(PL).try_one_partner(N,Head1,Head2,Partner) <=>not isfree(Partner) | true. % partner already foundtry_one_partner(fail,lt(X,Y,PL1),le(Y,X,PL2)-KF,Partner) <=> isfree(Partner),writeln(fail)|Partner=le(Y,X,PL2)-KF. % return partner constraint foundtry_one_partner(fail,lt(X,Y,PL1),H-KF,Partner) <=>not ( % H was not the appropriate partnerH==le(Y,X,PL2),writeln(fail))|true.try_one_partner(fail,le(X,Y,PL1),lt(Y,X,PL2)-KF,Partner) <=> isfree(Partner),writeln(fail)|Partner=lt(Y,X,PL2)-KF.try_one_partner(fail,le(X,Y,PL1),H-KF,Partner) <=>not (H==lt(Y,X,PL2),writeln(fail)) 32



|true.try_one_partner(true,lt(X,Y,PL1),le(X,Y,PL2)-KF,Partner) <=> isfree(Partner),writeln(true)|Partner=le(X,Y,PL2)-KF.try_one_partner(true,lt(X,Y,PL1),H-KF,Partner) <=>not (H==le(X,Y,PL2),writeln(true))|true.try_one_partner(true,le(X,Y,PL1),lt(X,Y,PL2)-KF,Partner) <=> isfree(Partner),writeln(true)|Partner=lt(X,Y,PL2)-KF.try_one_partner(true,le(X,Y,PL1),H-KF,Partner) <=>not (H==lt(X,Y,PL2),writeln(true))|true.try_one_partner(trans1,lt(X,Y,PL1),le(Y,Z,PL2)-KF,Partner) <=> isfree(Partner),not_member(trans-le(Y,Z)-2,PL1),not_member(trans-lt(X,Y)-1,PL2),writeln(trans)|Partner=le(Y,Z,PL2)-KF.try_one_partner(trans1,lt(X,Y,PL1),H-KF,Partner) <=>not (not_member(trans-le(Y,Z)-2,PL1),not_member(trans-lt(X,Y)-1,PL2),H==le(Y,Z,PL2),writeln(trans))|true.try_one_partner(trans2,le(Y,Z,PL2),lt(X,Y,PL1)-KF,Partner) <=> isfree(Partner),not_member(trans-le(Y,Z)-2,PL1),not_member(trans-lt(X,Y)-1,PL2),writeln(trans)|Partner=lt(X,Y,PL1)-KF.try_one_partner(trans2,le(Y,Z,PL2),H-KF,Partner) <=>not (not_member(trans-le(Y,Z)-2,PL1),not_member(trans-lt(X,Y)-1,PL2),H==lt(X,Y,PL1),writeln(trans))|true.% Propagation CHRs as conditionals -------------------------------------------% Simple Conditional% does not provide for local variablesconstraints ifthen/2.ifthen(Condition,Consequence) <=> call(Condition) | call(Consequence).% does provide for local variablesconstraints ifthen/3. 33



ifthen(GlobalVars,Condition,Consequence) <=>copy_term(GlobalVars-Condition,GlobalVars-Condition1), % new local varscall(Condition1)|Condition=Condition1, % unify old and new local variablescall(Consequence).constraints lt/2,le/2.constraints lt1/2,le1/2. % internal nameslt1(X,Y) <=>delayed_constraint(le1(Y,X),KF),writeln(fail)|dead=KF,fail.le1(Y,X) <=>delayed_constraint(lt1(X,Y),KF),writeln(fail)|dead=KF,fail.% Head1\Head2 <=> Guard | Body.lt1(X,Y) <=>delayed_constraint(le1(X,Y),KF),writeln(true)|dead=KF,true,lt1(X,Y).le1(X,Y) <=>delayed_constraint(lt1(X,Y),_KF),writeln(true)|true.% Head1,Head2 ==> Guard | Body.lt(A,B) <=>lt1(A,B),ifthen(lt(A,B),(lt(A,B)=lt(X,Y),delayed_constraint(le1(Y,Z),_KF),writeln(trans)),lt(A,Z)).le(A,B) <=>le1(A,B),ifthen(le(A,B),( le(A,B)=le(Y,Z),delayed_constraint(lt1(X,Y),_KF),writeln(trans)),lt(X,Z)). 34



delayed_constraint(Constraint, KF) :-delayed_goals(DG),member(C, DG),C =.. [_Pred, Constraint, KF, _PA, _Nb].% Built-In Labeling ----------------------------------------------------------constraints labeling/0.% label_with le(X,Y) if writeln(label).% le(A,B):- A=B ; lt(A,B).labeling, le1(X,Y) <=> writeln(label) | le(X,Y)=le(A,B), (A=B ; lt(A,B)), labeling.% End of handler trchr ========================================================
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