
Logical Loops

Joachim Schimpf

ICLP 2002

2

Overview

● A general iteration construct for Prolog and
Prolog-based (CLP) languages

● Definition via program transformation

● Comparison with alternatives
Recursion
Higher-order constructs
Bounded Quantifiers

● Expressive Power

● Experience

3

Motivation

Introduced in ECLiPSe to support

● Prolog beginners
Provide a familiar feature: loops

● Application writers
Improved productivity, code structure, maintainability

● Constraint Problem Modellers
Provide equivalent of bounded quantification

4

Iteration (over list elements)

● Replace this

write_list(List) :-
 write("List: "),
 write_list1(List).

write_list1([]).
write_list1([X|T]) :-
 write(X),
 write_list1(T).

● With this

write_list(List) :-
 write("List: "),
 (foreach(X,List) do

 write(X)
).

5

Iteration (over range of numbers)

● Replace this

write_nat(N) :-
write(“Numbers: "),
write_nat1(0,N).

write_nat1(N, N) :- !.
write_nat1(I0, N) :-

I is I0+1,
write(I),

 write_nat1(I, N).

● With this

write_nat(N) :-
 write(“Numbers: "),
 (for(I,1,N) do

write(I)
).

6

Aggregation

● Replace this

sumlist(Xs, S) :-
sumlist(Xs, 0, S).

sumlist([], S, S).
sumlist([X|Xs], S0, S) :-

S1 is S0+X,
sumlist(Xs, S1, S).

● With this

sumlist(Xs, S) :-
(foreach(X,Xs),
 fromto(0,S0,S1,S)
do
 S1 is S0+X
).

iterate

aggregate

7

Mapping

● Replace this

map :- …,
add_one(Xs, Ys), ….

add_one([], []).
add_one([X|Xs], [Y|Ys]) :-

Y is X+1,
 add_one(Xs, Ys).

● With this

map :- …,
(foreach(X,Xs),
 foreach(Y,Ys)
do
 Y is X+1,
), ….

construct

iterate

8

Programming idioms covered

Fully:

● Iteration

● Aggregation

● Mapping

Partly:

● Filtering

● While-loop

9

General Form

foreach(Elem, List) list iterator / aggregator

foreacharg(Arg, Structure) structure iterator

count(I, Min, Max) integer iterator / aggregator

for(I, Min, Max [,Step]) numeric iterator

param(X1, X2, …) constant iterator

fromto(First, In, Out, Last) generic iterator / aggregator

(IterationSpecs do Body)
sequence of

10

The generic fromto-iterator

(fromto(First, In, Out, Last) do … In→Out …)

(fromto(First, In, Out, Last) do … In→Out …)

(fromto(First, In, Out, Last) do … In→Out …)

Fromto can express all other iterators, e.g.

fromto(List, [X|Xs], Xs, []) ⇔ foreach(X,List)

11

Transformation scheme

A goal
…,(IterationSpecifiers do Body), …

Is replaced by
…, PreCallGoals, µ(CallArgs), …

With an auxiliary predicate µ defined as
µ(BaseArgs) :- !.
µ(HeadArgs) :-

PreBodyGoals,
Body,
µ(RecArgs).

12

Sample translation

 ?- (foreach(X,List), count(I,N0,N), fromto(0,S0,S1,Sum) do
 S1 is S0+X
).

 ?- From is N0-1, % PreCallGoals
 do_1(List, From, N, 0, Sum). % Initial call

 do_1([], _1, _1, _2, _2) :- !. % Base clause
 do_1([X|_1], _2, _3, S0, _4) :- % Recursive clause head
 I is _2 + 1, % PreBodyGoals
 S1 is S0+X, % Body
 do_1(_1, I, _3, S1, _4). % Recursive call

13

Loops vs. Recursion

● Conciseness
Auxiliary predicate and its arity are hidden.

● Modifiability
Add/remove single iteration specifier rather than argument(s) in 4 places.

● Structure
Nested loops can be clearer than a flat collection of predicates.
Iteration specifiers group related information together.

● Abstraction
Intention of iteration is explicit.
Fromto can help beginners understand the concept of accumulators.

14

Abstraction

 reverse(L, R) :-
 (fromto(L, [X|Ls], Ls, []),

 fromto([], Rs, [X|Rs], R)
do
 true
).

Single
argument

Argument pair
(accumulator) reverse(L, R) :- do_2(L,[],R).

 do_2([],R,R) :- !.
 do_2([X|Ls],Rs,R) :- do_2(Ls,[X|Rs],R).

Symmetry

15

Loops vs. Higher-Order Constructs (1)

Higher-Order constructs for similar tasks:

map(plus(1),Xs,Ys) (foreach(X,Xs), foreach(Y,Ys) do
 plus(1, X, Y)
)
foldl(plus,Xs,0,Sum) (foreach(X,Xs), fromto(0,S0,S1,Sum) do
 plus(X,S0,S1)
)
filter(<(5),Xs,Ys) (foreach(X,Xs), fromto(Ys,Ys1,Ys0,[]) do
 (X > 5 -> Ys1=[X|Ys0] ; Ys1=Ys0)
)

16

Loops vs. Higher-Order Constructs (2)

More realistic comparison with a lambda-term syntax:

 foldl(lambda([X,S0,S1], S1 is S0+X), Xs, 0, Sum)

foreach(X,Xs), fromto(0,S0,S1,Sum) do S1 is S0+X

Loop formulation has same size and better grouping

17

Loops vs Higher-Order Constructs (3)

Higher-Order map/fold/filter

● Data structure (list) specific

● Arbitrary traversal orders

● foldl / foldr symmetry

● Families needed: map/(2+N),

fold/(2+2N), filter/(2+N)

● Combinations needed:

map_foldl/5, …

● Higher-order-typed arguments

Do-loop

● Any data structure (fromto)

● Only iteration / tail recursion

● Only efficient foldl-equivalent

● Arbitrary number of iteration

specifiers allowed

● Arbitrary combinations of

iteration specifiers allowed

● Same typing as recursive form

Claim: Higher-order constructs are powerful, but not the best for iteration

18

Loops vs. Bounded Quantification

● Quantification over finite sets
Mathematical modelling languages (AMPL and others)
Extension to LP (Voronkov 90, Barklund et al 93/95, Apt 96)
 pos_list(List) :- ∀ X ∈ List X > 0.
 pos_array(A,N) :- ∀ I ∈ 1..N A[I] > 0.

● But: mapping of lists is impossible
 add_one_to_all(Xs,Ys) :- ∀X∈Xs ∀Y∈Ys Y is X+1.
Does not work: No concept of “corresponding elements”
Needs arrays to be useful !

● But: aggregation operators
E.g. minimum, maximum, sum, … must be introduced separately
 sum_list(Xs,S) :- S=ΣX : X∈Xs.

19

Expressive Power of Loops (1)

● We can write a while-loop, albeit awkwardly:
 (

 fromto(cont, _, Continue, stop)
 do
 (termination_condition(…) ->
 Continue = stop
 ; Continue = cont
),

 …
)

20

Expressive Power of Loops (2)

A recursion-free meta-interpreter for pure Prolog:

solve(Q) :-
 (fromto([Q], [G|C0], C1, []) do

 solve_step(G, C0, C1)
).

solve_step(true, C, C).
solve_step((A,B), C, [A,B|C]).
solve_step(A, C, [B|C]) :- clause(A, B).

21

Evaluation criteria

A language feature should

● Fit with existing language concepts / user ideas
“Principle of least astonishment”

● Provide a clear advantage
Code size, elegance, maintainability, robustness, …

● Not have an overhead cost
Otherwise programmers will use lower-level methods

22

Programmer Acceptance

Loops have been in ECLiPSe officially since 1998.

Analysis of commerical code developed with ECLiPSe:

● Application A (1997-2001)
254 predicate in 24 modules
34 loops

● Application B (2000-2002)
528 predicates in 35 modules
210 loops

23

Conclusion

● Language extension with a minimum of new concepts
no types, modes, arrays were needed

● Efficiently implementable
virtually no runtime overheads

● Accepted by programmers
this has always been a problem with higher-order constructs

● Translation code available at
http://www.icparc.ic.ac.uk/eclipse/software/loops/

24

Rejected Ideas

● Nondeterministic iteration
Once the termination conditions are met, the loop terminates.
Allowing more iterations on backtracking seems too error-prone.

● Better support for while/until-loops
Makes the semantics much more complex.

● Clearly separate iterators and aggregators
Would lose some multi-directionality, but a good idea with modes.

● More/less iterator shorthands
A matter of taste.

25

Loops and Arrays

Array notation makes loops even more useful:
…,

 (for(I,1,N), param(Board,N) do
 (for(J,I+1,N), param(Board,I) do
 Board[I] #\= Board[J],
 Board[I] #\= Board[J]+J-I,
 Board[I] #\= Board[J]+I-J
)
).

26

Bounded Quantification

● “A priori” Bounded Quantification
(Barklund and Bevemyr (Reform Prolog) 1993)
(Barklund and Hill (Gödel) 1995)
(Apt 1996)
Mathematical modelling languages

Quantification over finite sets:
pos_list(List) :- ∀ X ∈ List X > 0.
pos_array(A,N) :- ∀ I ∈ 1..N A[I] > 0.

● Bounded Quantification (Voronkov 1990)
More powerful due to list-suffix quantifier
Termination can depend on quantified formula
Turing-complete

27

Mapping with Bounded Quantifiers (BQ)

● Mapping of lists is impossible with a priori BQ
add_one_to_all(Xs,Ys) :- ∀X∈Xs ∀Y∈Ys Y is X+1.
Does not work: No concept of “corresponding elements”

● A priori BQ needs arrays
add_one_to_all(A,B) :- ∀I∈1..N B[I] is A[I]+1.
Indeed all authors introduce arrays into their proposed languages.
But still cannot map a list to an array …

● Voronkov’s full BQ can express list mapping
However, very unintuitive

● Loop solution:
We have a concept of implicitly ordered iteration steps

28

Aggregation with Bounded Quantifiers

● Aggregation not covered by basic a priori BQ

● Specific aggregation operators must be introduced
e.g. minimum, maximum, sum, …
sum_list(Xs,S) :- S=ΣX : X∈Xs.

● Loop solution:
The fromto-specifier can function as iterator and aggregator.
Any aggregation function can be expressed.

	Logical Loops
	Overview
	Motivation
	Iteration (over list elements)
	Iteration (over range of numbers)
	Aggregation
	Mapping
	Programming idioms covered
	General Form
	The generic fromto-iterator
	Transformation scheme
	Sample translation
	Loops vs. Recursion
	Abstraction
	Loops vs. Higher-Order Constructs (1)
	Loops vs. Higher-Order Constructs (2)
	Loops vs Higher-Order Constructs (3)
	Loops vs. Bounded Quantification
	Expressive Power of Loops (1)
	Expressive Power of Loops (2)
	Evaluation criteria
	Programmer Acceptance
	Conclusion
	Rejected Ideas
	Loops and Arrays
	Bounded Quantification
	Mapping with Bounded Quantifiers (BQ)
	Aggregation with Bounded Quantifiers

