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Overview

● A general iteration construct for Prolog and 
Prolog-based (CLP) languages

● Definition via program transformation

● Comparison with alternatives
Recursion
Higher-order constructs
Bounded Quantifiers

● Expressive Power

● Experience
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Motivation

Introduced in ECLiPSe to support

● Prolog beginners
Provide a familiar feature: loops

● Application writers
Improved productivity, code structure, maintainability

● Constraint Problem Modellers
Provide equivalent of bounded quantification
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Iteration (over list elements)

● Replace this

write_list(List) :-
     write("List: "),
     write_list1(List).

write_list1([]).
write_list1([X|T]) :-
     write(X),
     write_list1(T).

● With this

write_list(List) :-
     write("List: "),
     ( foreach(X,List) do

        write(X)
).
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Iteration (over range of numbers)

● Replace this

write_nat(N) :-
write(“Numbers: "),
write_nat1(0,N).

write_nat1(N, N) :- !.
write_nat1(I0, N) :-

I is I0+1,
write(I),

      write_nat1(I, N).

● With this

write_nat(N) :-
     write(“Numbers: "),
     ( for(I,1,N) do

write(I)
).
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Aggregation

● Replace this

sumlist(Xs, S) :-
sumlist(Xs, 0, S).

sumlist([], S, S).
sumlist([X|Xs], S0, S) :-

S1 is S0+X,
sumlist(Xs, S1, S).

● With this

sumlist(Xs, S) :-
(   foreach(X,Xs),
    fromto(0,S0,S1,S)
do
    S1 is S0+X
).

iterate

aggregate
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Mapping

● Replace this

map :- …,
add_one(Xs, Ys), ….

add_one([], []).
add_one([X|Xs], [Y|Ys]) :-

Y is X+1,
 add_one(Xs, Ys).

● With this

map :- …,
(   foreach(X,Xs),
    foreach(Y,Ys)
do
    Y is X+1,
), ….

construct

iterate



8

Programming idioms covered

Fully:

● Iteration

● Aggregation

● Mapping

Partly:

● Filtering

● While-loop
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General Form

foreach(Elem, List) list iterator / aggregator

foreacharg(Arg, Structure) structure iterator

count( I, Min, Max) integer iterator / aggregator

for( I, Min, Max [,Step]) numeric iterator

param(X1, X2, …) constant iterator

fromto(First, In, Out, Last) generic iterator / aggregator

( IterationSpecs  do  Body )
sequence of
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The generic fromto-iterator

( fromto(First, In, Out, Last) do … In→Out … )

( fromto(First, In, Out, Last) do … In→Out … )

( fromto(First, In, Out, Last) do … In→Out … )

Fromto can express all other iterators, e.g.

fromto(List, [X|Xs], Xs, [])   ⇔ foreach(X,List)
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Transformation scheme

A goal
…,( IterationSpecifiers do Body ), …

Is replaced by
…, PreCallGoals, µ(CallArgs), …

With an auxiliary predicate µ defined as
µ(BaseArgs) :- !.
µ(HeadArgs) :-

PreBodyGoals,
Body,
µ(RecArgs).
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Sample translation

 ?- ( foreach(X,List), count(I,N0,N), fromto(0,S0,S1,Sum) do
           S1 is S0+X
     ).

 ?-  From is N0-1,                    % PreCallGoals
     do_1(List, From, N, 0, Sum).   % Initial call

 do_1([], _1, _1, _2, _2) :- !.         % Base clause
 do_1([X|_1], _2, _3, S0, _4) :-        % Recursive clause head
        I is _2 + 1,  % PreBodyGoals
        S1 is S0+X,                     % Body
        do_1(_1, I, _3, S1, _4).        % Recursive call
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Loops vs. Recursion

● Conciseness
Auxiliary predicate and its arity are hidden.

● Modifiability
Add/remove single iteration specifier rather than argument(s) in 4 places.

● Structure
Nested loops can be clearer than a flat collection of predicates.
Iteration specifiers group related information together.

● Abstraction
Intention of iteration is explicit.
Fromto can help beginners understand the concept of accumulators.
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Abstraction

 reverse(L, R) :-
 (   fromto(L, [X|Ls], Ls, []),

    fromto([], Rs, [X|Rs], R)
do
    true
).

Single 
argument

Argument pair
(accumulator) reverse(L, R) :- do_2(L,[],R).

 do_2([],R,R) :- !.
 do_2([X|Ls],Rs,R) :- do_2(Ls,[X|Rs],R).

Symmetry
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Loops vs. Higher-Order Constructs (1)

Higher-Order constructs for similar tasks:

map(plus(1),Xs,Ys)      ( foreach(X,Xs), foreach(Y,Ys) do
                            plus(1, X, Y)
                        )
foldl(plus,Xs,0,Sum)    ( foreach(X,Xs), fromto(0,S0,S1,Sum) do
                            plus(X,S0,S1)
                        )
filter(<(5),Xs,Ys)      ( foreach(X,Xs), fromto(Ys,Ys1,Ys0,[]) do
                            ( X > 5 -> Ys1=[X|Ys0] ; Ys1=Ys0 )
                        )
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Loops vs. Higher-Order Constructs (2)

More realistic comparison with a lambda-term syntax:

  foldl(lambda([X,S0,S1], S1 is S0+X), Xs, 0, Sum)

foreach(X,Xs), fromto(0,S0,S1,Sum) do S1 is S0+X

Loop formulation has same size and better grouping
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Loops vs Higher-Order Constructs (3)

Higher-Order map/fold/filter

● Data structure (list) specific

● Arbitrary traversal orders

● foldl / foldr symmetry

● Families needed: map/(2+N), 

fold/(2+2N), filter/(2+N)

● Combinations needed:

map_foldl/5, …

● Higher-order-typed arguments

Do-loop

● Any data structure (fromto)

● Only iteration / tail recursion

● Only efficient foldl-equivalent

● Arbitrary number of iteration 

specifiers allowed

● Arbitrary combinations of 

iteration specifiers allowed

● Same typing as recursive form

Claim: Higher-order constructs are powerful, but not the best for iteration 
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Loops vs. Bounded Quantification

● Quantification over finite sets
Mathematical modelling languages (AMPL and others)
Extension to LP (Voronkov 90, Barklund et al 93/95, Apt 96)
  pos_list(List) :- ∀ X ∈ List     X > 0.
  pos_array(A,N) :- ∀ I ∈ 1..N  A[I] > 0.

● But: mapping of lists is impossible
  add_one_to_all(Xs,Ys) :- ∀X∈Xs ∀Y∈Ys  Y is X+1.
Does not work:  No concept of “corresponding elements”
Needs arrays to be useful !

● But: aggregation operators
E.g. minimum, maximum, sum, … must be introduced separately
  sum_list(Xs,S) :- S=ΣX : X∈Xs.
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Expressive Power of Loops (1)

● We can write a while-loop, albeit awkwardly:
    (

   fromto(cont, _, Continue, stop)
    do
        ( termination_condition(…) ->
            Continue = stop
        ;   Continue = cont
        ),

  …
    )
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Expressive Power of Loops (2)

A recursion-free meta-interpreter for pure Prolog:

solve(Q) :-
    ( fromto([Q], [G|C0], C1, []) do

   solve_step(G, C0, C1)
  ).

solve_step(true,  C, C).
solve_step((A,B), C, [A,B|C]).
solve_step( A,    C, [B|C]) :- clause(A, B).
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Evaluation criteria

A language feature should

● Fit with existing language concepts / user ideas
“Principle of least astonishment”

● Provide a clear advantage
Code size, elegance, maintainability, robustness, …

● Not have an overhead cost
Otherwise programmers will use lower-level methods
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Programmer Acceptance

Loops have been in ECLiPSe officially since 1998.

Analysis of commerical code developed with ECLiPSe:

● Application A (1997-2001)
254 predicate in 24 modules
34 loops

● Application B (2000-2002)
528 predicates in 35 modules
210 loops
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Conclusion

● Language extension with a minimum of new concepts
no types, modes, arrays were needed

● Efficiently implementable
virtually no runtime overheads

● Accepted by programmers
this has always been a problem with higher-order constructs

● Translation code available at
http://www.icparc.ic.ac.uk/eclipse/software/loops/
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Rejected Ideas

● Nondeterministic iteration
Once the termination conditions are met, the loop terminates.
Allowing more iterations on backtracking seems too error-prone.

● Better support for while/until-loops
Makes the semantics much more complex. 

● Clearly separate iterators and aggregators
Would lose some multi-directionality, but a good idea with modes.

● More/less iterator shorthands
A matter of taste.
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Loops and Arrays

Array notation makes loops even more useful:
…,

 ( for(I,1,N), param(Board,N) do
           ( for(J,I+1,N), param(Board,I) do
                Board[I] #\= Board[J],
                Board[I] #\= Board[J]+J-I,
                Board[I] #\= Board[J]+I-J
            )
       ).
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Bounded Quantification

● “A priori” Bounded Quantification
( Barklund and Bevemyr (Reform Prolog) 1993 )
( Barklund and Hill (Gödel) 1995 )
( Apt 1996 )
Mathematical modelling languages

Quantification over finite sets:
pos_list(List) :- ∀ X ∈ List     X > 0.
pos_array(A,N) :- ∀ I ∈ 1..N  A[I] > 0.

● Bounded Quantification (Voronkov 1990)
More powerful due to list-suffix quantifier
Termination can depend on quantified formula
Turing-complete
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Mapping with Bounded Quantifiers (BQ)

● Mapping of lists is impossible with a priori BQ
add_one_to_all(Xs,Ys) :- ∀X∈Xs ∀Y∈Ys  Y is X+1.
Does not work:  No concept of “corresponding elements”

● A priori BQ needs arrays
add_one_to_all(A,B) :- ∀I∈1..N  B[I] is A[I]+1.
Indeed all authors introduce arrays into their proposed languages.
But still cannot map a list to an array …

● Voronkov’s full BQ can express list mapping
However, very unintuitive

● Loop solution:
We have a concept of implicitly ordered iteration steps
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Aggregation with Bounded Quantifiers

● Aggregation not covered by basic a priori BQ

● Specific aggregation operators must be introduced
e.g. minimum, maximum, sum, …
sum_list(Xs,S) :- S=ΣX : X∈Xs.

● Loop solution:
The fromto-specifier can function as iterator and aggregator.
Any aggregation function can be expressed.
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