
ECLiPSe Build-and-Test Setup Guide
Author: Joachim Schimpf, Andrew Cheadle, Kish Shen
Date: 2006-11-24
Version: 5
Relates to: ECLiPSe 6.0
History: Version 1, 2006-06-23, Version 2, 2007-05-08, Version 3, 2007-12-03, Version 4:
2008-09-12, Version 5: 2008-10-29

This document describes how to set up all the tools necessary to compile and test the ECLiPSe
Constraint Logic Programming System on different operating systems and hardware architectures.

Table of Contents
ECLiPSe Build-and-Test Setup Guide...1

Table of Contents ... 1
Architectures ... 3
Environment settings .. 3
Software Tools required ... 4
Installation Instructions for Tools .. 6

General Gnu Software .. 6
Windows Crosstools ... 6
Windows NSIS Installer ... 6
OCaml (Objective Caml) .. 7
HeVeA .. 7

Getting the Sources ... 9
Source download .. 9
CVS - General .. 9
SourceForge CVS – pserver read-only access .. 9
SourceForge CVS – ssh developer access .. 9

Third-Party Software Components ... 11
Gmp .. 11
Java ... 12
Tcl/Tk ... 12
COIN-OR OSI .. 13
CPLEX ... 16
Xpress-MP .. 17
Gap ... 17
FlexLM ... 17
Grappa .. 17
Graphviz ... 17
MySQL ... 17

Manual Build .. 19
Configuration options ... 20

Adding Contributions to ECLiPSe ... 20
Manual Test .. 21
Automated Build-and-Test ... 22
Architecture-specific Hints ... 22

Mac OS X on Power PC/Intel .. 22
Solaris 10 on Intel x86 and x86_64 .. 22

Windows ... 23
Pitfalls ... 23
Using the SourceForge Compile Farm ... 24
Hints for Porting to New Platforms .. 24

Architectures
ECLiPSe can be built for a variety of machine architecture/operating system combinations, for
example

Architecture/Operating System ECLiPSe architecture ID
Solaris 5.5-5.9, sparc 32 bit sparc_sunos5
Solaris 5.10, x86 32-bit i386_sunos5
Solaris 5.10, x86 64-bit x86_64_sunos5
Linux, x86 32-bit, many variants i386_linux
Linux, x86 64-bit (x86-64, AMD64) x86_64_linux
Windows NT/2000/XP, x86 32-bit i386_nt
MacOS-X, Power PC ppc_macosx
MacOS-X, x86 (Intel) i386_macosx

DEC Alpha, Linux 64-bit alpha_linux

The ECLiPSe architecture ID is used throughout the documentation and the system, e.g. to label
architecture-dependent sub-directories and the like.

ECLiPSe 5.10 is designed to be built on UNIX-like architectures, with the Windows version being
cross-built. Earlier Windows versions were built with a native Windows compiler – the
corresponding project files are not used in 5.10.

Environment settings
For building ECLiPSe, the following environment variables need to be set:

•ARCH – the ECLiPSe architecture id, see above

•CVSROOT and CVS_RSH – location and shell for accessing the source repository

•ECLIPSETOOLS – location of software tools, see below

•ECLIPSETHIRDPARTY – location of support software, see below

•JAVA_HOME – location of Java development system, used to find include files when building
the Java/ECLiPSe interface

•PATH – might need to be extended to include the $ECLIPSETOOLS/bin and
$ECLIPSETOOLS/$ARCH/bin.

•OSTYPE – this is preset for many systems running bash. It is used to determine the platform
specific directory include path in some versions of Java’s native AWT interface:
$JAVA_HOME/include/$OSTYPE, to link in the file jawt_md.h while building the Java
interface. Unfortunately, both the exact path for the file, and the value of OSTYPE, may vary in
different versions of Javas and shells, so OSTYPE may need to be explicitly changed to the
value needed.

For running ECLiPSe tests:

•ARCH – see above

•JRE_HOME – location of Java runtime environment, used to find the java executable (in
$JRE_HOME/bin) and jar files (in $JRE_HOME/lib)

Software Tools required
If one wants to build ECLiPSe for several architectures, then it is makes sense to choose one
primary architecture, which has all the tools installed, and make the others secondary
architectures. The primary architecture is then used to build architecture-independent components
of the system (e.g. the documentation, precompiled ECLiPSe files), while architecture-dependent
components must be built on each architecture (except for those that can be cross-built, see below).
The most convenient choice for the primary architecture is currently i386_linux, due to the easy
availability of the tools.

The following tools are needed for all build-architectures:

Tool Remarks Recommended Architecture
sh Bourne shell sufficient, bash useful All
gmake gnu-make features required All
gcc recommended version 3.3-3.4, 4.1, 4.2

(not 4.3 – generates slow code)
All

binutils needed for ar(1) All
tar gnu tar (Solaris tar has no z option) All

The following are in principle only needed on a single architecture. Autoconf is not needed for a
pure build, but only when porting to new architectures.

Tool Remarks Recommended Architecture
cvs To access the ECLiPSe source repository any
autoconf only needed to change configure scripts any
m4 gnu m4, for autoconf any

The next group of tools is used for building the documentation, and is therefore only required on
one architecture:

Tool Remarks Recommended Architecture
latex2e Standard Linux package i386_linux
ghostscript version 8.53 at least i386_linux
hevea for latex-to-html conversion i386_linux
ocaml for building hevea i386_linux

The Windows architecture i386_nt is cross-compiled. This has been done and tested only on the
i386_linux host architecture. The following tools are needed:

Tool Remarks Recommended Architecture
mingw32 compiler tool chain for i386_nt cross-build i386_linux
NSIS Windows installer i386_linux

A few other tools should be considered for convenience:

Tool Remarks Recommended Architecture
tkcvs or
similar

GUI for CVS and SVN Any

Installation Instructions for Tools
All tools can of course be installed by a system administrator in the standard locations of the local
setup. This makes sense in particular for standard components like gcc.

•For Linux, these can be installed from binary packages, eg. in rpm format as super user

•For Solaris, many tools are available at sunfreeware.com. They are installed using pkgadd as super
user.

•For Mac OS X, the tools are included in a CD that comes with the computer, and can also be
downloaded from AppleDeveloper Connection (ADC) website connect.apple.com.

If this is not possible, tools can also be installed in a private location by a restricted user. In the
following, we assume that everything is installed from sources, and goes below the directory
$PREFIX, and that we a using a bash shell. The following two locations should then be added to the
user's PATH:

$PREFIX/bin:$PREFIX/$ARCH/bin
where $ARCH is the ECLiPSe architecture ID explained above.

General Gnu Software
GNU software is usually installed from sources and has a common installation procedure. The
following applies e.g. to tar, binutils, m4, bison, flex, autoconf, gmake. These can be downloaded
from any site that carries GNU software, e.g. www.gnu.org.

1.Make sure you have these settings:
export ARCH=sparc_sunos5 or your architecture
export ECLIPSETOOLS=/vol/Eclipse/tools or your chosen location
PREFIX=/vol/Eclipse/tools
EXECPREFIX=$PREFIX/$ARCH

2.Unpack the downloaded sources (usually a .tar.gz file) in $PREFIX/src

3.Cd to the resulting directory, then do:
./configure --prefix=$PREFIX –exec-prefix=$EXECPREFIX
make install

Windows Crosstools
Install the cross compiler (linux->mingw32msvc) from the binary package at

•http://www.libsdl.org/extras/win32/cross

under $PREFIX/i386_linux/ where it makes a subdirectory cross-tools. Although it is meant to be
unpacked under /usr/local, it works without setting any paths etc, just by calling the executables.
The include directories get found relative to the binary path name.

Windows NSIS Installer
The NSIS-based ECLiPSe-Windows-installer is cross-built on i386_linux. The NSIS builder must
therefore be installed on i386_linux. Obtain the latest source tarball and the matching zip release
for Windows. Build the POSIX only version of the binary (don’t cross-compile it) - use the
command:

scons SKIPSTUBS=all SKIPPLUGINS=all SKIPUTILS=all SKIPMISC=all PREFIX=…
PREFIX_BIN=… PREFIX_CONF=… PREFIX_DATA=…

Unzip the zip release in the location where you wish to install nsis. The ‘PREFIX’ options above

http://www.libsdl.org/extras/win32/cross

should be set to the correct path for this location. Move the makensis binary from the build
directory of the source release to the zip release. Ensure the makensis binary is in the binary path.

OCaml (Objective Caml)
This is required for compiling HeVeA, and should be built before building HeVeA. It can be
downloaded from:

•http://caml.inria.fr/ocaml/release.en.html

As with HeVeA, this is only required for architectures that you intend to build your documentation
on.

1.Set the environment variables as for building the Gnu software

2.Unpack and cd into the ocaml directory, then do:
./configure -prefix $PREFIX -bindir $EXECPREFIX/bin
make world
make opt
umask 022
make install
make clean

make opt should be done for platforms where ocaml has native code support (e.g. i386_linux)). This
will allow hevea to run independently of ocaml.

HeVeA
Translator from LaTeX to HTML. Used to build the html docs from the latex sources. The source
can be obtained from

•http://pauillac.inria.fr/hevea

This is only needed on platforms where you intend to build the documentation.

1.First, build ocaml as described above.

2.Unpack the downloaded tarball and cd into the hevea directory

3.Edit the Makefile, changing the entries for PREFIX, LIBDIR, BINDIR, DIR at the start of the
file to the following:

 # Compile using ocamlopt
 TARGET=opt
 # Use ocamlc, for targets that do not support native code for ocaml:
 # TARGET=byte
 # Install prefix
 PREFIX=$(PREFIX)
 # Library directory of hevea
 LIBDIR=$(PREFIX)/lib/hevea
 # Where to install programms
 BINDIR=$(PREFIX)/$(ARCH)/bin
 # Install prefix prefix
 DESTDIR=
 #Where to install hevea.sty
 LATEXLIBDIR=$(PREFIX)/lib/hevea
 ############### End of configuration parameters
 SUF=
 DIR=$(BINDIR)/

http://pauillac.inria.fr/hevea
http://caml.inria.fr/ocaml/release.en.html

4.Copy hevea.sty in the hevea toplevel directory to a place where LaTeX can find it (i.e. into a
directory given in the TEXINPUTS environment variable). Alternatively, this can be done by
setting LATEXLIBDIR in the Makefile.

5.In the hevea directory, do:
 make
 make install

Getting the Sources
The ECLiPSe sources can be obtained either by downloading a package from a web site that carries
ECLiPSe distributions, or by accessing the master CVS repository on sourceforge.net. The
ECLiPSe project name on sourceforge is eclipse-clp.

Source download
Find a web site that carries ECLiPSe distributions (e.g. sourceforge file releases, or eclipse-clp.org).
Select a release and download eclipse_src.tgz from the group of common/platform independent
files. Unpacking this will create a directory called Eclipse, containing the full sources.

CVS - General
You can use the cvs command (or a GUI for cvs) to get a local copy of the sources. See below for
how to specify the repository. For example, to get a read-only copy of the 5.10 release sources with
the latest verified patches, call

cvs export –r last_successful_patches_5_10 Eclipse
Here, last_successful_patches_5_10 is a cvs tag. The kinds of tags that are commonly used in the
ECLiPSe cvs are:

• rel_X_Y: a tag marking the point where release X.Y was made.

• patches_X,Y: a branch tag, marking the branch started with release X.Y. All patches to this
release are on this branch, while major developments are on the main branch.

• last_successful_patches_X_Y, last_successful_main_branch: tags marking the last version
on a branch that was successfully built and tested in the nightly builds. If you want to build
a particular release, use such a tag for checking out.

• merge_DATE: marks points on branches where the side branch was merged into the main
branch.

The repository contains two modules, Eclipse (the full sources) and Tests (the test suite).

SourceForge CVS – pserver read-only access
There are two ways to access the sourceforge CVS server. The simpler one is anonymous pserver-
access, which is read-only, but less secure and might not work from behind a firewall. Set and
export

CVSROOT=:pserver:anonymous:@eclipse-clp.cvs.sourceforge.net:/cvsroot/
eclipse-clp
Then use cvs commands as above. Note that you cannot commit any changes!

SourceForge CVS – ssh developer access
First, register with the eclispse-clp sourceforge project:

1. You need to have a SourceForge user name: go to http://sourceforge.net and create an ac-
count, say jsmith

2. You must be registered as a developer with the eclipse-clp project. Contact one of the pro-
ject admins (jschimpf, kish_shen, andy_cheadle, etc) and ask to be added as a developer.

Generate an ssh key pair for access to sourceforge (in the following, replace john with the user
name on your home machine, and jsmith with your sourceforge user name):

http://sourceforge.net/

 % ssh-keygen -t dsa -C "john@home"
 Generating public/private dsa key pair.
 Enter file in which to save the key (/homes/john/.ssh/id_dsa):
/homes/john/.ssh/id_dsa_sf
 Enter passphrase (empty for no passphrase):
 Enter same passphrase again:
 Your identification has been saved in /homes/john/.ssh/id_dsa_sf.
 Your public key has been saved in /homes/john/.ssh/id_dsa_sf.pub.
 The key fingerprint is: …

Submit the contents of .ssh/id_dsa_sf.pub to sourceforge via the Account Maintenance page
(Log In, Account Options, Edit SSH Keys for Shell/CVS). You need to wait a while for this to be-
come effective, an hour or so.
If you want to avoid having to type your passphrase all the time, start an ssh-agent on your home
machine, and add the key you generated above:

 ssh-add /homes/john/.ssh/id_dsa_sf

Just to check whether password-less ssh is now working, try to log in to the SourceForge shell serv-
er (you should be logged in without password or passphrase prompt):

 ssh jsmith@shell.sf.net

For Cvs access set:

 CVS_RSH=ssh
 CVSROOT=:ext:jsmith@eclipse-clp.cvs.sourceforge.net:/cvsroot/eclipse-clp
 export CSV_RSH CVSROOT

You can then use cvs and tkcvs as above. E.g. to check out the latest development sources:

 cvs checkout Eclipse

Third-Party Software Components

As opposed to the tools above, the following are components that ECLiPSe includes or interfaces
to. They must be available at ECLiPSe build time to provide include files or libraries to link against.
However, a very basic core of ECLiPSe can be built without any of these components.

Note on cross-compiling for i386_nt If you are cross-compiling ECLiPSe for Windows, you will
probably need to cross-compile the third-party components as well. In this case, the configure for
each component needs to know it is configuring for a cross-compile. A CONFIG_SITE file needs to
be defined, specifying where the various tools are. For example, if your mingw cross-tool is
installed in <ECLIPSETOOLS>/i386_linux/cross-tools::

CC=$ECLIPSETOOLS/i386_linux/cross-tools/bin/i386-mingw32msvc-gcc

CXX=$ECLIPSETOOLS/i386_linux/cross-tools/bin/i386-mingw32msvc-c++

LD=$ECLIPSETOOLS/i386_linux/cross-tools/bin/i386-mingw32msvc-ld

AR=$ECLIPSETOOLS/i386_linux/cross-tools/bin/i386-mingw32msvc-ar

AS=$ECLIPSETOOLS/i386_linux/cross-tools/bin/i386-mingw32msvc-as

NM=$ECLIPSETOOLS/i386_linux/cross-tools/bin/i386-mingw32msvc-nm

STRIP=$ECLIPSETOOLS/i386_linux/cross-tools/bin/i386-mingw32msvc-strip

RANLIB=$ECLIPSETOOLS/i386_linux/cross-tools/bin/i386-mingw32msvc-ranlib

DLLTOOL=$ECLIPSETOOLS/i386_linux/cross-tools/bin/i386-mingw32msvc-dlltool

OBJDUMP=$ECLIPSETOOLS/i386_linux/cross-tools/bin/i386-mingw32msvc-objdump

RESCOMP=$ECLIPSETOOLS/i386_linux/cross-tools/bin/i386-mingw32msvc-windres

OS_INCLUDES="-isystem $ECLIPSETOOLS/i386_linux/cross-tools/i386-mingw32msvc/include"

ac_cv_func_select='yes'

ac_cv_func_gethostname='yes'

ac_cv_func_getpagesize='yes'

you can then set CONFIG_SITE environment variable to the file with the above information, and
then run configure with the options

configure –build=i586-pc-linux-gnu –host=i386-mingw32msvc …

Gmp
This is the Gnu Multi-precision Package (www.swox.com/gmp) and is used to implement
ECLiPSe’s bignum and rational arithmetic. ECLiPSe can be built without it, but then integers are
limited to 32 or 64 bits, and the rational number type is not available. ECLiPSe 5.10 requires GMP
4.1. The configure script can find this either in a standard location, or under
$ECLIPSETHIRDPARTY/gmp4.1.

http://www.swox.com/gmp

GMP 4.2 can also be used with ECLiPSe. This have been tested on Intel Mac OS X. However,
some of the conversion from rationals to floats gives very slightly different results from 4.1 (e.g.
float(1_10) gives 0.09999999.. instead of 0.1).

Intel Mac OS X specific notes:
Note this applies only to Intel and not PPC Macs. Unfortunately, Intel Mac OS X is not officially
supported by GMP. In order to compile GMP with some assembler support for the critical routines,
the source have to be modified:

Untar GMP, and go into the gmp source directory, and do the following:

 cd mpn/x86

 rm *dive_1* */*dive_1* */*/*dive_1*

 rm */*mode1o* */*/*mode1o*

this can then be followed by the normal configure and make.

The .dylib version of the library may also need to be manually generated, as the build process
apparently does not produce this automatically.

Java
Java must be installed on a machine in order to build ECLiPSe's Java interface, the JRE must be
installed in order to run ECLiPSe with the Java interface. The version should be at least 1.4.

• The configure script tries to find Java in $ECLIPSETHIRDPARTY/java/$ARCH/java or
otherwise in a number of standard locations. To specify a different location, either set the
JAVA_HOME environment variable, or give a --with-java=<location> argument to the
configure script.

• Set JRE_HOME environment variable before testing ECLiPSe. On Mac OS X, this should
be set to the same path as JAVA_HOME.

Tcl/Tk
Tcl/Tk (www.tcl.tk) must be installed to build the Tcl/Tk interface. The recommended version is
8.5. The configure script looks for the installation under $ECLIPSETHIRDPARTY/tcltk<version>/
$ARCH

with subdirectories include/ (for tcl.h etc) and lib/ (for shared libs and tcl subdirectory). These are
accessed for building the tcl interface, and by the PACK script to create the tcltk-package for the
distribution.

For Mac OS X, two Tcl/Tk interfaces can be built: an X11 version like other Unix/X11 systems,
and a version using the native Aqua Graphical User Interface. X11 is provided with Mac OS X
since 10.3, although it may not be installed on the system by default. It can be installed from the
Mac OS X System CDs.

Tcl/Tk 8.4 or later should be built for both X11 and Aqua to allow both versions of the interface to
be built. The Aqua version is provided with recent versions of Mac OS X, so you may not need to
build it, but it can be built in the macosx subdirectory of both Tcl and Tk source, while the X11 can
be built in the unix subdirectory – you may need to specify Mac OS X specific flags, and to build
without framework, and also the “--with-x11” flag during configure. The X11 wish should have an

http://www.tcl.tk/

alias xwish to distinguish it from the Aqua wish (this is what the ECLiPSe RUNME script looks
for).

COIN-OR OSI
The eplex library can be interfaced to the open-sourced Open Solver Interface (OSI) of the COIN-
OR project (www.coin-or.org), which provides access to various Mathematical Programming
solvers, including open-sourced solvers from the COIN-OR project.

To build eplex for OSI, you need to first compile OSI, and the solvers you intend to use via OSI.
For solvers from the COIN-OR project, both OSI and the solver can be downloaded as one source
tree. :

Currently, the sources are configured to build OSI eplex using COIN-OR’s CLP/CBC solvers, and
SYMPHONY/CLP solvers. The files required for the eplex build should be placed in

$ECLIPSETHIRDPARTY/coin<version><OSIBUILD>/$ARCH

with the object files in lib subdirectory, and header files in include subdirectory.

<version> and <OSIBUILD> are configure script variables defined in ECLiPSe’s toplevel
configure script. <version> defines the solver(s) that are being interfaced to, and can be supplied by
the user as part of the '--with_osi' option when running configure, By default, the script will look for
clpcbc (for the CLP/CBC solvers) and symclp (for the SYMPHONY/CLP solvers).

<OSIBUILD> is used to specify a `build' version in the directory name. This is used mainly to
allow different versions of ECLiPSe to be built with different versions of the COIN-OR projects,
for example, CLP with (or without) AMD support.

The configure script will look in

$ECLIPSETHIRDPARTY/coin<version><OSIBUILD>/$ARCH/lib

for a file with the name $version to determine if eplex using the solver(s) defined by <version>
should be built or not, so this file needs to be added to the directory.

The different COIN-OR solvers share many components, but recent versions of the COIN-OR
projects no longer share a single source tree for these components, because these components may
no longer be completely compatible between the different projects. This is why configure looks in
distinct directories when building eplex for the different solvers, and it is strongly recommended
that the different projects be built from their own source directories -- this may present problems if
different versions of the shared components (in the form of dynamic load libraries in the third-party
directories) are required for the different projects, and so it is best to build the static versions of the
libraries and link these into the eplex library code.

The COIN-OR solvers can be built from a single source tree, with all the component COIN-OR
projects required, with the exception that some (optional) third-party components, such as AMD,
which needs to be built separately. For CBC/SYMPHONY, the CLP solver will be the default linear
solver used, and will be downloaded with the rest of source-tree. .

Download the source for the COIN-OR solver you want to build for from the project page for the
project -- follow the links from www.coin-or.org. For CBC, the trunk branch (instead of the the
default stable branch) is required by eplex, as features not found in the stable branch is used by
eplex. To obtain this, you may need to download directly from the version-controlled source tree
directly. Currently, Subversion (SVN) is the version control tool used, and to download the source,
you need to have Subversion installed on your system, and issue the following command:

svn co https://projects.coin-or.org/svn/Cbc/trunk <CBC>

https://projects.coin-or.org/svn/Cbc/trunk
http://www.coin-or.org/
http://www.coin-or.org/

where <CBC> is your local name for the directory where the CBC source tree will be downloaded
to. Note that this will download all the required COIN-OR projects, including CLP and OSI. [See
later for building CLP with AMD support]

For ease of handling builds for multiple architectures, we suggest you create a subdirectory in the
CBC/SYMPPHONY toplevel directory, and configure and build from there. We also suggest
generating the static .a libraries, as there are less problems linking these files. So do the following to
build the solver from source::

cd <COIN>
mkdir i386_linux
cd i386_linux
../configure --enable-static
make
make install

where COIN is the toplevel directory of your COIN source, and i386_linux is the name of the
platform you want to build for.

The configure script may try to look for a FORTRAN compiler and this may cause configure to fail
if it cannot find the compiler. A FORTRAN compiler is not needed for building
CBC/SYMPHONY, rerun configure with a ‘F77=unavailable’ flag if this occurs:

../configure -–enable-static F77=unavailable

Important note for users of gcc 3: gcc version 3 is apparently unable to correctly compile recent
(around 2008 onwards) Coin libraries with the default settings, because of bugs in the optimiser: the
generated library will seg fault with even the simplest MIP problem with CBC/CLP, and can also
return incorrect results. To compile COIN correctly with gcc 3, additional flags should be supplied
with configure:
OPT_CXXFLAGS=”-O2 -fno-omit-frame-pointer -momit-leaf-frame-pointer –DNDEBUG”
This should not be needed for gcc 4 (verified for 4.1+). Note that the COIN code built with gcc 4
will not load on a system with only a libstdc++.so from gcc 3 (in fact this seems to be even the case
between different versions of gcc 4, e.g. compiled with 4.2 and loading in 4.1).

After building the Cbc and/or SYMPHONY projects, the library files in lib directory and the
include files in include/coin directory should be copied to $ECLIPSETHIRDPARTY/coin/
$ARCH/{lib,include/coin} so that ECLiPSe can find them when building eplex.

The clpcbc eplex requires the compilation of CbcBranchUser.cpp and CbcCompareUser.cpp from
Cbc’s example directory to be compiled and copied to the thirdparty directories:

cd Cbc/example

make CbcBranchUser.o

make CbcCompareUser.o
cp *.o $ECLIPSETHIRDPARTY/coin/$ARCH/lib
cp *User.hpp $THIRDPARTY/coin/$ARCH/include

Building eplex with other solvers available through COIN-OR’s OSI interface should be
straightforward, as long as all the functionality goes through OSI. This requires adding a few lines
to coinplex.cpp in the icparc_solvers directory, and adding a new rule to the Makefile. The file
coinplex.cpp has the code for building eplex for GNU’s GLPK solver as an example for how the
modification can be done. However, to fully exploit the solver’s capabilities, you may need to add
specialised code for the solver, as is done (extensively) for CBC/CLP.

x86-64 Linux specific note: The compiler flag –fPIC is needed for some platforms (e.g.
x86_64_linux) to generate code that can be relocated (needed when the COIN libraries are linked to
the ECLiPSe eplex library). However, specifying that you want the static libraries during configure
for COIN may disable this. In such cases, you may need to supply the flag explicitly during
configure:

../configure –enable-static ADD_CXXFLAGS=”-fPIC” ADD_CFLAGS=”-fPIC”

Intel Mac OS X specific note: there may be some problems linking the static COIN libraries, due
to the use of assert macros: this uses vsprint() and eprintf(), which are missing with the standard
linking commands. Normally, assert macros are nops if compiled with the –DNDEBUG flag, but
several source files in Clp/src explicitly undef NDEBUG.

The easiest way to work around this is to use the dynamic .dylib libraries instead, but the COIN OSI
source can be modified by removing the undefs of NDEBUG in the source files in Clp/src, Cbc/src,
Osi/src/OsiClp , Cgl/src.

Cross-compiling for Windows note: recent versions of CoinUtils source (needed by both Cbc and
SYMPHONY) does not compile `out-of-the-box’ if cross-compiling for Windows with MinGW.
This is because the code has a macro for conditional compiling for Windows that fail with the
cross-compiler. This test needs to be changed so that the cross-compiling is detected correctly. In
the file <Coin>/CoinUtils/src/CoinTime.hpp, change the line
#if defined(_MSC_VER)
To
#if defined(_MSC_VER) || defined(_WIN32)
the defined(_MSC_VER) that should be changed is the one for the definition of
CoinGetTimeOfDay().

Compiling CLP with AMD support
The CLP/CBC solver code in eplex supports the use of the Interior Point/Barrier solver of CLP
from ECLiPSe 5.11 onwards. This solver requires code to support Cholesky factorisation; and the
default code provided with CLP is not very efficient. External code, such as University of Florida’s
Approximate Minimum Degree (AMD) ordering code, are much more efficient, and our tests have
shown that the barrier solver can be more than 2 order of magnitudes faster with the AMD code
than without.

With recent versions of CLP, the following steps are needed to compile CLP with AMD support:

• The AMD library has to be compiled. This code is available from
http://www.cise.ufl.edu/research/sparse/amd

• The file <Coin-Cbc>/Clp/src/Makefile.in needs to be modified:

o Add ClpCholeskyUfl.hpp to the files specified in
includecoin_HEADERS:

includecoin_HEADERS = \

 ../inc/config_clp.h \

 Clp_C_Interface.h \

 ClpCholeskyUfl.hpp \

 ClpCholeskyBase.hpp \

o Add –DUFL_BARRIER to the DEFS definition:
DEFS = @DEFS@ -DUFL_BARRIER

o Modify ADDLIBS to include the libamd.a generated by compiling the AMD library,
e.g.:
ADDLIBS = @ADDLIBS@ -L<AMD> -lamd

where <AMD> is the path to where the libamd.a file for the platform is.

• Copy amd.h (from <AMD>/Include) and UFconfig.h (from the UFconfig package used by
UFL AMD -- <AMD>/../UFconfig) to <Coin-Cbc>/Clp/src.

• Configure and build Cbc/Clp. Copy the resulting libraries, including libamd.a to the third-
party directory for use with ECLiPSe as described above. The configure script for ECLiPSe
determines if eplex_cbcclp code should be compiled with AMD by checking for libamd.a in
the Coin-Cbc third-party directory.

CPLEX
Needed to build an eplex-library that interfaces to the ILOG Cplex solver (www.ilog.com). Unpack
the original directory structure in $ECLIPSETHIRDPARTY/cplex<version>, which has
architecture-dependent subdirectories. These are named differently from the ECLiPSe conventions,
and also seem to change in different versions of CPLEX, select one appropriate directory for the
platform you want to build, and rename the directory according to ECLiPSe convention, e.g. for
i386_linux platform and CPLEX 11.0, rename the Linux directory in cplex110/lib/
(x86_rhel4.0_3.4) to i386_linux.

For Windows, CPLEX is installed by an installer, which installs (by default) the CPLEX files into
C:\ILOG\CPLEEX<version>. Some of these files/subdirectory need to be copied to
$ECLIPSETHIRDPARTY/cplex<version>:

CPLEX ECLiPSETHIRDPARTY/cplex<version>

bin\<cplexplatform>\cplex<version>.dll bin/i386_nt/cplex<version>.dll

include include

lib\<platform>\<type>*.lib lib/i386_nt/*.lib

http://www.cise.ufl.edu/research/sparse/amd

To build the eplex library with a version of CPLEX, the parameters for that version must be defined
in the file eplex_params.h in icparc_solvers directory of ECLiPSe. See that file for instructions to
add new parameters to the file if it is not already defined. A new rule to build the new version
would also need to be added to the Makefile.

Xpress-MP
Needed to build an eplex-library that interfaces to Dash Optimization’s XPRESS-MP solver
(www.dashoptimization.com). Set up under $ECLIPSETHIRDPARTY/xosl<version> a structure
with ARCH subdirectories for the different architectures and unpack the Xpress-MP versions there.

To build the eplex library with a version of XPRESS, the parameters for that version must be
defined in the file eplex_params.h in icparc_solvers directory of ECLiPSe. See that file for
instructions to add new parameters to the file if it is not already defined. A new rule to build the
new version would also need to be added to the Makefile.

Gap
Gap is a free system for computational algebra (www.gap-system.org). ECLiPSe has an interface to
it, and it is used for symmetry breaking. Gap is not needed for building Eclipse, only for running
tests of the symmetry library. To make this work, the gap executable must be in the PATH. Unpack
in $EXECPREFIX/lib and do

configure
make
cp bin/gap.sh ../../bin/gap

FlexLM
Needed to build an interface to the FlexLM licence manager. The configure script will look in
$ECLIPSETHIRDPARTY/flexlm<version>/$ARCH for the corresponding include and library
files. The last version known to work is 7.2.

Grappa
This is a Java library, required for building ECLiPSe’s visualisation tools. The configure script will
look in $ECLIPSETHIRDPARTY/grappa<version> to find the jar file. The version required is 1.2.
Can be found via www.graphviz.org .

Graphviz
Graphviz 1.10 (www.graphviz.org) is required to run the ECLiPSe Visualisation tools. It is not
strictly required for building those tools, since it is sufficient that the graphviz executables are
installed on the machine where ECLiPSe finally runs. However, if a graphviz distribution is
provided in $ECLIPSETHIRDPARTY/graphviz<version>/$ARCH during build, then the contents
of this directory will be bundled with the ECLiPSe distribution.

MySQL
MySQL 5.0 is needed to build lib(dbi), an ECLiPSe interface to the MySQL database. The
configure script will try to find include and library files in
$ECLIPSETHIRDPARTY/mysql<version>/$ARCH/{include/lib}.

They can be downloaded from http://dev/mysql.com/downloads .

For cross-compiling to Windows, a libmysql.dll.a has to be created from libmysql.dll. See the

http://dev/mysql.com/downloads
http://www.graphviz.org/
http://www.graphviz.org/
http://www.gap-system.org/

Makefile.in in Oci subdirectory of the ECLiPSe source for instructions on how to do this.

Manual Build
To build ECLiPSe from source

• Check out the module Eclipse from the repository or get it from a source distribution (see
Getting The Sources), and cd there.

• Make sure you have the necessary tools installed and in your PATH.

• Set up a directory of third party components if you want any of the related functionality. Set
ECLIPSETHIRDPARTY to point to it.

• Set ARCH to the ECLiPSe architecture id you want to build for.

• configure and make.

You should have the following environment settings:

 export ARCH=<architecture to build for>

this is the ECLiPSe architecture name as explained earlier in this document.

 export ECLIPSETHIRDPARTY=/vol/Eclipse/thirdparty

this points to the location of third-party components that ECLiPSe builds interfaces for, e.g. gmp,
cplex, xpress-mp, flexlm, graphviz, grappa. Configure will detect the presence of components there
and build interfaces if possible.

Simple build from toplevel directory (e.g. i386_linux, sparc_sunos5):

CONFIG_SITE=config.$ARCH ./configure
make -f Makefile.$ARCH

To build on multi-architecture machine (e.g. 64 bit build on 32/64 bit solaris), the configure scripts
needs to be told what the target architecture is:

export ARCH=x64_64_sunos5
CONFIG_SITE=config.$ARCH ./configure --build=x86_64-pc-solaris2.9
make -f Makefile.$ARCH

Similar for a cross build, e.g. for Windows:

export ARCH=i386_nt
CONFIG_SITE=config.$ARCH ./configure --host=i386-mingw32msvc
make -f Makefile.$ARCH

The documentation is a separate build target, and is created by invoking

make -f Makefile.$ARCH install_documents

ECLiPSe consists of several subsystems in subdirectories of their own. Each of them has its own
Makefile or Makefile.$ARCH in the subdirectory and can in principle be built separately, but they
are all configured via the toplevel configure script.

The results of the build go into new subdirectories lib, lib_xxx, include, doc and bin. These
directories comprise the binary ECLiPSe distribution.

Configuration options
The configure script accepts the following options to control inclusion of third-party components /
interfaces:
--with-osi[=versions]

Build ECLiPSe interface to COIN-OR Osi. You can optionally specify a version list, e.g.
"clpcbc sym". Default is to build all available versions.

--with-cplex[=versions]
Build ECLiPSe interface to ILOG Cplex. You can optionally specify a version list, e.g. "81
90". Default is to build all available versions.

--with-xpress[=versions]
Build ECLiPSe interface to Dash Xpress-MP. You can optionally specify a version list, e.g.
"1427 1525". Default is to build all available versions.

--with-java[=dir]
Build ECLiPSe/Java interface.If dir is given, this is taken as the Java installation to use,
otherwise the value of a JAVA_HOME environment variable is used, otherwise a number of
standard locations is searched for a Java installation. Default:yes

--with-flexlm[=version]
Build ECLiPSe interface to FlexLM. You can optionally specify a version preference list.
Default is to build first available.

--with-graphviz[=versions]
Copy graphviz executables into the installation. You can optionally specify a version list,
e.g. "1.10". Default is to use the first available version.

--with-mysql[=versions]
Build ECLiPSe database interface. You can optionally specify a version list, e.g. "50".
Default is to build the first available version.

Note that some of the standard GNU configure options, such as ‘--bindir’, are not supported
in the ECLiPSe configure script for historical reasons, even though they are listed when configure is
run with ‘--help’ option.

Adding Contributions to ECLiPSe
To add contributions to ECLiPSe, a directory for the source needs to be selected. The most likely
location for this is the Contrib directory, which is where contributions to ECLiPSe are normally
added. When ECLiPSe is built, the files are copied from their source locations to various library
directories, as determined by the various Makefile in each source directory. Files in Contrib
directory are copied to the lib_public directory, as specified by the Makefile. The platform specific
Makefiles (e.g. Makefile.i386_linux) is generated from Makefile.in during configure, and
Makefile.in needs to be modified so that the new files can be treated correctly. Generally, ECLiPSe
source (.ecl) or compiled (.eco) files are copied to platform independent directory, whereas platform
specific files (e.g. objective files, compiled from languages such as C). are placed into platform
specific directories within these library directories.

The ECLiPSe binary distributions are produced by copying the files in the library directories after

building ECLiPSe. This is done by the PACK script in ECLiPSe’s top-level directory; this script
may need to be modified so that the new contributions are correctly copied, but all the files in the
lib_public directory will be copied and should not require modification of the PACK script.

Manual Test
To run the test suite

• Check out the module Tests from the repository and cd there

• Invoke ./test_eclipse <name_of_eclipse_executable> to run all tests

• Optionally use e.g. –test-flags <flags> to exclude certain tests (no_eplex, no_tcl, no_gap) or
–only <subdir> to run only test in one subdirectory

Test failures will be printed, a full log goes into testlog.$ARCH. Further details can be found in the
README file.

Automated Build-and-Test
Automated build-and-test is controlled by the shell script BUILD_ROTD. Copy this script from the
top level directory of a checked-out Eclipse source tree to a location of your choice. Copy also the
configuration file site_info. Edit site_info to reflect the machine names and path names at your site.
Build-and-test is then performed by running the BUILD_ROTD script. Call BUILD_ROTD -? to get
documentation about the available options.

The script supports builds for multiple architectures on multiple machines. In release 5.9,

• the file system where the build is performed must be shared between all Unix machines
involved

• Window versions are cross-built on a Linux machine, and Windows test machines can be
remote with a separate file system

• The main build machine (the one where the BUILD_ROTD script is run) must be able to
perform password-less ssh to all other machines involved, including Windows. For that
purpose, the Windows machines should have cygwin installed, including ssh, and rsync (but
note that cygwin is only needed for the test system, not for installing or running ECLiPSe)

Architecture-specific Hints

Mac OS X on Power PC/Intel
The PPC and Intel Mac OS X are treated as separate platforms. For Power PC Macs, ARCH is set
to ppc_macosx, and for Intel Macs, ARCH is set to i386_macosx.

Mac OS X has some differences with other Unix. For the build, you may need to set
DYLD_LIBRARY_PATH (instead of the more standard LD_LIBRARY_PATH) so that ECLiPSe
can find the dynamic libraries.

There are also some subtle differences in how files are linked. In particular, standard C++ and gcc
libraries may need to be linked in, especially if static .a files are used. The exact libraries to link in
depends on the version of Mac OS X.

10.2: -lgcc (and/or –lstdc++ if linking static libraries generated from C++)

10.3: -lcc_dynamic (and/or –lstdc++) **UNTESTED – information from web

10.4 –L/usr/lib/gcc/i686*/* -lgcc (and/or –lstdc++)

 -L/usr/lib/gcc/powerpc*/* -lgcc (and/or –lstdc++)

Where */* are version specific and may vary with different versions of 10.4 – check your copy for
the exact path.

Currently, the configure files are configured to compile on 10.4. It may need to be changed if you
are compiling with earlier versions of Mac OS X.

Solaris 10 on Intel x86 and x86_64
ECLiPSe can be built on the free Solaris 10 system enhanced with open-source tools. On an AMD
64-bit machine, both 32-bit and 64-bit versions can be built (the corresponding ECLiPSe
architecture names are i386_sunos5 and x86_64_sunos5). This flexibility requires some care to
make sure that the correct tool executables and libraries get picked up. We recommend the
following setup:

•Create $ECLIPSETOOLS and make sure its bin directories are in the path before the /usr/sfw
and other system directories

•Get and install Gnu tar as gtar. Create a symbolic link $ECLIPSETOOLS/bin/tar to gtar to
make sure it is preferred over Solaris tar (which cannot handle long pathnames and does not
have a compress option).

•Get the gcc compiler package from sunfreeware.com (tested version is 3.4) and install in
standard location /usr/sfw. This uses the gcc compiler, the gas assembler and the native Solaris
linker.

•Create a script $ECLIPSETOOLS/i386_sunos5/bin/gcc
 #! /bin/sh
 exec /usr/sfw/bin/gcc -m32 “$@”
and a script $ECLIPSETOOLS/ x86_64_sunos5/bin/gcc
 #! /bin/sh
 exec /usr/sfw/bin/gcc -m64 “$@”
This ensures that gcc creates code corresponding to the setting of $ARCH

•LD_LIBRARY_PATH may have to be set to /usr/sfw/lib/64:/usr/sfw/lib:...

For the third-party components:

•Install Sun Java, both the 32 bit version and the 64 bit extension, e.g. as /usr/java. Then create a
directory $ECLIPSETOOLS/ x86_64_sunos5/jre containing symbolic links
 bin -> /usr/java/bin/amd64

 lib -> /usr/java/lib
and for 64-bit builds set JRE_HOME=$ECLIPSETOOLS/ x86_64_sunos5/jre. For 32-bit builds
JRE_HOME can be set simply to /usr/java/jre

•Build separate 32 and 64 bit versions for tcl/tk 8.4 from source

•For gap and graphviz, the 32 bit versions can be used with both 32 and 64-bit ECLiPSe.

•For building COIN projects, add ‘-m64 –fPIC’ to CFLAGS and ‘-m64’ to LDFLAGS

Windows
From ECLiPSe 6.0 onwards, the binary will not execute on Windows version that is older than NT
4.0 (e.g. the original Windows NT, Windows 95). It is unlikely that there are many systems that
still use these old version of Windows, but ECLiPSe can be compiled to run on such systems – this
requires telling the compilation that the target is older than Windows NT 4.0, by defining the
_WIN32_WINNT to be less than 0x400. For cross-compiling, this macro is set in the toplevel
configure.

Pitfalls
Here is a list of minor problems that have occured:

•On some machines, mktemp command does not understand –t option. Install new Gnu mktemp

•When manually checking out a main branch from CVS, some files will be missing (these are
files that were once added on a branch). This is a cvs bug that can be worked around by calling:
cvs update –D now; cvs update –A

•If a non-GNU tar is used to untar the archive, some of the longer file/path names can become
corrupted (for example, in the Java source files in the Visualisation directory). If this happens,
please use GNU tar if possible, or rename the files manually if not.

•If using Cygwin on Windows, make sure your Cygwin is configured to use Unix-style new
lines. Otherwise the various scripts will not run correctly and produce many errors.

We have experienced problems with the Windows Java Interface (ec_java.dll) when it is cross-built
on Linux with IBM-Java. Use Sun Java.

Using the SourceForge Compile Farm

SourceForge have withdrawn the Compile Farm service in Feb 2007, so this is no longer available.

Hints for Porting to New Platforms
Porting to other Unix or Unix-like platforms should be relatively straightforward, if tools needed to
build ECLiPSe are available for the platform.

Define a new name for ARCH to represent the platform – this should be in the form of <machine
type>_<ostype>. This should be added to the configure/configure.ac files at the toplevel directory,
along with any platform specific information that cannot be determined by the configure script.

A new file Platform_<ARCH>.java need to be added and Platform.java modified in

JavaInterface/src/com/parctechnologies/eclipse

to return the new platform type to the JavaInterface (see the other files to see what needs to be
done).

eclipse_arch.tcl in lib_tcl needs to be modified to return the platform type for the Tcl interface.

If the Windowing system is not X11, more changes may be needed in tkeclipse.tcl (also in lib_tcl).

Some assembler code is used in Shm/mutex.c to implement locks, but this is not needed for the
normal ECLiPSe, so the dummy locks can be used.

Some processor dependent code for controlling ECLiPSe arithmetic behaviour in the files
sepia/include/rounding_control.h, sepia/src/bip_arith.c, sepia/src/emu.c
may need to be modified for new processor types.

	Table of Contents
	Architectures
	Environment settings
	Software Tools required
	Installation Instructions for Tools
	General Gnu Software
	Windows Crosstools
	Windows NSIS Installer
	OCaml (Objective Caml)
	HeVeA

	Getting the Sources
	Source download
	CVS - General
	SourceForge CVS – pserver read-only access
	SourceForge CVS – ssh developer access

	Third-Party Software Components
	Gmp
	Java
	Tcl/Tk
	COIN-OR OSI
	CPLEX
	Xpress-MP
	Gap
	FlexLM
	Grappa
	Graphviz
	MySQL

	Manual Build
	Configuration options

	Adding Contributions to ECLiPSe
	Manual Test
	Automated Build-and-Test
	Architecture-specific Hints
	Mac OS X on Power PC/Intel
	Solaris 10 on Intel x86 and x86_64
	Windows

	Pitfalls
	Using the SourceForge Compile Farm
	Hints for Porting to New Platforms

