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1 The APPLAUSE FrameworkDuring the last decade a new programming paradigm called \logic programming" hasemerged. The best known representative of this new class of programming languages isProlog, originated from ideas of Alain Colmerauer in Marseille and Bob Kowalski in Edin-burgh. Programming in Prolog di�ers from conventional programming both stylisticallyand computationally, as it uses logic to declaratively state problems and deduction tosolve them. Hence logic programming belongs to the class of declarative programminglanguages.It is a truism that logic programming (LP) is no panacea to solve all problems. On thecontrary LP needs to be extended to provide a useful tool for solving real-life problems. Inthis report we will concentrate on solving combinatorial problems, such as scheduling andplanning problems, resource allocation problems or problems arising in decision support,ie. this report will focus on a technology to solve large-scale search problems. To meetthe requirements of such problems two essential extensions to the basic paradigm of logicprogramming were necessary.First logic programming was extended by the concept of constraints. In particular theintroduction of so called �nite domains constraints made it possible to solve large combi-natorial search problems. The essential idea was to use the constraints to prune the searchspace in an a priori way, thus shifting the basic search paradigm of logic programmingfrom a "generate and test" approach to a so called "constrain and generate" approach.With this new search paradigm the main drawback of "generate and test" is avoided, ie. torepeatedly generate candidate solutions which are later rejected. Very often combinatorialproblems occur in optimization tasks. In order to cope with such combinatorial optimiza-tion problems some constraint logic programming systems o�er optimization strategiesbased on branch & bound techniques.However, for real-life problems the remaining search space which needs to be explored canstill be very large. Hence it is quite obvious to exploit the inherent parallelism of sucha search procedure. In such a way constraints and parallelism complement each otherperfectly. Constraints are pruning the search space a priori and parallelism is speeding upthe search of what remains. Combined with branch & bound techniques even super-linearspeedups can be observed. In terms of logic programming parallelism supporting searchis called OR-parallelism. The introduction of OR-parallelism into the constraint logicprogramming framework is resulting in a parallel constraint logic system.These were horizons with which the �rst parallel CLP system was conceived. It was calledElipSys. The initial development of ElipSys was carried out within the ESPRIT projectEDS (European Declarative System) between 1989 and 1993. The goal of the EDS projectwas to develop a large-scale parallel database server equipped with two declarative pro-gramming languages, one based on LISP and one based on Prolog. ECRC was responsiblefor the Prolog based system and developed the parallel CLP system ElipSys. ElipSys wasdesigned with the aim of providing a high level tool for the exploitation of the processingpower being delivered by the new generation of general purpose multi-processors, witha particular focus on real-world and real-size problems in Operation Research and Arti-�cial Intelligence. In this respect, it was conceived as a valid alternative to imperativelanguages and their parallel extensions, since it relieves the programmer of the low-level7



tactical concerns associated with parallel programming and allows him/her to concentrateon the high-level strategic issues (eg. algorithm design). At the end of the EDS projectElipSys was at a �rst stage of maturity as a practical parallel programming system andit was available on various workstations and multiprocessors.Initial feedback from users within the EDS project highlighted the need for further devel-opment of the ElipSys environment. Since ElipSys was aimed at being a practical systemcollaboration and understanding of users' needs was crucial for its future e�ectiveness.These were the motivations which lead to launch the ESPRIT project APPLAUSE (Ap-plication & Assessment of Parallel Programming Using Logic). The initial platform onwhich APPLAUSE was built was ElipSys. In the course of the project ECRC decidedto integrate its di�erent logic programming systems into one leading edge system, calledECLiPSe. In particular, ECLiPSe integrates the ElipSys technology and became the newsupporting platform for the APPLAUSE project.The main objective of the APPLAUSE project was to support the emergence of parallelCLP as a leading programming technology and its implementations ElipSys / ECLiPSeas the corresponding programming systems by combining the e�orts of the providers ofthis important European technology with those of a set of end-users and applicationdevelopers well positioned in commercially important and challenging application areas.The approach adopted in the APPLAUSE project, to achieve the objective of movingparallel CLP to the market, was to build a number of credible demonstrations of its use.For this purpose, the APPLAUSE project has selected three commercially importantgeneric classes of applications and within each of these classes it has developed exploitableexemplars:� Planning & Scheduling� Decision Support� Multi-Agent SystemsFor Planning and Scheduling the project has built two major demonstrators for the Air-craft and Space Industry. The �rst one enhancing an existing planning system for aircraftproduction originally implemented in the sequential CLP system CHIP. The second appli-cation is a planning system for constructing optimized curricula for the training of aircraftpilots.For Decision Support, the project addressed two di�erent application domains: MolecularBiology and Environmental Monitoring and Control. In the former, two application do-mains have been considered. First, a system for protein sequencing and structure analysishas been developed and second a system for Genetic Map Construction. In the area ofEnvironmental Monitoring and Control, a pilot application for the evaluation, simulationand control of the pollution in the Venice Lagoon was developed.For Multi-Agent Systems, the project focused on the Tourism industry. A tourist advisorfor Greece was conceived.This report is structured into seven chapters. In this �rst chapter we will review themain technological concepts and the underlying platforms of the APPLAUSE project.8



The purpose of this chapter is provide enough insight to understand the technologicalbasis of this report. The second chapter contains a tutorial on parallelism and constraintsin ECLiPSe. This is a tutorial for the working programmer on the ECLiPSe parallelconstraint logic programming language. It assumes previous experience of ECLiPSe, orat least some version of Prolog, and introduces the parallelism and constraints features.Further details can be found in the ECLiPSe User Manual [ECL95] and the ECLiPSeExtension User Manual [ECL94]. The remaining chapters contain descriptions of thefollowing APPLAUSE applications:� PSAP: A Planning System for Aircraft Production;� TCO: Training Curriculum Optimization;� Using Parallel CLP to Predict Protein Topology;� A Decision Support System for the Venice Lagoon;� MaTourA: Multi-Agent Tourist Advisor.2 The APPLAUSE TechnologyThe power of logic programming languages rests on three mechanisms: uni�cation, re-lational form and nondeterministic computation. Constraint logic programmingis contributing to all these aspects: it extends uni�cation to constraint solving in newconstraint domains richer than the usual \Herbrand Universe". It allows terms moreexpressive than uninterpreted Herbrand terms to be handled, and it provides new com-putation rules overcoming the limitations of chronological backtracking as used in logicprogramming.The CLP scheme has several advantages over traditional logic programming languages.As far as programming convenience is concerned, it allows the programmer to reasondirectly in terms of the intended domain of discourse instead of forcing the coding ofsemantic objects in terms of a Herbrand universe. As far as e�ciency is concerned, itallows implementors to exploit the properties of the new computation domains in orderto devise e�cient constraint-solving algorithms. Hence CLP combines the declarativenessand exibility of logic programming with the e�ciency of conventional approaches.One of the �rst CLP systems was CHIP [DVS+88b] developed at ECRC between 1986and 1990. The CLP roots of the APPLAUSE technology are going back to this system.CHIP was designed to tackle real world constrained search problems. It was based onthe concept of active use of constraints [Gal85], [Din86], [Van89a] and included three newcomputation domains: �nite domain restricted terms, boolean terms and linear rationalterms. For each of them CHIP used specialized constraint solving techniques: consistencytechniques for �nite domains, equation solving in the boolean algebra and a symbolicsimplex-like algorithm for linear constraints. CHIP was already successfully applied to alarge number of industrial applications [DVS+88a]. Below the computation domains ofCHIP relevant to the APPLAUSE applications are introduced:9



Finite Domains: The basic feature of CHIP for solving discrete combinatorial problemsis the ability to work on domain-variables, i.e. variables ranging over a �nite setof values (e.g., �nite set of natural numbers). CHIP provides a large variety ofconstraints on domain-variables:� It can cope with arithmetic constraints such as equations, disequations andinequalities over arithmetic terms constructed from natural numbers, domain-variables over the natural numbers and the usual arithmetic operators.� It allows symbolic constraints on domain-variables to express logical or func-tional relationships.� It also includes some extensions for �nding solutions optimizing some evaluationfunctions based on branch and bound techniques. These meta-predicates canbe used for solving combinatorial optimization problems.All constraints are solved through consistency checking and constraint propagationtechniques, a powerful paradigm emerging from AI to solve discrete combinatorialproblems. The computational framework for integrating consistency techniques intologic programming has been de�ned in [Van89a].Rational Arithmetic: Rational terms are built from rational numbers, rational vari-ables (i.e., variable ranging over rational numbers) and the following arithmetic op-erators: addition, subtraction and multiplication by a constant (therefore restrictedto linear terms). Constraints allowed on rational terms are equations, inequalities,and disequations. The constraint-solver is an adaptation of the simplex algorithmbased on variable elimination, and not on matrix manipulations. CHIP can be usedfor deciding if a set of constraints is satis�able or not, and for �nding the most generalsolution to a set of constraints optimizing a linear evaluation function [DVS+88b].Other computation domains include boolean constraints [BS87], nonlinear arithmetic con-straints [Hon92] and sets constraints [Ger94].Several of the above mentioned techniques make use of a data-driven computation. More-over CHIP o�ers a number of constructs to explicitly control the execution in a demon-driven way. Most importantly CHIP contained a delay mechanism which enables corou-tining in a demon-driven way.One of the main limitations of such "traditional" constraint logic programming systemsis the limitation, that the users are bound to use the constraints o�ered by the systems.During the last years an important research e�ort has been spent on developing newconcepts to support the user in writing his own constraints. Essentially three di�erentapproaches following di�erent philosophies have been proposed:� low-level predicates and explicit programming of constraint propagation [MS92]� constraint handling rules [Fru95]� generalized propagation and approximate generalized propagation [LW93]10



The �eld of CLP has been extensively reviewed during the last years. An informal in-troduction to the di�erent concepts mentioned above can be found in [FHK+92]. Thereader interested in a thorough technical review is referred to [JM94]. The concept of�nite domains which is the most important one for the APPLAUSE applications is alsointroduced in the next chapter.One of the main advantages of LP and CLP is that there is a great deal of implicit par-allelism expressed in most programs. Essentially there are two sources of parallelism ina logic program. Firstly two goals can be executed in parallel. In this case we speakof AND-parallelism. In case the two goals are independent, ie. they do not share anyinformation, in other words they do not have any variables in common, we are exploitingindependent AND-parallelism otherwise it is dependent AND-parallelism. Secondly twodi�erent alternatives of one goal can be explored concurrently. In this case we are ex-ploiting OR-parallelism. In particular, OR-parallelism is most bene�cial to search-basedapplications. It was therefore natural to introduce OR-parallelism into the CLP framework[Van89b].Ideally, the programmer should not have to think about the parallelism in his program atall, but only think of what needs to be done sequentially. However, we are still quite farfrom this ideal, though there has been considerable research into automatic parallelization.In the current state of the art not all parallelization decisions can be made by the system,and the best parallelizations are still found by humans. This was the main reason forproviding the user with the possibility to annotate the program, thus to giving the systemdirectives of which parts of the search tree to explore in parallel. A programmer typicallyuses knowledge about the program to make an initial parallelization, and then measuresspeedups associated with di�erent parallelizations on a set of queries. But �nding a goodparallelization of a program can be a di�cult task. The tutorial in Chapter 2 gives hintson how to tackle this task and the applications descriptions summarizes the experiencesmade throughout the course of the APPLAUSE project.In addition to annotating his program the programmer has a set of primitives at hisdisposal which are providing e�cient parallel versions of built-ins typically used in searchbased programs. In combinatorial search problems very often a cost is associated toeach solution and the user is usually interested in �nding a solution with an optimalcost, that is one with the lowest possible cost. Most CLP systems provide functions foroptimization based on the branch and bound method as also mentioned above. In anutshell, branch and bound works by searching for a solution to the problem and thenadding a further constraint that any new solution must be better than the current best.This strategy �ts well with the standard backtracking search employed by most sequentiallogic programming systems.However, experiments have shown (partly carried out in the framework of APPLAUSE)that the current approaches to parallelizing branch and bound in CLP are still not able tosolve many of the larger optimization problems in reasonable time spans (such as some verycomplex job-shop scheduling problems). More recently a new application of parallelismhas been developed which is called cost-parallelism [PM95]. Cost-parallelism has beencombined with Or-parallelism to �nd optimal solutions more quickly than pure Or-parallelbranch and bound, and also �nd more accurate solutions within a given time frame. Firstexperiments with cost-based optimization in some of the APPLAUSE applications haveshown promising results. 11



OR-parallelism and constraints are complementarymeans to attack search based problems.Because of the NP-completeness of the target problems, solutions cannot avoid search.They should mainly rely on the e�ective modeling of the problem with the appropriatedata structures and constraints, so as to have as low a complexity as possible. Search isused to explore the remaining cases which have not been excluded. OR-parallelism is thena natural way to speed-up this phase of the computation. In other words, the computationsafter the \don't know point" inherent to the solving of NP-complete problems can benaturally supported by \don't know" parallelism, that is OR-parallelism.3 The APPLAUSE SystemsIn the following we will briey introduce the initial APPLAUSE platform ElipSys and itssuccessor, the ECLiPSe system.3.1 ElipSysThe general objective of the ElipSys [VSRL93] project was the development of a technologywhich enables the development and execution of portable high performance applicationsdealing with very large search spaces. Being convinced that there is no single panaceafor parallel processing, ElipSys is targeted at a speci�c class of applications (large searchproblems) running on general purpose parallel machines.The ElipSys language has been designed to e�ectively support the development and exe-cution of real-world search applications. The ElipSys language uses a logic-based notationto describe search spaces. It uses constraints and parallel logic programming as two com-plementary means to control the exploration of search spaces. Constraints are used to apriori reduce the search space. Parallelism is used to explore the di�erent alternatives inparallel when a \don't know" point in the search space is encountered.From its CHIP [DVS+88b] ancestor ElipSys has inherited �nite domains, built-in arith-metic and symbolic constraints. It has been equipped with a exible user level languageintegrating in one environment �nite domains, built-in arithmetic constraints, advancedcoroutining mechanisms and term manipulation primitives. While the �rst two items al-low a CHIP programming style and expressive power, the last two make it possible to letusers develop at user-level additional constraints or add new-inference rules.The ElipSys language is equipped with an annotation which enables the programmer toexpress where the search tree described by the program can be traversed in parallel. Theannotation is a conservative hint to the underlying parallel system which is free to exploitit or not. No splitting can occur if no annotation is present. In addition ElipSys providesspecialized primitives for the parallel enumeration of �nite domains.ElipSys is equipped with side-e�ects and cut to support the sequential Prolog-style codewhich typically surrounds a pure constraint logic programming piece of search code (whichcan use parallel execution) in real-world applications. During the parallel execution of thesearch-based core of the application, cuts behave like cavalier cuts. Side-e�ects are fullyasynchronous. In the same spirit, collecting predicates such as bagof/3 and the like do not12



behave as in a sequential system and gather solutions in the order in which the system�nds them.Many combinatorial problems involve the optimization of one criteria. Optimization con-structs are higher-order predicates which receive a goal and a cost function as arguments.ElipSys o�ers optimization predicates well-integrated into the parallel constraint environ-ment.Execution models for OR-parallel logic programming have been studied extensively. Thevarious proposals di�er in binding environment, scheduling, and pruning. Most executionmodels are targeted at either a shared store machine or a distributed store machine. TheElipSys execution model should however enable e�cient implementations on both kindsof parallel machines.There are basically three di�erent options for the binding environment: sharing, copying,and recomputation. ElipSys uses a shared binding environment based on binding arrays.Scheduling and pruning involve synchronization and �ne grain data transfer. ElipSys hastherefore a message based scheduler. The dictionary and code are seldomly updated andare easy and e�cient to implement with shared memory. On distributed store machinesthe ElipSys system relied on the existence of virtual shared memory.3.2 ECLiPSeDuring the course of the APPLAUSE project ECRC launched its ECLiPSe project. Itaims brings together the experience in designing and developing logic programming systemthat ECRC has gained during its 10 years of existence. A wide range of systems closely orloosely related to the logic programming paradigm have been studied, implemented andexperimented with. To mention a few highlights:� E�cient implementation of LP systems; incremental compilers; stable and robustproduct-quality systems; development of sophisticated programming environments,e.g. debugging support and graphical interfaces� Extensions of logic programming, in particular constraint programming and object-oriented programming; rapid prototyping and e�cient implementation of such ex-tensions; both application-driven and research-based extensions were experimentedwith.� Deductive databases, complementing relational database technology with deductivecapabilities; manipulation, storage and retrieval of complex structures in a databasecontext.� Exploitation of parallel platforms for e�cient execution of constraint search prob-lems.The core of the ECLiPSe system is based on SEPIA, an e�cient product-quality Prologsystem which was designed as an e�cient support for various LP extensions. It comprisesa large set of features that allow new extensions and systems to be e�ciently implementedand interfaced. 13



The database component of ECLiPSe has been taken from the MegaLog system. Mega-Log's database subsystem has been directly interfaced to ECLiPSe. Currently ECLiPSeis used as the technological basis for ECRC's contribution to the ESPRIT project IDEA.The constraint component of ECLiPSe is based on the CHIP technology. However, thearchitecture of the constraint component has been completely redesigned to support theeasy integration of new constraint solvers and constraint systems.Finally ECLiPSe integrates the parallel technology of the ElipSys system. Thus the Elip-Sys users, in particular those in APPLAUSE, bene�ted from the rich constraint librarieso�ered in ECLiPSe. It should be mentioned that using ElipSys the TCO application wouldnot have been possible.The Constraint System of ECLiPSeTwo major requirements inuenced the Constraint System of ECLiPSe. First it had tobe backward compatible with the original CHIP and ElipSys systems to support the ap-plication development which was carried out in the framework of the ESPRIT projectsCHIC and APPLAUSE. Second it had to support and integrate the novel research proto-types developed at ECRC within the CHIC project. It became quickly clear that it wasbeyond the capabilities of the existing systems to satisfy such divers needs in terms offunctionality, extensibility and exibility.The main contribution of ECLiPSe in the area of CLP architecture is the design andimplementation of its novel generic constraint interface capable of supporting the require-ments coming from both applications and research. This constraint interface rests on twofundamental concepts:� metaterms and� suspensionsMetaterms are a generic means to program rich data structures, eg. those required toimplement new computation domains of constraint logic programming languages. Thesecond concept, ie. suspensions, is a generalization of a well-known mechanism in logicprogramming to overcome the left-to-right depth-�rst computation rule of Prolog-likelanguages. Its main purpose is to provide a high-level interface to program constrainedsearch techniques.The constraint interface is now fully integrated into the ECLiPSe system providing auniform high-level interface for the development of the di�erent constraint extensions.These constraint extensions are implemented in the ECLiPSe language itself as libraries.The interoperability of these libraries, a major problem for other constraint systems, isautomatically guaranteed. ECLiPSe now provides the following constraint libraries:� �nite domains� linear rational arithmetic 14



� set constraints� generalized propagation� constraint handling rulesThe sequential architecture of the ECLiPSesystem is sketched in �gure 3.1.
Figure 3.1: Sequential architecture of ECLiPSeParallel ECLiPSeParallel ECLiPSe is an extension of the current sequential ECLiPSe system exploiting OR-parallelism. It replaces ElipSys and hence had to support existing ElipSys applications.The main criteria used in the design were the following:1. Execution Platforms: The system should execute e�ciently on a wide variety ofplatforms, from true shared-memory multiprocessors to a network of heterogeneousworkstations. The main implication of this criteria is that the design cannot makeany assumptions about the availability of shared memory and even virtual sharedmemory.2. ElipSys Integration: The system should incorporate ElipSys features, such asoptimized constraints handling and visualization tools which have proven to be veryuseful to end-users.3. Modular Design : The sequential engine should be modi�ed as little as possibleso as to retain its e�ciency and functionality in a parallel setting.Given the above requirements it became quickly clear that parallel ECLiPSe had to deviatefrom the binding array scheme of ElipSys, since this would have required major changesto the existing sequential system. In addition, e�cient implementation of the binding15



arrays scheme will require support for virtual shared memory which is not available on allparallel platforms.A realistic scenoario of a common computing environment in the near future is a networkof workstations where some or all workstations are multi-processors with a small number(2 { 8) of CPUs. Based on the results of a �rst protoype for parallel CLP [MS94] on sucha network of heterogeneous workstations, it was decided that ECLiPSe will use a hybridscheme:� It is using stack-copying when sharing work between processes on the same machine,ie. for shared multi-processor machines Parallel ECLiPSe is built on top of copyingscheme.� However, when sharing work across machines Parallel ECLiPSe is using a recompu-tation model, as it turned out that it is cheaper to recompute than to communicate.The idea of such a hybrid copying/recomputation scheme is illustrated in �gure 3.2. Thedashed line around the engine processes E on the multiprocessor indicates that they sharesome state. (such as global dictionaries).
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Chapter 2.A Tutorial on Parallelism and Con-straints in ECLiPSeSteven Prestwich
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1 IntroductionLogic programming has the well-known advantages of ease of programming (because of itshigh level of abstraction) and clarity (because of its logical semantics). The main draw-back is its slow execution times compared to those of conventional, imperative languages.In recent years, research has produced various extensions which make such systems com-petitive.ECLiPSe, the ECRC Prolog platform, is a logic programming system with several exten-sions. Two of these extensions are targeted at problems with large search spaces; theseare constraint handling and parallelism. Constraints are used to prune search spaces,whereas parallelism exploits parallel or distributed machines to search large spaces morequickly. These complementary techniques can be used separately or combined to obtainclear, concise and e�cient programs. These extensions originated in other ECRC systems:constraint handling came from CHIP and the parallelism from ElipSys, both with somechanges.This tutorial is adapted and extended from a similar tutorial for ElipSys [Pre93a]. It pro-vides some general principles on how to make the best use of parallelism and constraints.It is intended as an introduction for the working programmer, and does not contain detailsof all the built-in predicates available. These details can be found in the Manuals.1.1 How to read this tutorialIf you are just interested in OR-parallelism then go directly to Section 2, which is self-contained. This is the most important form of parallelism in ECLiPSe. If you are justinterested in AND-parallelism then read Section 2 followed by Section 3, because 2 containsinformation necessary to understand 3. When you are ready to test OR- or AND- parallelprograms for performance, Appendix 5 describes how to handle timing variations whencalculating parallel speedups, and includes a note on speedup curves. If you are justinterested in constraints then jump to Section 4 which is self contained, except for Section4.5 which links the ideas of constraints and parallelism. If you are interested in all aspectsof parallelism and constraints, then just read the sections in order.2 OR-ParallelismMany programming tasks can be naturally split into two or more independent subtasks.If these subtasks can be executed in parallel on di�erent processors, much greater speedscan be achieved. Parallel hardware is becoming cheaper and more widely available, butprogramming these machines can be much more di�cult than programming sequentialmachines. Using conventional, imperative languages may involve the programmer in agreat deal of low-level detail such as communication, load balancing etc. This di�culty inexploiting the hardware is sometimes called the programming bottleneck . ECLiPSeavoidsthis bottleneck. It exploits parallel hardware in an almost transparent way, with thesystem taking most of the low-level decisions. However, there are still certain programmingdecisions to be made regarding parallelism, and this tutorial gives some practical hints on18



how to make these decisions. In the future even greater transparency will be achieved asanalysis and transformation tools are developed.2.1 How to use itFirst, we must tell ECLiPSehow many processors to allocate for the program. One way todo this is to specify the number of workers when parallel ECLiPSeis called. For examplepeclipse -w 3calls parallel ECLiPSewith 3 workers. If no number of workers is speci�ed, ECLiPSewillsimply run sequentially with the default of 1 worker. Other ways of changing the numberof workers are described in [ECL95, ECL94].Note: For the purpose of this tutorial we shall assume that a worker and a processorare the same thing, though there is a subtle di�erence: it is possible to specify a greaternumber of workers than there are processors, in which case ECLiPSewill simulate extraprocessors. Simulated parallelism is useful for some search algorithms, as it causes theprogram to search in a more \breadth-�rst" way. However, it does add an overhead anduses more memory, so it should only be used when necessary.As a simple example, here is part of a program:p(X) :- p1(X).p(X) :- p2(X).In a standard Prolog execution, a call to p will �rst enumerate the answers to p1, then onbacktracking those of p2.We can tell ECLiPSeto try p1 and p2 in parallel instead of by backtracking simply byinserting a declaration:- parallel p/1.p(X) :- p1(X).p(X) :- p2(X).The set of answers for p will still be the same in parallel as in the backtracking computation,though possibly in a di�erent order.For convenience, some built-in predicates have been pre-de�ned as OR-parallel in thelibrary par_util. For example par_member/2 is an OR-parallel version of the list mem-bership predicate member/2. Before de�ning new parallel predicates it is worth checkingwhether they already exist in the library.2.2 How it worksThe computation of p splits into two (or more if there are more p clauses) parallelcomputations which may be executed on separate workers if any are available, and if19



ECLiPSedecides to do so | these decisions are made automatically by the ECLiPSetaskscheduler, and need not concern the programmer.ContinuationsNot only will p1 and p2 be computed in parallel, but also any calls occurring after p inthe computation. This part of the computation is called the continuation of the p call.For example, if p is called from another predicate:q(X,Y) :- r(X), s(X), t(Y).s(X) :- u(X), p(X), v(X).:- parallel p/1.p(X) :- p1(X).p(X) :- p2(X).then p(X) has two alternative continuations in a computation of :- q(f(A),Y):p1(f(A)), v(f(A)), t(Y)p2(f(A)), v(f(A)), t(Y)and it is these processes which will be assigned to separate workers. The idea of a contin-uation plays a large part in deciding where to use OR-parallelism.2.3 When to use itWhen should we declare predicates as OR-parallel? It may appear that all predicateswith more than one clause should be parallel, but this is wrong. In this section we discusswhy it is wrong, indicate possible pitfalls, and consider the e�ects of OR-parallelism onexecution times.Non-deterministic callsSince a parallel declaration tells the system that the clauses of the predicate should be triedin parallel, clearly only predicates with more than one clause are candidates. Furthermore,deterministic predicates should not be parallel, that is those whose calls only ever matchone clause at runtime. For example, the standard list append predicate:append([],A,A).append([A|B],C,[A|D]) :- append(B,C,D).20



q :- ... p(X) ...:- parallel p/1.p(X) :- guard1(X), !.p(X) :- guard2(X), !.p(X) :- guard3(X), !.Figure 2.1: A simple predicate with commitis commonly called with its �rst argument bound to concatenate two lists. Only oneclause will match any such call, and there is no point in making append parallel. Ifappend is called in other modes, for example with only its third argument bound, then itis nondeterministic and may be worth parallelising.Side e�ectsOnly predicates whose solution order is unimportant should be parallel. An example of apredicate whose solution order may be important isp :- generate1(X), write(X).p :- generate2(X), write(X).p :- generate3(X), write(X).where generate{1,2,3} generate values for X non-deterministically. If p is parallelisedthen the order of write's may change. In fact any side e�ects in the continuation of aparallel call may occur in a di�erent order. This may or may not be important, only theprogrammer can decide.Even if solution order is unimportant, it is recommended that any predicates with sidee�ects such as read, write or setval are only used in sequential parts of the program, oth-erwise the performance of the system may be degraded. The OR-parallelism of ECLiPSeisreally designed to be used for pure search. If parallel solutions are to be collected thenthere are built-in predicates like findall which should be used.The commit operatorWhen the cut ! is used in parallel predicates, it has a slightly di�erent meaning than innormal (sequential) predicates. When used in parallel in ECLiPSeit is called the commitoperator. Its meaning can be explained using examples.First consider Figure 2.1. The \guards" execute in parallel, and as soon as one �nds asolution the commit operator aborts the other two guards. Only the continuation of thesuccessful guard survives.This simple example can be written in another way using the once meta-predicate, as inFigure 2.2. This is a matter of preferred style.21



q :- ... once(p(X)) ...:- parallel p/1.p(X) :- guard1(X).p(X) :- guard2(X).p(X) :- guard3(X).Figure 2.2: Replacing commits by \once" in a simple parallel predicateq :- ... p(X) ...:- parallel p/1.p(X) :- guard1(X), !, body1(X).p(X) :- guard2(X), !, body2(X).p(X) :- guard3(X), !, body3(X).Figure 2.3: A less simple predicate with commitIn the more general case there may be calls after the commits, as in Figure 2.3. Thecommit has exactly the same e�ect as before, with the body calls at the start of theparallel continuations. By the way, this example cannot be rewritten using once withouta little program restructuring, because of the body calls.Some predicates may have an empty guard, corresponding to (for example) the \else" inPascal. An example is shown in Figure 2.4 The meaning of this predicate is \if guard1 thenbody1, else if guard2 then body2, else body3". This must not be parallelised simply byadding a declaration, because the empty guard may change the meaning of the programwhen executed in parallel. The reason is that if we make p parallel then we may getbody3 succeeding followed by (guard1, !, body1) or (guard2, !, body2) giving moresolutions for p than in backtracking mode.It is safer to use commits in each of the p clauses and to introduce a new guard, as inFigure 2.5. This is now safe, but at the expense of introducing extra work (the negatedguards in the third clause). A safe and e�cient method, though slightly more complicated,is shown in Figure 2.6 where we split the de�nition of p into parallel and sequential parts.p(X) :- guard1(X), !, body1(X).p(X) :- guard2(X), !, body2(X).p(X) :- body3(X).Figure 2.4: A typical sequential predicate with empty guard22



p(X) :- guard1(X), !, body1(X).p(X) :- guard2(X), !, body2(X).p(X) :- not guard1(X), not guard2(X), !, body3(X).Figure 2.5: Handling empty guards when parallelisingp(X) :- guards(X,N), !, bodies1_and_2(N,X).p(X) :- body3(X).:- parallel guards/2.guards(X,1) :- guard1(X).guards(X,2) :- guard2(X).bodies_1_and_2(1,X) :- body1(X).bodies_1_and_2(2,X) :- body2(X).Figure 2.6: Another way of handling empty guards when parallelisingParallelisation overheadEven if a program is safely parallelised it may not be worthwhile making a predicateparallel. For example, in a Quick Sort program there is typically a partition predicateas shown in Figure 2.7. Although for most calls to partition both clauses 2 and 3 willmatch, one of them will fail almost immediately because of the comparison H<D or H>=D.There is no point in making partition parallel because the overhead of starting a parallelprocess will greatly outweigh the small advantage of making the comparisons in parallel.To express the fact that the overhead of spawning parallel processes is equivalent toa signi�cant computation (depending upon the hardware, perhaps as much as severalhundred resolution steps) we say that ECLiPSesupports coarse-grained parallelism.The grain size of a parallel task refers to the cost of its computation, roughly equivalentto its cpu time. Only computations with grain size at least as large as this overhead areworth executing in parallel, in fact the grain size should be much larger than the overhead.Computations which are not coarse-grained are called �ne-grained.Estimating grain sizes is usually not as obvious as in the Quick Sort example. In fact itis the most di�cult aspect of using OR-parallelism, and we therefore spend some timepartition([],_,[],[]).partition([H|T],D,[H|S],B) :- H<D, partition(T,D,S,B).partition([H|T],D,S,[H|B]) :- H>=D, partition(T,D,S,B).Figure 2.7: Quick Sort partitioning predicate23



process_value :-value(X),process(X).value(1).value(2).:value(n). Figure 2.8: Grain size estimationdiscussing it. In the context of OR-parallelism, a parallel task is a continuation, and sowhen we refer to the grain size of a parallel predicate call we mean the time taken toexecute that call plus its continuation. To illustrate this, consider the program in Figure2.8, where process(X) performs some computation using the value of X. Now the questionis, should value be parallel? The answer depends upon the computations of the variousprocess calls since the value calls are �ne-grained. We now discuss this question in somedetail.Grain size for all solutionsSay that we require all solutions of process_value. In a backtracking computation thetotal time to execute process_value is approximatelyt1 + : : :+ tnwhere ti = time(process(i)). In an OR-parallel computation (assuming su�cient workersare available) the total computation time is approximatelyk +maximum(t1 : : : tn)where k is the overhead of starting a parallel process, which is machine and implementationdependent. As can be seen from the formulae, if process has� no expensive calls then k becomes signi�cant, and the backtracking computation isfaster;� one expensive call then the sequential and parallel cases will take about the sametime;� two or more expensive calls then k is insigni�cant and the parallel computation isfaster.The programmer must try to ensure that at least two continuations have signi�cant cost.24



one_process_value :-value(X),process1(X),!,process2(X).:- parallel value/1.value(1).value(2).:value(n). Figure 2.9: Grain size estimation and an obvious commitGrain size for one solutionSay that we only require process_value to succeed once. In a backtracking computationthe time will be t1 + : : :+ tswhere s is the number of the �rst succeeding process(s). In a parallel computation thetime will be k +minimum(t1 : : : tn)Now the parallel computation is only cheaper if there are one or more values of i � s forwhich process(i) is expensive.Grain size and pruning operatorsPruning operators such as the commit may a�ect estimates of the grain size of a con-tinuation. Consider the program in Figure 2.9. Here n processes will be spawned withcontinuationsprocess1(1), !, process2(1).:process1(n), !, process2(n).As soon as process1 on one worker succeeds, all the other workers will abandon theircomputations. Hence the actual grain size of any continuation of an OR-parallel call isno greater than that of the cheapest process before pruning occurs. Of course, it may besmaller than this if failure occurs before the pruning operator is reached.In fact, we must consider the e�ects of commits in any predicate which calls a parallelpredicate, even indirectly. For example, see the program in Figure 2.10. Since p1 containsa commit which prunes p2, and p2 calls value (indirectly), we only need to estimate thegrain size of the continuation up to the commit, that is the grain size of25



p1 :- p2, !.p2 :- process_value, p3.process_value :-value(X),process(X),Figure 2.10: Grain size estimation and a less obvious commitdelay expensive_process(A) if nonground(A).p :- expensive_process(X), process, X=0.process :- cheap_process1.process :- cheap_process2.Figure 2.11: Grain size estimation and coroutining, �rst exampleprocess(X), p3The same holds for any pruning operator, including once/1, not/1 and -> (if-then-else)because these contain implicit commits. When we talk about a continuation for an OR-parallel call in future, we shall mean the continuation up to the �rst pruning operator.Grain size and coroutiningWhen estimating the grain size of a continuation, we must take into account any suspendedcalls which may be woken during the computation. For example, consider the program inFigure 2.11. When deciding whether to parallelise process we estimate the grain sizes ofcheap_process1, X=0cheap_process2, X=0These appear to be cheap, but at runtime X=0 wakes expensive_process and so it ise�ectively expensive.On the other hand, given the program in Figure 2.12, it appears that process has twoexpensive continuationscheap_process1, expensive_process(X)cheap_process2, expensive_process(X)before the commit occurs, but this is deceptive because expensive_process is not wokenuntil after the commit. 26



delay expensive_process(A) if nonground(A).p :- process, expensive_process(X), !, X=0.process :- cheap_process1.process :- cheap_process2.Figure 2.12: Grain size estimation and coroutining, second exampleberghel :-word(A1,A2,A3,A4,A5), % column 1word(A1,B1,C1,D1,E1), % row 1word(B1,B2,B3,B4,B5), % column 2word(A2,B2,C2,D2,E2), % row 2word(C1,C2,C3,C4,C5), % column 3word(A3,B3,C3,D3,E3), % row 3word(D1,D2,D3,D4,D5), % column 4word(A4,B4,C4,D4,E4), % row 4word(E1,E2,E3,E4,E5), % column 5word(A5,B5,C5,D5,E5). % row 5word(a,a,r,o,n).word(a,b,a,s,e).word(a,b,b,a,s).: Figure 2.13: Sequential Berghel programParallelisation of predicatesSo far we have discussed when it is worthwhile making a call OR-parallel. However, inECLiPSewe parallelise calls indirectly by deciding whether to declare a predicate parallel ornot. To do this, the programmer must consider the most important calls to the predicate,that is the calls which have greatest e�ect on the total computation. If they would befaster in parallel then the predicate should be declared as parallel. For some predicatesthis may be easy to see but others may be called in many di�erent ways.For example consider the Berghel problem. We are given a dictionary of 134 words eachwith 5 letters. We must choose 10 of them which can be placed in a 5 � 5 grid. Theprogram is shown in Figure 2.13. Is it worth making word parallel?We must consider grain sizes. During the computation of berghel there will be manycalls to word, with all, some or none of the arguments bound to a letter. The grain sizewill depend partly upon how many letters are bound. It will also depend upon the boundletters themselves, for example binding an argument to a z will almost certainly prunethe search more than binding it to an a. Another factor is the continuation of each call.27



The continuation of the �fth call isword(A3,B3,C3,D3,E3),word(D1,D2,D3,D4,D5),word(A4,B4,C4,D4,E4),word(E1,E2,E3,E4,E5),word(A5,B5,C5,D5,E5)whereas that of the eighth call is onlyword(E1,E2,E3,E4,E5),word(A5,B5,C5,D5,E5)The cheaper calls may be slower when called in parallel and the more expensive callsfaster.The result of parallelising word is the net result of all these e�ects, which can best beestimated by experimentation (trace visualisation and pro�ling tools, when available, canhelp greatly).Parallelisation of callsWe can make more selective use of OR-parallelism by parallelising only some calls. In theBerghel example, if we keep word sequential and add a new parallel version as in Figure2.14 then we can experiment by replacing various calls to word by calls to parword. Thequestion is, which calls should be parallel?Running this program on a SUN SPARCstation 10 model 51 with 4 CPU's it turns outthat the best result (a speedup of about 3:3) is obtained when all the calls are parallel| in other words, simply declaring word parallel. However, this may not be true for allmachines and all numbers of workers. This example behaves di�erently in experimentswith ElipSys on a Sequent Symmetry with 10 workers, and we conjecture that similare�ects will be observed in ECLiPSewith more workers, or on parallel machines with fastercpu's. With all word calls parallel we get a speedup of 6:7, but if we only parallelise the�rst 2 calls as in Figure 2.14 we obtain an almost linear speedup of 9:7. So in some casesit is worth a little experimentation and programming e�ort to selectively parallelise calls.In this example we chose between the parallel and sequential versions according to a statictest: the position of the call in a clause. The choice could also be based on a dynamicproperty such as instantiation patterns.Partial parallelisationRecall that it is worth parallelising a predicate if (for most of its calls) there are at leasttwo clauses leading to large-grained continuations. If we can predict which of the clausesmay lead to such continuations then we can extract them from the predicate de�nition,and avoid spawning small-grained parallel processes.28



berghel :-parword(A1,A2,A3,A4,A5),parword(A1,B1,C1,D1,E1),word(B1,B2,B3,B4,B5),word(A2,B2,C2,D2,E2),word(C1,C2,C3,C4,C5),word(A3,B3,C3,D3,E3),word(D1,D2,D3,D4,D5),word(A4,B4,C4,D4,E4),word(E1,E2,E3,E4,E5),word(A5,B5,C5,D5,E5).:- parallel parword/5.parword(a,a,r,o,n).parword(a,b,a,s,e).parword(a,b,b,a,s).: Figure 2.14: Parallelising selected calls
process_value :-value(X),process(X).value(1). % leads to cheap processvalue(2). % leads to expensive processvalue(3). % leads to cheap processvalue(4). % leads to expensive processFigure 2.15: A program worth partially parallelising29



process_value :-value(X),process(X).value(X) :- value13(X).value(X) :- value24(X).value13(1).value13(3).:- parallel value24/1.value24(2).value24(4). Figure 2.16: Partially parallelised versionp(X) :- q(X), new(X), r(X).:- parallel new/1.new(X) :- a(X).new(X) :- b(X). Figure 2.17: Parallelised disjunctionFor example, consider the sequential program in Figure 2.15. If we know that process(i)is small-grained for i = f1; 3g but large-grained for i = f2; 4g then it is best to decomposevalue into backtracking and parallel parts, as shown in the parallel program of Figure2.16. Then values 1; 3 are handled by backtracking while values 2; 4 are handled in parallel.Parallelisation of disjunctionsECLiPSe(in common with most Prolog dialects) allows the use of disjunctions in a clausebody. For example,p(X) :- q(X), (a(X); b(X)), r(X).It may be worthwhile calling a and b in OR-parallel mode if a, r and b, r (plus anycontinuation of p) have su�ciently large grain. The use of disjunction is really a notationalconvenience, and may hide potential parallelism. Of course it would be possible to add aparallel disjunction operator to ECLiPSe, but this is unnecessary because we can insteadmake a new, parallel de�nition as shown in Figure 2.17.30



:- worker(2).p(X) :- ascending(X),p(X) :- descending(X).Figure 2.18: Ascending-descending exampleSpeedupAssuming we have OR-parallelised a program well, what speedup can we expect? Theanswer depends on whether we want all solutions to a call or just one.Speedup for all solutions When parallelising a predicate, we often hope for linearspeedup. That is, if we haveN workers then we want queries to runN times faster. Becauseof the overhead of spawning parallel processes we usually obtain sublinear speedup, thoughwith �ne tuning we may approach linearity.Consider the program shown in Figure 2.18 where ascending(X) has answersX=1, X=2, ... X=1000descending(X) has answersX=1000, ... X=2, X=1and both ascending(X) and descending(X) take time t to �nd each successive answer(where t is much greater than the parallel overhead k).With 2 workers the time taken to �nd all solutions for p is 2000t with p sequential, but1000t + k with p parallel: almost linear speedup.Speedup for one solution However, when using a predicate to �nd one solution, wegenerally �nd little relationship between execution times in backtracking and OR-parallelmodes, except when averaged over many queries. This is because solutions may not bedistributed evenly over the search space.The time to �nd one solution for the query p(X), X=1000 is 1000t with p sequential (999failing calls followed by 1 succeeding call to ascending), but t + k with p parallel (animmediately succeeding call to descending). This is a speedup of almost 1000 using only2 workers: very superlinear speedup.On the other hand, the time to �nd one solution for the query p(X), X=1 is t with psequential and t+ k with p parallel: no speedup at all.This shows that for single-solution queries the di�erence between superlinear speedup andno speedup may depend only on the query.31



2.4 SummaryThe best use will be made of OR-parallelism if the programmer keeps it in mind from thestart. However, a program written for sequential ECLiPSecan be parallelised using theprinciples outlined in this section. Here is a summary of the principles.� Look for predicates which are worth declaring as OR-parallel. When deciding this,all runtime calls to the predicate must be considered. If all, or almost all, calls toa predicate would be faster in OR-parallel, and if it is always safe to do so, then itis worth declaring the predicate as parallel. If it is sometimes worth calling in OR-parallel and sometimes not (but always safe), then a useful technique is to make aparallel and a sequential de�nition of the predicate and use them where appropriate.� A call is unsafe in OR-parallel if it has side e�ects in any of its continuations, or ifit has commits in some but not all of its clauses.� A call is (probably) faster in OR-parallel if it has at least two expensive continu-ations. A continuation should only be considered up to the �rst commit or otherpruning operator which a�ects it, and taking into account any suspended calls.� To further re�ne a program, look for parallel predicates with some clauses which donot have expensive continuations, then isolate the useful clauses in a new parallelde�nition. Also look for disjunctions in clause bodies which may hide parallelism,and replace these by calls to new parallel predicates.� The once operator is sometimes stylistically preferable to the use of commits inparallel predicates.However, these principles do not guarantee the best speedups. In [Pre93b, Pre94c] wedescribed various ways in which (for example) two parallel declarations could combineto give a poor speedup, even though each alone gave a good speedup. We also showedthat improving a parallel predicate may have a good, bad or no e�ect on overall speedup.E�ects like these make tuning a parallel program rather harder than tuning a sequentialone. Note that they are not ECLiPSebugs and will occur in many parallel programs.They may be more obvious in ECLiPSesince parallelisation of logic programs is very easy.The signi�cance of these e�ects is that they make it hard to recommend a good generalstrategy. Probably the best approach is common sense based on knowledge of the program,plus the use of available programming tools. ECLiPSewill soon have at least one tracevisualisation tool to aid parallelisation.3 Independent AND-parallelismAs well as OR-parallelism ECLiPSesupports independent AND-parallelism, which is usedin quite di�erent circumstances. AND-parallelism replaces the left-to-right computationrule of Prolog by calling two or more calls in parallel and then collecting the results.Dependent AND-parallelism is rather di�erent, and is outside the scope of this tutorial.32



p(X) :- q(X), r(X).q(a). r(c).q(b). r(d).q(c). r(e).Figure 3.1: Simple AND-parallelism example3.1 How to use itAs with OR-parallelism, we need to tell ECLiPSehow many workers to allocate. Then wesimply replace the usual \," conjunction operator by a parallel operator \&"; for examplereplacep(X) :- q(X), r(X).by p(X) :- q(X) & r(X).More than two calls can be connected by &.For convenience there is a built-in predicate which can be used to map one list to another.This is maplist, and it applies a speci�ed predicate to each member in AND-parallel.See [ECL95, ECL94] for details.3.2 How it worksAs an example (which is not to be taken as a useful candidate for AND-parallelism, butonly as an illustration), consider the program in Figure 3.1. In standard Prolog, givena query :-p(X), q is �rst solved to return the answer X=a then r is called, fails, andbacktracking occurs. The next solution to q is X=b and again r fails. For the next solutionX=c, r succeeds. On backtracking no more solutions are found.Now if we call q and r in AND-parallel:p(X) :- q(X) & r(X).what happens instead is that the solutions {X=a, X=b, X=c} of q and {X=c, X=d, X=e}of r are collected independently using di�erent workers, and then the results are mergedto give the consistent set {X=c}. This is clearly a rather di�erent strategy for executing aprogram, and in this section we discuss when it is better than the usual strategy.As with OR-parallelism, it is not always true that di�erent workers will be assigned toAND-parallel calls, depending upon runtime availability. This need not concern the pro-grammer. 33



3.3 When to use itWhen should AND-parallelism be used? It may seem at �rst glance that it will alwaysbe faster than the usual sequential strategy, but as often with parallelism this intuition iswrong. In this section we discuss when to apply AND-parallelism.Non-logical callsIt is sometimes incorrect to use AND-parallelism because of side e�ects and other non-logical Prolog features. For examplep(X) :- generate(X), test(X).test(X) :- X\==badterm, rest_of_test(X).Here generate(X) binds X to some term, and test(X) performs some test on X, includingthe non-logical test X\==badterm. Say that the answers to generate(X) are{X=goodterm1, X=goodterm2, X=badterm}and the terms permitted by rest_of_test(X) are{X=goodterm1, X=badterm}Then p has only one answer {X=goodterm1}However, if we use AND-parallelism:p(X) :- generate(X) & test(X).then test(X) is �rst called with X unbound, and has answers{X=goodterm1, X=badterm}Merging this with the answers for generate(X) we get more answers:{X=goodterm1, X=badterm}which is incorrect. Examples can also be found where a program fails instead of generatingsolutions. 34



Non-terminating callsAND-parallel calls must terminate when called in any order. For example, givenp(L1,L2) :-append([LeftHead|LeftTail],Right,L1),append(Right,[LeftHead|LeftTail],L2).where append is the usual list append predicate. This program with a query:-p([1,2,3],L2)would give answers{L2=[2,3,1], L2=[3,1,2], L2=[1,2,3]}But if we use AND-parallelism:p(L1,L2) :-append([LeftHead|LeftTail],Right,L1) &append(Right,[LeftHead|LeftTail],L2).then the callappend(Right,[LeftHead|LeftTail],L2)will not terminate because Right is unbound.Shared variablesEven if the calls can safely be executed in any order, it is not necessarily worth callingthem in AND-parallel. If the answers to one call restrict the answers to another call, thenthis pruning e�ect may give greater speed than �nding all the answers to both calls andthen merging the results.For example considerp(X) :- compute1(X), compute2(X).compute2(X) :- cheap_filter(X), compute3(X).where compute1(X) has the answers{X=1, X=2, ... X=1000}and cheap_filter(X) allows the bindings 35



quicksort([Discriminant|List],Sorted) :-partition(List,Discriminant,Smaller,Bigger),quicksort(Smaller,SortedSmaller),quicksort(Bigger,SortedBigger),append(SortedSmaller,[Discriminant|SortedBigger],Sorted).Figure 3.2: Sequential Quick Sort program{X=1000, X=1001, ... X=1999}Say compute3 performs some expensive computation on X. Now given a query :-p(X), X isgenerated by compute1(X) and cheap_filter quickly rejects all answers except X=1000,so that compute3(X) is only called once. The total computation time for all solutions is(ignoring the times of cheap_filter for simplicity)time(compute1(1))+ : : :+ time(compute1(1000))+time(compute3(1000))If we use AND-parallelism instead:p(X) :- compute1(X) & compute2(X).then compute2(X) is called with X unbound and compute3(X) is called 1000 times foreach permitted answer of cheap_filter(X). The total computation time for all solutionsis now (ignoring the parallelism overhead)maximum(time(compute1(1))+ : : :+ time(compute1(1000));time(compute3(1000)) + : : :+ time(compute3(1999)))Comparing the two times, it can be seen that the parallel time will be slower than thesequential time if compute3 is more expensive than compute1. By calling compute1 andcompute2 independently we lose the pruning e�ect of compute1 on compute2. In fact, inthis example cheap_filter should not be used in independent AND-parallel, but as aconstraint or a delayed goal.Parallelisation overheadAs with OR-parallelism, we must consider the overhead of creating parallel processes, andonly parallelise calls with large grain size. When estimating grain size for AND-parallelismwe do not need to consider continuations, only the grain size of the calls themselves. Also,because of the way AND-parallelism is implemented we always estimate grain size for allsolutions, never for one solution.Consider the Quick Sort program in Figure 3.2. For large lists Smaller and Bigger thegrain sizes of the recursive quicksort calls may be large enough to justify calling themin parallel, as in Figure 3.3. Of course, as the input list is decomposed into smaller andsmaller sublists parallelisation becomes less worthwhile.36



quicksort([Discriminant|List],Sorted) :-partition(List,Discriminant,Smaller,Bigger),quicksort(Smaller,SortedSmaller) &quicksort(Bigger,SortedBigger),append(SortedSmaller,[Discriminant|SortedBigger],Sorted).Figure 3.3: AND-parallel Quick Sort programquicksort([Discriminant|List],Sorted) :-partition(List,Discriminant,Smaller,Bigger),length(Smaller,SmallerLength),length(Bigger,BiggerLength),(SmallerLength>30,BiggerLength>30 ->quicksort(Smaller,SortedSmaller) &quicksort(Bigger,SortedBigger); quicksort(Smaller,SortedSmaller),quicksort(Bigger,SortedBigger)),append(SortedSmaller,[Discriminant|SortedBigger],Sorted).Figure 3.4: Conditional AND-parallel Quick Sort programIn fact Quick Sort is not a good example for ECLiPSebecause it is more concerned withOR-parallelism, and its implementation of AND-parallelism is not very sophisticated.Since it collects all the results of two AND-parallel goals, there is an overhead which growsas the sizes of the goal arguments grow. For the Quick Sort program, coarse-grained goalsalso have large terms, and so it is probably never worthwhile using AND-parallelism. Weshall use Quick Sort for purposes of illustration and pretend that this overhead does notexist, but the reader should be aware that goals should only be called in AND-parallelwhen their arguments are not very large.Conditional parallelisationWe can make more e�cient use of AND-parallelism by introducing runtime tests. Saythat for a given number of workers, lists with length greater than 30 make parallelisationworthwhile, while smaller lists cause �ne-grained recursive calls which do not make itworthwhile. Then we can write the program shown in Figure 3.4.This can be further re�ned by making partition calculate the lengths of Smaller andBigger as they are constructed, to avoid the expensive calls to length. In fact, we shouldbe careful of introducing expensive runtime tests.A point worth noting is that when estimating the grain size of a quicksort(L) call toset the threshold (30 in this case) we should base the estimate on the version with theruntime test. The version with the tests will have greater grain size for a given list length,37



and so the threshold can be set lower, giving greater parallelism.SpeedupIt is possible to obtain superlinear speedup with AND-parallelism. For example, saywe have AND-parallel calls (a & b) where b fails immediately. Then a can be abortedimmediately. But if instead we had called (a, b) the failure of b would not be detecteduntil after a had completed, thus AND-parallelism may cause a large speedup. 1However, if none of the AND-parallel calls fails then the expected speedup is linear orsublinear. Unlike OR-parallelism all solutions of AND-parallel calls are computed, andso there is no di�erence between one-solution and all-solution queries. However, whenthere are not enough workers available AND-parallel calls will be called using the sameworker, as already mentioned. This execution will be noticeably less e�cient than a normalsequential execution. Therefore AND-parallel calls need to have large grain size so thatthe overhead is not signi�cant.3.4 SummaryA program written for sequential ECLiPSecan be AND-parallelised using the principlesoutlined in this section. Here is a summary of the principles.� Look for conjunctions of calls which can be called in AND-parallel. First considerwhether they are safe in parallel. It is unsafe to AND-parallelise calls sharing vari-ables which are used in non-logical calls such as var(X), X\==Y, setval(X,Y) andread(X). It is also unsafe to AND-parallelise calls whose results depend upon theorder in which they are called.� Next consider whether they will be faster in parallel than in sequence. Only ex-pensive calls with small arguments are worth calling in parallel. Also, calls whichcompete to bind some shared variable will probably be faster when called sequen-tially. If a cheap way can be found to estimate the grain sizes of calls at runtime, thenthis can be used in a runtime test to choose between sequential and AND-parallelexecution.As with OR-parallelism, there is no strategy which always leads to the best speedups.However, a common-sense approach works well in most cases.4 Finite Domain constraint handlingConstraint handling can speed up search problems by several orders of magnitude, bypruning the search space in the forward direction (a priori), in contrast to backtrackingsearch which prunes in the backward direction (a posteriori). Many di�cult discrete1However, at the time of writing ECLiPSewill not detect the failure of b in this example; it may infuture versions. 38



combinatorial problems can be solved using constraints which are beyond the reach of purelogic programming systems. Such problems can of course be solved by special purposeprograms written in imperative languages such as Fortran, but this involves a great dealof work and results in large programs which are hard to modify or extend. CLP programsare much smaller, clearer and easier to experiment with. ECLiPSehas incorporated anumber of constraint handling facilities for this purpose. For an overview on constraintlogic programming see [vH89], from which some of the examples below have been adapted.We shall illustrate how to use the �nite domains in ECLiPSewith a single example: theoverused but useful 8-queens problem.4.1 Description of the 8-queens problemConsider a typical combinatorial problem. We have several variables each of which cantake values from some �nite domain. Choosing a value for any variable imposes restrictionson the other variables. The problem is to �nd a consistent set of values for all the variables.For example, consider the ubiquitous 8-queens problem. We have a chess board, 8 � 8squares, and 8 queens, and we wish (for some reason) to place all these queens on theboard so that no queen attacks another. It is well known that there are 92 ways of doingthis.Placing any queen on the board typically imposes new restrictions by attacking severalnew squares: along the vertical, horizontal and two diagonal lines. It is possible to imaginemany strategies for placing the queens on the board. We now discuss some of these andtheir expression in ECLiPSe.4.2 Logic programming methodsBefore describing how to use constraints, we give several versions without constraints.These will help to illustrate the later versions and to contrast the two approaches.Generate-and-testThe most obvious formulation is a purely generate-and-test program which places all thequeens on the board and then checks for consistency (no queen attacks another). This isshown in Figure 4.1: permutation is a library predicate which generates every possiblepermutation of the list [1,2,3,4,5,6,7,8] non-deterministically, and safe checks forconsistency. The �rst number in the list denotes the row of the �rst queen (in column 1),the second number the row of the second queen (in column 2) and so on.This is arguably the most natural program, but extremely ine�cient.39



eight_queens(Columns) :-Columns = [_,_,_,_,_,_,_,_],Numbers = [1,2,3,4,5,6,7,8],permutation(Columns,Numbers),safe(Columns).safe([]).safe([Column|Columns]) :-noattack(Column,Columns,1),safe(Columns).noattack(Column,[],Offset).noattack(Column,[Number|Numbers],Offset) :-Column =\= Number - Offset,Column =\= Number + Offset,NewOffset is Offset + 1,noattack(Column,Numbers,NewOffset).Figure 4.1: 8-queens by generate-and-testTest-and-generateWith a small change, the generate-and-test program can be made quite good. We simplyreverse the calls in the eight_queens clause and use coroutining to suspend the checksuntil they can be made. This is shown in Figure 4.2. Now all the checks are set up initiallyand suspended, and then the queens are placed one by one. Each time a queen is placedthe relevant checks are woken immediately, thus interleaving placements with checks. Thisis closer to the way in which a human would proceed.Standard backtrackingThe next most obvious formulation is to explicitly interleave the consistency checks withthe placing of the queens. A typical such program is shown in Figure 4.3.This is a fairly clear program, and more e�cient than the previous program because ithas no coroutining overhead. But it is not the best available; in fact if we increase thenumber of queens (and the size of the board) it becomes hopelessly ine�cient.Forward checkingThe strategy can be improved by a technique called forward checking. Each time we placea queen, we immediately remove all attacked squares from the domains of the remainingunplaced queens. The trick is that if any domain becomes empty we can immediatelybacktrack, whereas in the previous program we would not backtrack until we tried toplace the later queen. All the useless steps in between are thus eliminated.40



eight_queens(Columns) :-Columns = [_,_,_,_,_,_,_,_],Numbers = [1,2,3,4,5,6,7,8],safe(Columns),permutation(Columns,Numbers).noattack(Column,[],Offset).noattack(Column,[Number|Numbers],Offset) :-check(Column,Number,Offset),NewOffset is Offset + 1,noattack(Column,Numbers,NewOffset).delay check(A,B,C) if nonground(A).delay check(A,B,C) if nonground(B).delay check(A,B,C) if nonground(C).check(Column,Number,Offset) :-Column =\= Number - Offset,Column =\= Number + Offset,Figure 4.2: 8-queens by test-and-generate
eight_queens(Columns) :-solve(Columns,[],[1,2,3,4,5,6,7,8]).solve([],_,[]).solve([Column|Columns],Placed,Number) :-delete(Column,Number,Number1),noattack(Column,Placed,1),solve(Columns,[Column|Placed],Number1).Figure 4.3: 8-queens by standard backtracking41



eight_queens(Columns) :-Columns=[_,_,_,_,_,_,_,_],Columns :: 1 .. 8,solve(Columns).solve([Column]) :-indomain(Column).solve([Column1,Column2|Columns]) :-indomain(Column1),noattack(Column1,[Column2|Columns],1),solve([Column2|Columns]).noattack(Column,[],Offset).noattack(Column1,[Column2|Columns],Offset) :-Column1 ## Column2,Column1 ## Column2 + Offset,Column1 ## Column2 - Offset,NewOffset is Offset+1,noattack(Column1,Columns,NewOffset).Figure 4.4: 8-queens by forward checkingA Prolog program using forward checking can be written, but we shall not show it herebecause it is rather long. It maintains a list of possible squares for each queen, and everytime a queen is placed these lists must be reduced.The program is indeed more e�cient for a large number (larger than about 12) of queens,but for fewer queens it is less e�cient because of the overhead of explicitly handling thevariable domains. It is also considerably less clear than the previous program.4.3 Constraint logic programming methodsWe now come to constraint handling. We shall compare and contrast these methods withthe Prolog methods described above.Forward checkingWe can very easily write a forward checking program for 8-queens, as in Figure 4.4. The## built-in predicate is the ECLiPSedisequality constraint.This program looks similar to the standard backtracking program, but even simpler be-cause the variable domains are not explicitly manipulated. Instead they are an implicitproperty of the domain variables, set up by the call Columns :: 1 .. 8. The programworks in much the same way as the Prolog forward checking program, but is more e�cient.42



eight_queens(Columns) :-Columns=[_,_,_,_,_,_,_,_],Columns :: 1 .. 8,safe(Columns),placequeens(Columns).safe([]).safe([Column|Columns]) :-noattack(Column,Columns,1),safe(Columns).placequeens([]).placequeens([Column|Columns]) :-indomain(Column),placequeens(Columns).Figure 4.5: 8-queens with improved forward checkingImproved forward checkingWe can also write a constraints analogue to the test-and-generate program, which givesmore sophisticated forward checking. When we place a queen, not only can we check forempty domains but also for singleton domains. Placing a queen may reduce a remainingqueen's domain to one value, and we can immediately place that queen and do furtherforward checking. This is sometimes called unit propagation.This will be better than the previous program. We should do as much propagation aspossible at each step, because a propagation step is deterministic whereas placing a queenis non-deterministic.The forward checking program provides no opportunity to do this, because when placingeach queen not all the constraints have been called yet. We need a di�erent formulation,as in Figure 4.5. This is similar to the test-and-generate program, though much fasterbecause of forward checking. It sets up all the relevant constraints and only then does itbegin to place the queens. Note that the placequeens call could actually be replaced by acall to the equivalent library predicate labeling. However, we will modify placequeensbelow, so it is useful to show it here.The �rst-fail principleForward checking can be improved by the �rst-fail principle. In this technique, we donot simply place the queens in the arbitrary order 1,2,3... but instead choose a moreintelligent order.The �rst-fail principle is a well-known principle in Operations Research, which states thatgiven a set of possible choices we should choose the most deterministic one �rst. That is,if we have to choose between placing the seventh queen which has 3 possible positions,43



placequeens([]).placequeens([Column|Columns]) :-deleteff(Column,[Column|Columns],Rest),indomain(Column),placequeens(Rest).Figure 4.6: 8-queens with improved forward checking plus �rst-failand the sixth queen which has 5 possible positions, we should place the seventh queen�rst. We have already seen a limited version of this principle when we selected queenswith 0 or 1 possible places �rst in the forward checking programs.It is very simple to implement the principle in ECLiPSe, as shown in Figure 4.6. Thedeleteff built-in deletes the domain variable with the smallest domain from the list ofremaining domain variables. Variations on deleteff are listed in the Extensions UserManual [ECL94].Note that it is quite simple to obtain a radically di�erent computation strategy by con-trolling the way in which variables take domain values. It would be far more di�cult towrite these strategies directly in a logic program.Maximising propagationThere is another useful principle which makes a signi�cant improvement to the 8-queensproblem. Like the �rst-fail principle this is concerned with choosing an intelligent orderfor placing the queens, but the aim here is to perform as much propagation as early aspossible.If we begin by placing the �rst queen, that is the queen on the �rst column, this enablesECLiPSeto delete squares from the domains of all the future queens. However, if we beginby placing, say, the fourth queen then more squares can be deleted. This is because themiddle squares can attack more squares than those on the edges of the board.4.4 Non-logical callsWith such sophisticated execution strategies it is hard to predict when domain variableswill become bound. In this way, constraints are similar to suspended calls (that is, thoseused in coroutining). If variables become bound at unexpected points in the computation,cuts, side e�ects and other non-logical built-ins (such as var and \==) may not have theexpected e�ects. It is therefore advisable to use constraints only in \pure" parts of aprogram. 44



placequeens([]).placequeens([Column|Columns]) :-deleteff(Column,[Column|Columns],Rest),par_indomain(Column),placequeens(Rest).Figure 4.7: 8-queens with parallel forward checking plus �rst-fail4.5 ParallelismThe two features of OR-parallelism and constraint handling can easily be combined toyield very e�cient and clear programs. Predicates in a CLP program can be parallelisedas in a logic program, exactly as described in Sections 2 and 3, and subject to the samerestrictions plus those described in Section 4.4.There is also a more direct interaction between constraints and OR-parallelism. Constrainthandling aims to reduce the number of non-deterministic choices in a computation, butsuch choices must still be made. They can be made in parallel by using a parallel coun-terpart of indomain called par_indomain (this is available in the fd library).Any of the previous programs can be parallelised in this way. For example, Figure 4.7shows a parallel forward checking program.4.6 SummaryPrograms should be written with constraints in mind from the start, because they use adi�erent data representation than logic programs (which do not have domain variables).Here is a summary of the general principles discussed in this section.� Given a problem, look for ways of using forward checking as opposed to backtrackingsearch, then formulate the forward checking in terms of constraints.� Try to enhance forward checking by setting up as many constraints as possible beforechoosing values by indomain.� Try to further reduce backtracking �rst by choosing values from small domains, andthen by choosing values in an order which maximises propagation.� Beware of using constraints in parts of a logic program with cuts, side-e�ects orother non-logical features.� Parallelise CLP programs exactly as with logic programs, also replacing indomainby par_indomain where it is safe and pro�table to do so.45



5 Appendix: Calculating parallel speedupA �gure which must often be calculated to evaluate a parallel program is the parallelspeedup. However, variations in parallel execution times make speedup tricky to measure.In a previous technical report [Pre93b] we described various ways in which a program maygive very di�erent execution times when run several times under identical circumstances.This is not a bug of ECLiPSebut a feature of many parallel programs.Several ways to cope with these variations can easily be thought of: do we take the meanof the parallel times and then calculate speedup, or do we divide by each parallel time andthen take the mean speedup? What sort of mean should we use (arithmetic, geometric,median)?In a recent paper by Ertel [Ert94] it is shown that, given a few common-sense assumptionsabout the properties of speedup, there is only one sensible way of calculating speedup fromvarying times. The paper gives quite general results, and this note extracts the detailsrelevant to ECLiPSeusers.5.1 The obvious de�nitionSpeedup is commonly de�ned as S = TsTp where Ts is the sequential and Tp the parallelexecution time. Because of variations in the parallel system, we may have several paralleltimes T 1p : : : T np for exactly the same query. For certain types of program (especially single-solution queries) these times may vary wildly. This is not a fault in ECLiPSebut a featureof certain types of parallelism. The causes are not relevant here, but the e�ects are. Howdo we calculate the speedup when parallel times vary?The usual method is to take the arithmetic mean of the parallel times and then divideto get S. This method has been widely used for years by empirical and theoretical scien-tists [Ert94], and is appropriate in some cases. A system designer who wants to comparethe parallel and sequential performance is interested in the reduction of cost in the longrun | he wants to compare the sum of many parallel run times with the sum of manysequential run times. Ertel calls this the \designer speedup".However, the designer speedup is not appropriate for the user . A user is interested in thespeedup for a single run, and therefore needs the expectation of the ratio TsT ip . Moreoverthe designer speedup carries no information about the variation of speedup. What is agood de�nition for \user speedup", and how could we de�ne speedup variation?To illustrate the problem, say we haveTs = 10 T 1p = 2 T 2p = 50If we take the arithmetic mean of T 1p and T 2p then calculate the speedup we get S = 0:38.If we calculate the two possible speedups and take the arithmetic mean we get S = 2:6.If we take the geometric mean in either case we get S = 1. Which, if any, is correct?46



5.2 A better de�nitionIt is shown in [Ert94] that the correct way to calculate (\user") speedup in these casesis to take the geometric mean of all possible speedups. That is given fT 1s : : : T ns g andfT 1p : : : Tmp g (normally n = 1) to take the geometric mean of the ratios� T isT jp i = 1 : : : n; j = 1 : : : m �In the example above this gives S = 1, which is sensible: using T 1p we have S = 5 andusing T 2p we have S = 15, so \on average" we get the product S = 1. For technical reasonson why this is the correct method, see [Ert94].A note on calculationThe geometric mean of n numbers is the nth root of their product. If the numbers are toolarge to multiply together, this can be calculated by taking the arithmetic mean a of theirnatural logarithms, and then calculating ea.If some of the parallel times or speedups are identical, they must still be treated as if theyare di�erent. For example, ifTs = 10 T 1p = 2 T 2p = 2 T 3p = 3then we must count 2 twice: S = 103p2 � 2 � 3 � 4:37Other applicationsThe de�nition is useful for randomised search algorithms, where Ts may also vary consid-erably.It also covers the case where we wish to calculate the speedup of one parallel program Aover another parallel program B, if we take T is to mean the parallel execution times of B.It even covers the case where programs A and B take di�erent queries. The times T is andT jp may be the (parallel or sequential) times for a set of queries, in which case S is anaverage of the speedup of A over B for those queries.Quasi standard deviationTo measure the deviation from the geometric mean Ertel suggests the quasi standarddeviation: D = exwhere x = vuuut nXi=1 mXj=1 1mn lnT isT jp !2 � 0@ nXi=1 mXj=1 1mnlnT isT jp 1A247



Again if some of the times are the same, count them as if they are di�erent.If D = 1 then there is no deviation from the mean, in contrast to the usual standarddeviation which is 0 when there is no deviation.5.3 Speedup curvesFor performance analysis we often plot a graph of speedup as a function of the number ofworkers. However, there are a few pitfalls which should be avoided:� As mentioned above, speedup may vary from run to run, and so to plot a speedupcurve we should several runs for each number of workers and �nd average speedups.� Speedup curves may take any shape; for example there may be kinks, troughs, orplateaus. This means that speedup curves cannot be extrapolated nor interpolated.For example, if we have a nice, linear speedup curve for 1 : : : 10 workers we cannotuse this as evidence for a good speedup with 11 workers.� Even a small change in a program may have a large (good or bad) e�ect on speedup.Therefore we may get a completely di�erent speedup curve after a small change, (inthe program, the query or the number of workers for example.These e�ects (which are described more fully in an earlier technical report [Pre93b]) showthat a speedup curve actually says little about a parallel execution. A good speedup curvedoes not necessarily indicate good parallel behaviour, and so caution should be exercisedwhen using speedup curves. This is not to say that speedup curves are useless: we cantake a poor speedup curve to indicate poor parallel behaviour.AcknowledgementThanks to Liang-Liang Li, Micha Meier, Shyam Mudambi and Joachim Schimpf for sug-gestions and proof-reading.
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1 IntroductionPSAP (Planning System for Aircraft Production) is an aircraft production planningdecision support system, whose aim is to schedule the aircraft production over the nextyears (more than �ve years). Up to 400 aircraft and 30 assembly lines are concerned.Among the several factories involved, the Argenteuil factory was chosen as a pilot site,since, in the current practice, the production plans for the other factories are generallyderived from those elaborated for Argenteuil. The users are the planning experts of theArgenteuil factory.The planning process takes into account all factory departments involved in the mainassembly steps, whose results will condition all further production management compu-tations (schedule for each factory, required primary parts, workshop schedule computa-tions...).Such long term production schedules the assembly lines where the big aircraft sections aremanufactured. A section is a major aircraft part (e.g. cockpit, wing, rear fuselage, �nalassembly). This production is paced.The objective is to �nd schedules respecting the delivery dates for all aircraft and beinga satisfactory compromise between section storage costs and workload. The productionplans have to take into account the assembly lines' limited exibility (not all productionrate transitions are possible and each signi�cant change has a considerable cost).Production planning and scheduling are complex operations involving a great number ofconstraints, both numerical and symbolic. These constraints are likely to vary with time:constant changes in the production context make it necessary to modify the constraintsembodied in the planning system, as well as the cost elements. In such environments,classical Operational Research programs and ad hoc software de�nitely lack exibility.In contrast, Constraint Logic Programming [Col87, JL87, DSV87] appears as a goodcandidate, since it o�ers the desired modi�ability as well as e�ciency.1.1 Production Intervals and Assembly Lines - De�nitionsThe production rate of an assembly line is the number of aircraft sections produced permonth.The production interval (PI) is the number of days between the start of two successiveaircraft sections on an assembly line. In other words, each assembly line receives a newaircraft section every PI. PI is the reciprocal of the production rate.An assembly line is dedicated to the production of a particular section of one or moreaircraft types (e.g. single seater aircraft, twin seater).1.2 Current PracticePreparing a production schedule is currently performed by a planner with a pencil and aneraser. It takes one week, which raises essentially two problems :50



1. It is a very long and inexible process : The planning task occurs, basically, everythree months, but there is a constant requirement on planners to simulate the e�ect ofpossible new orders, of con�rmation or cancellation of options, of modi�cation of duedates or of the main characteristics of certain aircraft, etc... They can usually onlyprovide approximate answers by testing limited local modi�cations to the currentschedule. Furthermore, such a job takes from 1/2 day to 3 days, which is ratherdissuasive.2. The result can only be evaluated a posteriori : As the cost criteria cannot be formal-ized, the planning process can only take into account intuitive cost criterion. Thismeans that the result cannot be characterized precisely with regard to these criteria.Thus has emerged a need for a planning tool that would not only compute schedulesaccording to a given formalized evaluation function, but also be exible and swift enoughto be used as a decision support system for evaluating any interesting scenario uponrequest. The scenarii might be for current production (e.g. for the Mirage 2000), aswell as for pre-production (e.g. for the Rafale). For pre-production, delivery dates andsome production parameters (e.g. production cycle parameters) are often changed to testseveral production possibilities.1.3 PSAP HistoryWhen the Dassault factories started to look into the question what kind of software toolwould help the production planner, their �rst attempt was to adapt the ARTEMIS [Sys88]software to the planner's need. But it soon appeared that this main frame schedulingsoftware would not be able to really solve their problems (cf. chapter 3).This motivated internal development of a decision support system for planning with theobjective of automating certain tasks and of anticipating the evolutions of the productioncontext. This development was assigned to the Arti�cial Intelligence and Advanced Com-puter Techniques Department of the Advanced Studied Division. The emerging ConstraintLogic Programming, which seems well suited to handle planning and scheduling problem,was chosen (for the reason cf. chapter 3).Starting from very few speci�cations, a �rst mock-up, called PSAP 1 (cf. chapter 5), wasdeveloped. The modelling of the problem was naive. The results provided by this mock-upwere su�ciently good to demonstrate the feasibility of a CLP based system for this typeof complex problem.A �rst prototype, PSAP 2 (cf. chapter 5 and 6), based on precise speci�cations was thencompleted. Parallelism was applied to this prototype to search some optimal costs. Theresults were not satisfactory neither in terms of quality of the solutions nor in terms ofparallelism use. The search tree was too large, even for parallel execution, the propertiesof the problem were not su�ciently analyzed.The PSAP 3 prototype was developed (cf. chapter 6) in order to reduce the search tree.The pre-computation and the labelling phases were modi�ed. The parallelism was appliedto PSAP 3 and gave interesting results. 51



1.4 SummaryChapter 2 describes the application in terms of objectives to be ful�lled, inputs/outputsand the planner's work.Chapter 3 discusses the limits of an "on the shelf" scheduling tool such as ARTEMIS, thechoice of Constraint Logic Programming, the size of the problem and its complexity, �rstsolution vs. optimal solution, why parallelism was necessary.Chapter 4 studies the �rst constraint modelling of the problem(PSAP 1).Chapter 5 studies the parallelism introduced to solve the cost optimization problem :where it has been introduced, introduction di�culties, methodology used and paralleliza-tion e�ort.Chapter 6 studies di�erent pre-computations and heuristics through PSAP 2 and PSAP3. Sequential and parallel improvements to PSAP are discussed, followed by a descrip-tion of their interaction. The improvement from PSAP 2 to PSAP 3 was driven by theperformance debugging process, as shown in the benchmark paragraph.2 Problem Description2.1 ObjectivesThe objective of PSAP is to provide a decision-making support system for Dassault'sproduction planning experts (hereafter called planner).The �rst task of the planner is to pace the di�erent assembly lines assigned to the manu-facture of given aircraft units in accordance with their due dates, with a view to preparingthe production schedule. Then, the planner has to calculate the resulting workload andstorage time.The overall goals are :� balancing the workload,� reducing sta� changes (i.e. the number of production interval changes),� reducing storage costs.Balancing factory workload is quite impossible within PSAP. As a matter of fact, PSAP'saim is to pace the assembly lines for one given aircraft model (Falcon, Mirage 2000 orRafale), whereas Dassault factories produce all these models.Sta� changes increase the workload but reduce the storage costs.As one may imagine, it is not easy to achieve a compromise between these three goals.Moreover, there is no cost function which takes into account both storage costs and sta�changes. The di�culty in formalizing a cost function leads to the design of an interactivesystem. These requirements imply for the system to be easily parameterizable and52



to interact with the user via a user-friendly interface. User interactions require thatschedule solutions must be obtained within a short time.2.2 InputsThree kind of inputs are used :� Aircraft Production rules, also called Factory Data. The most relevant factory dataare description of the assembly lines, description of the di�erent aircraft produc-tion types, and for a given type of production, description of the related sections(production cycle, workload, precedence constraints, storage costs). A section is amajor aircraft part (e.g. cockpit, wing, rear fuselage, �nal assembly) produced inone assembly line.� Production Orders, also called Planning Data. They are objective data. The mostrelevant planning data are delivery due dates for the orders, work in progress on theassembly lines, learning curve laws (i.e. a new production or a sta� change impliesan increase of the production cycle during the time the sta� is learning new tasks).� Production Policy, also called Planner Data. They are subjective data. The mostrelevant planner data are the requirements stated by the factory director in termsof workload and/or of storage costs, the planner's expertise, his wish to avoid toofrequent production interval changes as well as changes to the short term production.These subjective data need an interactive system and the introduction of subjectiveparameters to be set by the planner.The planner data are not predictable and require interactions during the scheduling pro-cess, whereas the factory and planning data are described a priori.2.3 OutputsThe main output is the schedule for each assembly line. This is the objective of PSAP.But the overall goal is to have a schedule which gives a good compromise between thesta� changes and the storage time for a each aircraft model with a balanced workload foreach factory. The de�nition of the good compromise depends on the current productionpolicy.Hence, the other main outputs are :� the number of the production interval changes,� the storage time for each section, each aircraft and each assembly line,� the workload and the overload for each section, each aircraft and each assembly line.53



MODEL 1

TYPE 2TYPE 1 TYPE 3 TYPE 4

section 1 sect. 1 sect. 2 sect. 2 sect. 4sect. 3

Ass. Line Ass. Line Ass. Line Ass. Line Ass. Line Ass. Line Ass. line Ass. line

1.1 1.4 2.1 2.4 3 4 5 6

sect. 6sect. 5Figure 2.1: Example of Factory Data, one aircraft model production type has 5 sectionsproduced by 5 assembly lines (sections and assembly lines are production type-dependent)2.4 Cost FunctionsThe assessment of a schedule depends on the results given by the di�erent cost functions.A schedule involves two costs : workload and storage time. These costs qualify theschedule's qualitative properties. However, such quali�cation is actually not an easy task,as balancing these two costs in one and the same cost function is not easy to achieve.Moreover, balancing these two costs depends on the current production policy.The workload of an assembly line depends on its di�erent production intervals and on theworkload for each of its manufactured sections. Moreover, when the production intervalchanges, there is an overload due to the workers' new task learning time.The workload used for a given section depends on :� the rank of this section on its assembly line (this rank is the parameter of the sta�learning function which is a logarithmic function),� the last production interval change which produced an overload.The overload function for a given section, which is a further learning function due to thesta� change, depends on :� the time interval between this section and the section where the last productioninterval change occurred; if this time interval is shorter than the latter's productioncycle, an overload occurs for the section,� the ratio between the current production interval and the previous one.54



The complexity of the workload cost function for an assembly line has led to restrictthe workload optimization to overload optimization in PSAP and hence, to minimize theproduction interval changes.The storage time is the time between the end of manufacturing one section and themanufacturing start of the next section.The relevant costs actually used in PSAP are the number of production intervalchanges and the storage times.2.5 Details of the Planner's WorkFirst task, the planner schedules a new production or modi�cation of the aircraft to beproduced (modi�cation to some aircraft type, adding or removing aircraft). In this case heschedules the last assembly line, then the previous one and so on. This allow minimizationof the storage time between the end of an aircraft production and its delivery date. Tostart by the last assembly line is not a simpli�cation, it is the actual way of scheduling.This way of scheduling is the most e�cient because in long term scheduling, the lastassembly line is the most constrained.The subtask, which schedules one assembly line, consists in pacing each assembly line,i.e. in choosing for which aircraft section the production interval has to change and whichvalue the new production interval has to take.Second task, he calculates the resulting workload and storage time.Third task, considering a previous schedule, he may want to modify some of the assemblylines which may imply modi�cation of the next and/or previous assembly line(s). Thismodi�cation is mainly due to the fact the work in progress in this assembly line has notrespected the previous schedule. The aim of the planner is to minimize the number ofassembly lines to be rescheduled.The second task may occur at any time during task 1 and 3.Forth task, often included in the �rst or the third task, the planner optimizes schedulecosts with regards to the current production policy.The subtask "to pace an assembly line" might be more or less di�cult to calculate.Scheduling the last assembly line, called general assembly, requires a lot of work. Whenthe assembly line scheduling is done from the last line to the �rst one, a given assemblyline (which is not the last one) is easier to schedule if :� the same aircraft are produced by this line and the following line,� there are no learning curve laws applied to the production cycle of sections producedby the following line.But as can be seen in Figure 1, the �rst condition is respected by 60-70% of the assemblylines (e.g. not respected by lines 2.4 and 3 which share aircraft from line 4). And thesecond condition is respected only by old production without any new production type ornew aircraft version. 55



Thus, at least 50% of the assembly lines need a lot of scheduling work, and for a brandnew aircraft, this could be 100% of the assembly lines.3 Quali�cationThis chapter discusses :� the limits of classic scheduling tools such as ARTEMIS [Sys88], a project man-agement product which handles scheduling, planning and resources managementaspects,� the choice of CLP,� the problem size and complexity of the problem,� �rst solution vs. optimal solution,� limits and optimization, which led us to consider parallel CLP.3.1 Limits of ARTEMISARTEMIS has been studied by the Argenteuil and Merignac factories' planners.The main drawbacks noted at that moment were :� no possibilities to optimize cost functions,� no possibilities for easy handling of the production interval,� ARTEMIS has been adapted to be able to manage the problem in the same way aswithout software.While Merignac's planners chose ARTEMIS as a drawing tool, Argenteuil's planners pre-ferred to search for a more powerful software package. Now Merignac's planners also wantPSAP.3.2 Why CLP ?Constraint Logic Programming (CLP) expresses in a very declarative and comprehen-sive way the constraints and successfully manages combinatorial problems encountered inproduction scheduling (e.g. the car-sequencing problem).CLP thus preserves the declarativity of PROLOG, allowing swift software developmentand o�ering easy software modi�ability, but greatly improves the resolution speed onhighly combinatorial problems by hard-wiring of domains and constraint propagation.56



It allows problems to be addressed in a exible way, which so far have only been solvedby rigid conventional programming methods (as Operations Research methods). Amongthese problems are production management, planning and scheduling, logistics.Thus, the �rst PSAPmock-up has been implemented using CLP. The following paragraphssummarize the experiments with this sequential version of PSAP.3.3 Problem Size and ComplexityThe average size of the problem manageable by the PSAP prototype is to plan 200 planesand 12 assembly lines over �ve to ten years. The operational system needs to handle up to400 aircraft and 30 assembly lines over �ve to ten years. But, as the schedule is computedassembly line per assembly line, the maximum size of the PSAP problem is to pace 400aircraft sections over 10 years with a time unit of a half day.A PSAP complexity analysis compared PSAP to the Warehouse Location Problem. Thisstudy took into account the schedule problem as a whole (i.e. with the workload andoverload functions). The conclusion, even if there is no formal proof, was \it seems thatPSAP is at least as di�cult as a Warehouse Location Problem with variable size" [BS93].The whole PSAP problem hence seems NP-complete.Because of this foreseeable di�culty, the whole problem has never been taken into accountby the PSAP prototype. Due to the impossibility of balancing the two costs, PSAPprototypes solve a simpli�ed problem using several steps. Thus, the planner shares hiswork into several tasks : pace one assembly line, then look at its storage and workloadcosts.Considering this simpli�ed problem, a polynomial algorithm might be found. But itsexecution time would be rather dissuasive due to the combinatorics introduced by thenumber of solution possibilities as briey explained above.The combinatorics is due, when pacing an assembly line, to the choice between increasing,decreasing the production interval, and keeping it even.If these 3 choices are available for each aircraft section, they imply, for 250 aircraft units,a huge 3250 search tree. A polynomial algorithm must obviously prune this tree but thiswill not be su�cient for the actual data.But such an algorithm will need a cost function which the planners are not able to �x.3.4 First Solution vs. Optimal SolutionA schedule involves two costs : number of interval changes and storage. As therelative weights of these costs are likely to vary with the context, PSAP can optimizeeither storage cost or the number of interval changes, or number of interval changes thenstorage cost; it is up to the planner considering his current policy. He can also interact withPSAP to optimize these costs from a production policy point of view using his knowledge.He can mix these interactions with the provided automatic cost optimization. The sub-jective PSAP parameters are used for both manual and automatic optimization.57



The subjective PSAP parameters have to be signi�cant for the planner and must providea \good �rst solution" in terms of costs. A good �rst solution minimizes both the numberof interactions during the manual optimization and the automatic optimization time.For instance, the most appreciated of these subjective parameters allows the planners togive the maximum number of interval changes before pacing an assembly line.Thus, pre-computation and heuristics manageable by the planner with understandableparameters is a way to add constraints in order to provide acceptable-quality �rst solutions.3.5 Why Parallel CLP ?In the sequential CLP version of PSAP, the �rst experiments have shown two drawbacks: � the optimization time is too long even if optimization started with good bounds,� the quality of the schedule is too sensitive to the input data.This is true for the �rst mock-up and also for the PSAP 2 prototype with the �rst attemptto introduce some pre-computation and heuristics. The constraint modelling part willdetail why, but at this point we have felt it di�cult to su�ciently prune the search spaceto allow e�cient time optimization with sequential CLP.The remaining search tree is still su�ciently large to feel that there is a need for parallelismwhen searching an optimum, for the following reasons :� the aim of pre-computation and heuristics is to prune the search tree (and thus, todecrease the number of solutions) without removing interesting solutions, as it isdi�cult to know a priori where these solutions are, the search tree is not su�cientlypruned to be explored in sequential execution,� the pre-computation implies non-deterministic research the size of which dependson the pre-computation (subjective) parameter value (value set by the planner).The need for parallelism has also been felt necessary as optimization proved possiblewith small-size data sets (e.g. 70 aircraft), however not for large-size data sets (e.g. 250aircraft).4 Constraints Modelling / Initial PrototypeThe initial mock-up (PSAP 1) was followed by two prototypes (PSAP 2 and 3) whichhave explored several pre-computation, heuristics and parallelism possibilities.The PSAP kernel is divided into 3 main parts :� precedence constraints between the di�erent sections of one and the same aircraft,58



� production interval constraints between the sections produced in an assembly line,� procedure to label the start date of each section in an assembly line.The �rst part of PSAP is trivial for CLP techniques.The second part of PSAP is more complex due to the disjunctive constraints expressingthe choice between increasing, decreasing the production interval and keeping it even.The precedence and interval constraints obviously prune the huge search tree but this willnot be su�cient for some of the data. This search tree is explored within the third part.The third part of PSAP chooses where and how the interval is changed. This is calledthe labelling part, and the search tree is explored in this part. Hence, parallelism isintroduced in this part. Cost optimization is implemented in this part as well.4.1 PSAP ConstraintsPrecedence ConstraintsThese are precedence constraints between macro tasks (airframe sections) for each aircraft.The sequencing of the assembly is partially ordered. Below is shown a schematic prece-dence ow chart for the Mirage 2000. \A ! B" means \A is before B", and this is aconstraint. Note also that the assembly, e.g., of structure subsections \1-17" and \17-26"makes section \1-26".These constraints relate to two types of constraints :� Cycle length constraints, expressing a task duration (ProductionCycleSectioni) wi-thin which it is impossible to begin the next one (BeginDateSectioni+1).� Delivery date constraints, imposing a maximum length to the whole productioncycle.These constraints between a section i and the following section i+ 1, look as follows :BeginDateSectioni + ProductionCycleSectioni+ StorageT imeSectioni# = BeginDateSectioni+1In the case of delivery date constraints BeginDateSectioni+1 is the delivery date of theaircraft, and i is the last section of it.Production Interval ConstraintsThese are constraints between the planes on each assembly line.The number and the extent of changes to the interval are strictly limited once the standardproduction speed has been reached. Precise �gures will be given, e.g. at least 3 months59
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section 1-26 section 26-35

section 1-17 section 17-26

section 1-10 section 10-17Figure 4.1: Precedence Flow Chartbetween two consecutive changes; do not decrease the interval by more than X% for initialvalue between A and B, and so on ... These interval-changing constraints will be calledline-interval constraints.There are additional constraints, complying with the capacity limits, over the planninghorizon, of the assembly lines. They impose, due to the unicity of the tools, a minimuminterval of time between aircraft of a certain type on one assembly line. These constraintsshall be called type-interval constraints.All these constraints are disjunctive constraints.4.2 Domain SizePSAP sets the precedence constraints between the sections of each aircraft. This isstraightforward and allows the domain-size available for the start date of each sectionto be reduced to the maximum value of the storage time (e.g. 120 half days, data set bythe planner). Then it computes the assembly line planning per assembly line, beginningby the last one. The constraints on the production interval reduce the domain for the startdate (e.g. 90 half days, if started at 120). The size of the actual problem to be solved foreach assembly line thus is to �nd a value for the start date of N aircraft sections in a 90domain-size. N is the actual number of aircraft to be planned and currently is between100 and 300.4.3 Limits of the First CLP ImplementationThe planners' fuzzy speci�cations for the schedule costs had led to a very disappointingmock-up :� the quality of the schedule was far from the one expected by the planner, (mostlybecause there were too many production interval changes),60



� the time constraints did not su�ciently constrain the system, which resulted in alot of uninteresting solutions,� the costs constraints were too weak, hence no actual optimization (neither storagetime nor workload) was possible, with the naive modelization chosen, in an accept-able time (this long time was also due to the huge number of solutions).The two �rst points led to an uninteresting �rst solution, the last one shows that asequential optimization is unacceptable by the planner in terms of time.Moreover, the lack of de�nition of the cost criteria requires a parameterizable and inter-active tool capable providing an acceptable �rst solution. Only then a tool with optimalsolution search can be considered.4.4 ConclusionPSAP 1 was a sequential mock-up version ported from CHIP to ElipSys. No heuristicswere implemented. Poor cost speci�cation and too big a search space led to a great amountof useless backtracking at the end of the schedule. This huge search space implies thatthere is limited optimality search time. The cost found was thus in fact a suboptimal cost(cf. paragraph 5.3) far from the actual optimal value.The main problem of PSAP arises from the lack of time (i.e. precedence and interval)constraints and of costs constraints. Parallelization, pre-computation and heuristics havebeen used to reduce this combinatorics.Considering PSAP 3, its use of parallelism, pre-computation and heuristics, the expressivepower of ElipSys or ECLiPSeis adequate.5 ParallelizationParallelism was introduced into the �rst sequential prototype in order to solve the costoptimization problem. The sequential prototype provides suboptimal solutions only forsmall-size data sets. These solutions were moreover far from the solution expected by theplanner.The following paragraphs discuss where parallelism was introduced, parallelism introduc-tion di�culties, the methodology followed to introduce parallelism and the last paragraphconcludes on the parallelization e�ort.5.1 Where is parallelism introduced ?As searching for the �rst solution is fast, parallelism is only needed when an optimalsolution is searched with, for instance, a branch and bound procedure as the one given bythe min max built-in. 61



Two parts seems well suited to support parallelism so as to improve the PSAP executiontime and results : the interval constraints part and the labelling part.In the interval constraints part, setting the disjunctive constraints in parallel might avoidthe drawback arising from the use of the disjunctive constraints. But the size of thetree would remain the same (3N , with N= number of aircraft) and only a huge numberof processors would improve the execution time. This possibility was hence not studiedfurther.As the search tree is explored in the labelling part, some parallelism may improve thispart. But parallelism alone will have the same drawback than in the interval constraintspart. The solution is to mix parallelism with more or less lazy heuristics. PSAP 2 startedthis work with lazy pre-computation and heuristics which still needed too much paral-lelism. Then, a better compromise was studied in PSAP 3 with eager pre-computationand heuristics which need less parallelism.This identi�cation and coding is quite easy; the main e�ort is to predict the improve-ment due to parallelization and to tune parallelization and heuristics.5.2 Parallelism Introduction Di�culties\Ideally, the e�ort required for parallelizing a sequential program should be limited toidentifying those portions of the program that must be executed in a parallel fashionand making sure that they actually run in parallel without communication overhead"[Mud94].The identi�cation phase is quite easy, at �rst sight, and ECRC has provided us withsome documents about this phase [Pre92].The checking phase needs a tool such as ParSee. ParSee provides visualization of theparallel execution behaviour to check the amount of used (or needed) parallelism and thesize of communication overhead.For PSAP the checking phase was not so easy. Even if benchmarks have shown no com-munication overhead and further potential for more processors than allowed by the usedcomputers, the access time to an optimal (or suboptimal) solution was too long. Thiswas mostly due to the fact that parallelism has been introduced to solve a point that asequential program does not really manage : the search for the optimum. The problem,in its �rst modelization, was so hard that even parallel execution with 4-processor or12-processor computers did not fast enough the optimality search.In fact, the introduction of parallelism, starting from a �rst prototype, implies two di�erentquestions :� is the size of parallel grain coarse enough ?� is the size of the remaining search tree (pruned by the constraints) small enough ?Answering the �rst question leads to making choices on the nodes in which parallelismwill be added, and in which way. 62



Answering the second question leads to working on the constraints modelization, on thelabelling heuristics, on the branch and bound strategy and, if needed, to adding a pre-computation step. This work has, of course, e�ects on the above choices; this is why, inthe following paragraph on methodology, the �rst step concerns sequential behaviour.5.3 MethodologyWhen parallelism is introduced to solve a cost optimization problem not tractable undersequential execution, two points have to be solved :� how parallelism has to be introduced,� which maximum data size can be handled by the parallel program.Our benchmarking work followed two methodology directions with strong interactions.The �rst direction used aims at tuning the program behaviour and to introduce paral-lelism in the best conditions. This methodology may be called parallelism introductionmethodology and has three steps :� �rst step is to obtain good sequential behaviour : constraints modelization, pre-computed constraints, labelling heuristics, branch and bound strategy, in order toprune the search tree;� second step is to choose the nodes where parallelism will most improve the program;� third step is to choose the actually needed number of workers (processors).The �rst step is described in the CHIC Lessons on CLP Methodology [CFGG95b].The second step is described in the APPLAUSE report [Pre92].The third step needs more inputs. Many benchmarks on the whole range of data sets areneeded for making this choice. For each benchmark, a ParSee analysis has to be done toanswer this question.The second direction used aims at �xing the maximum data size the parallel program canhandled. This methodology can be called benchmarking methodology. It will give thelimits of the parallel program in terms of speci�cation (i.e. are current data sets handled?) and in terms of quali�cation (i.e. what are the improvements provided by parallelism,pre-computation, heuristics... ?).Each of the parallelism introduction methodology steps needs benchmarks on the relevantdata sets. Benchmarking methodology mostly consists increasing the size of the searchtree. This size is increased according to two directions :� data size : start with small data sets and increase the data set size,63



� search tree size : for each data set, start working without (sub)optimal search, thengo on with suboptimal search; lastly, if the search tree is su�ciently pruned, �nishwith optimal search.There are di�erent kinds of suboptimal search :� search in limited time,� search skipping over solution less well than a given percentage of the found subop-timal cost,� search where the minimum bound of the search space is too high.In the two �rst kinds, the suboptimal search is known a priori.In the last kind, we do not know a priori what kind of search will be done. In this kind,the di�erence between a suboptimal search and an optimal search depends on the valueof the found solution : if this value is lower than the minimum bound it is a suboptimalsearch, if not, it is an optimal search.Moreover, this last kind can be found into the two �rst cases.The di�erent ways to limit the search tree size hence are :� to start with a low maximumbound (the �rst solution found in a previous trial) andto increase it,� to start with a high minimum bound and to decrease it,� to prune the search tree from a given percentage below a found suboptimal solution,� to stop the search after a certain amount of time. The latter way may also be arequirement of the system in order to give constant answer time to the end-user.The only drawback is how to make sure that a solution will be given within thistime. This feature is now available in ECLiPSe.5.4 Conclusions on Parallelism Introduction\Ideally the e�ort required for parallelizing a sequential program should be limited toidentifying those portions of the program that must be executed in a parallel fashion andmaking sure that they actually run in parallel without communication overhead."[Mud94]The current technology would be very close to this ideal if the following points were morestraightforward :� the forecast of the biggest OR-nodes,� the forecast of the parallel behaviour of a sequential program.64



If the introduction of parallelism has not signi�cantly added time as needed to debug thesystem. However, it has increased the time to understand the behaviour and the resultsof the program and its reliability. This performance debugging requires signi�cant time.This signi�cant time is due to the di�erence between a suboptimal search and an optimalsearch described below. For instance, in PSAP 2 which prunes the search tree from agiven percentage below a found suboptimal solution, time was spent :� on �nding a percentage for each data set,� on �nding benchmarking where the successive suboptimal solutions are identicalwhatever the number of workers, otherwise speed-ups between executions whichgive di�erent results are not meaningful,� on �nding the minimum lower bound.From a developer's point of view, parallelism has allowed the optimization problem mod-elization to be studied (which would not have been feasible in sequential execution) andthus, has improved the sequential version of PSAP.6 Performance Debugging / ImprovementIt is di�cult to split sequential and parallel improvements. Both are linked by a commonprogram behaviour, i.e. the sequential modelizations can provide di�erent biggest OR-nodes (di�erent by their size or/and their place in the search tree).Nevertheless, as the basis of a parallel program is a sequential program, this chapterdescribes sequential improvements, and then parallel improvements in its two �rst para-graph. The third paragraph discusses the result of these di�erent improvements and theirinteraction through a representative set of benchmarks.All conclusions about sequential or parallel improvements are the results of several bench-marks on PSAP 2 and PSAP 3. But the benchmarks sections only show the main resultswith parallel execution and discuss the obtained speed-ups.Real data were used at each development step. Only the size of the data was reduced (70aircraft instead of 200) in order to speed up performance debugging (and to have resultswhen optimizations are too long with PSAP 1 or PSAP 2).6.1 Sequential ImprovementsAs PSAP 1 constraints do not propagate enough to give results which satisfy the planner,a pre-computation has been added. The aim of this pre-computation is to add someconstraints which prune the search tree.Two stages succeed one another : 65



� the �rst pre-computation, implemented for PSAP 2, is a lazy pre-computation whichleaves large search tree space; Parallelism is expected to improve this labelling pro-cedure when searching for a (sub)optimal cost;� the second one, implemented for PSAP 3, is an eager pre-computation with a muchsmaller search tree than the PSAP 2 pre-computation. In this case, parallelism isneeded to improve the reliability of the pre-computation results when searching fora (sub)optimal cost.PSAP 2 Pre-computationIn PSAP 2, the �rst prototype version tested in the factory, more user control togetherwith pre-computation, heuristics and more parallelism, were introduced. With a givenmaximum number of production interval changes determined by the user, a pre-selectionof possible change ranks is achieved, with some rating used as a starting point for theheuristics.To obtain more pruning, a statistical pre-computation is made in order to simulate thereasoning so that it can be identi�ed by the planner's eye. This pre-computation is madeonce the interval constraint has been set, giving two types of information indicating :� the aircraft units, not requiring a production interval change, to be eliminated,� the possible production interval for the remaining units.The heuristics using the information from this pre-computation are lazy heuristics, in thesense that the search tree is pruned but the �nal decision is still taken by the constraintpropagation during the labelling part. Such heuristics were chosen because :� at that moment, an optimistic view of parallelism with constraints led us to thinkthat constraints and heuristics would provide some good decisions to prune thesearch tree and that parallelism would su�ciently speed up the search through it,� the eliminated aircraft are actually to be eliminated, i.e. no \good" solution isremoved by this pruning.Pre-computation results, as arising from statistics, prune the search tree by adding newconstraint propagation.Stating constraints to forbid interval changes on aircraft not found by the statistical pre-computation really prunes our search tree, for instance, with N = number of aircraft, from3N to a 3N=10 (e.g. 3250 to a 330) branches without removing any relevant branches.Pre-computation results are also used to improve the labelling procedure.66



PSAP 2 LabellingPSAP 2 labelling expresses the same three possibilities as PSAP 1 labelling (to increase,to decrease, to keep even the production interval) but sets the production interval to thevalue given by the pre-computation as �rst value.The use of the pre-computation production interval by the labelling procedure does notreally prune the tree. However, at least in sequential mode, this use avoids a lot ofbacktracking as, most often, the �rst production interval chosen within this labelling is anacceptable solution whereas the one chosen by other domain value labelling procedures isnot an acceptable solution.The other domain value labelling procedures tested are the three following ones :� maximum domain value domain taken as �rst production interval; this labellingminimizes the storage cost but increases the number of interval changes,� minimum domain value domain taken as �rst production interval; this labellingminimizes the number of interval changes but increases the storage cost,� central domain value domain taken as �rst production interval; this labelling triesto �nd a compromise between the two costs.The choice of the pre-computed value instead of the central value as �rst value whenlabelling the production interval, has provided PSAP 2 with best compromises betweenthe two costs. This labelling tries to put the suboptimal solutions in the left part of thesearch tree.This labelling is hereafter called interval direction.Sequential PSAP 2 ConclusionsThis pre-computation is tuned by a subjective parameter actually hard to use by theplanner. The e�ect of this parameter is to forbid a interval change to more or feweraircraft but the number of the remaining aircraft are out of control for the end user.As a conclusion, a value had been �xed for this parameter being the one used whilebenchmarking.Lack of precision when tuning the parameter leads to dramatic behaviour.For instance, the same value of this parameter applied to some data leaves too manyremaining aircraft (e.g. 30); in this case, the search tree is not su�ciently pruned; whereasapplied to some other data, it does not leave enough aircraft (e.g. 4), in the latter case,some \good" solutions disappeared from the search tree.Moreover, it appears in both cases that this parameter can, sometime, remove \good"solution branches. This is due to the di�culty for a statistical function to be reliable inall cases. 67



Due to the lazy pre-computation, interval direction labelling needs parallelism to �ndsuboptimal solutions in a search tree which is not su�ciently pruned for a sequentialexecution.But this lazy pre-computation prevents the search for the optimal solution of actual datasets because the search tree is still too large.Pre-computation (slope di�erence) and Labelling in PSAP 3As the planner requested a better �rst solution, the statistical pre-computation was modi-�ed in such a way that the new pre-computation (called slope di�erence because di�er-ence of latest start date slopes is the basis of this computation) only keeps a few aircraft.Then the heuristics during the labelling will be \eager" and no longer lazy, as in PSAP 2.Pre-computation acts in two steps :� the �rst step sets a weight on each aircraft, the heaviest aircraft being the mostinteresting interval change points,� the second step, driven by the end user, �lters the heaviest aircraft.In other words, if the end user requested 6 changes, the second step of the pre-computationwill �lter the 6 aircraft where interval changes are required, and the interval directionlabelling is optimized to achieve a storage time that is as small as possible. Then, usingthe PSAP interface, the end user can change the schedule as he wishes.Moreover, as the pre-computation is safer and as the production interval is dynamicallycomputed at the beginning of each labelling, the labelling sets the production intervalvalue which obviously decides whether the interval is to increase, decrease or to be kepteven.As the interval direction labelling is optimized, there is no need to parallelize it as in PSAP2. The introduction of parallelism will arise in the new cost optimization procedure.Even if this pre-computation is much more reliable than that of PSAP 2, there is no proofthat the heaviest aircraft are really the best points for production interval changes. Thenew cost optimization procedure takes into account this uncertainty and removes it.6.2 Parallel ImprovementsThis paragraph discusses where the parallelism was introduced in PSAP 2 and PSAP 3.The lazy pre-computation of PSAP 2 implies a huge search tree during the labelling phase,hence parallelism was introduced into the labelling procedure in several ways.The eager pre-computation of PSAP 3 and its new labelling implies a much smaller searchtree in the labelling phase, hence parallelism is not needed in this phase. Parallelismis needed in a phase just before labelling. The aim of this phase is to remove the pre-computation unreliability. 68



Introducing Parallelism and Heuristics in PSAP 2The labelling part was parallelized, thereby allowing searches in the 3 branches at thesame time. This procedure thus expresses the three interval labelling possibilities :� to increase the interval,� to decrease the interval or� to keep the interval even;and sets a value to the production interval.Parallelism may, in addition, overcome the pre-computation result drawback due to thestatistic, not always reliable, solution.Several labelling procedure were tested :� the best sequential heuristics (called interval direction)� mixed parallelism, to express the three interval labelling possibilities, and heuristics,to set the production interval value (called parallel interval direction),� all in parallel (called parallel 3),� only production interval value setting done in parallel (called parallel 1),� more or less parallelism, called e.g. parallel 3 100 : parallelism is used only for the100 �rst aircraft.The aim was to know how to tune parallelism in such a CLP application, i.e. how muchparallelism is needed to actually improve the results.The used heuristics parallelize either the choice of the new production interval (e.g. par-allel 3 and parallel 1), or not (e.g. interval direction and parallel interval direction); andthey parallelize either the choice of the production interval changes (e.g. parallel 3 andparallel interval direction) or not (e.g. interval direction and parallel 1).But no heuristics can completely determine where and how to change the production in-terval and the remaining disjunctive constraints do not allow good constraint propagation,i.e. the production interval domain-size reduction is done only during the labelling (overallby the way of an element constraint).PSAP 2 ConclusionsWhatever the parallelism and heuristics used, the search tree remained too large and theaccess time to a suboptimal solution too high. Even if super linear speed-ups, i.e. forN workers the speed-ups are greater than N , were noticed and if ParSee analysis showsthat better results could be reached with a 30-processor machine, the access time to asolution and the unreliability of the pre-computation led to the introduction of the PSAP3 pre-computation which requires to parallelize another predicate.69



New Cost OptimizationThe use of the slope di�erence pre-computation results in two ways being available for useof the min max primitive. The �rst way really improves the storage cost starting froma mean cost, the second slightly improves the cost found by the �rst one. These twoways have to be used in the following order (with P the number of possible values for aproduction interval) :� instead of choosing 6 aircraft out of 30, the end user may, in a �rst stage, report 10changes and then, request the optimal solution in terms of storage days with only 6changes out of the previous 10 (the search tree is then reduced to 210 �P 6 branchesinstead of 1011)2.� to improve a result in terms of storage, the planner sometimes just moves the changepoint to 1-3 aircraft before/after the �rst change point found. The search tree sizefor 6 changes, if we allow 5 possible aircraft for each change, is 56 (15; 625 � P 6branches).In fact, the �rst point allows to get rid of small errors, i.e. the uncertainty of the slope-di�erence pre-computation. These errors are due to the fact that slope di�erence doesnot always set the weights on the aircraft as it (the weight setting) should be done, andits �ltering part may remove important aircraft from the list of possible interval changes.Parallelism is introduced when searching the 6 element subsets are searched within the 10potential interval change element sets.The mean value of P is, however, still close to 120 (storage time maximum value). Inorder to reduce the number of branches in the search tree, a new labelling, which reducesP , has been implemented.These 2 new ways of using min max make benchmarking with one worker easier withoutloosing any interesting solutions.\min max" vs. \minimize"The PSAP 3 labelling procedure consists in a interval change sub-list generation followedby interval value setting. Parallelism is introduced in the sub-list generation. The intervalvalues are set by the compulsory interval direction labelling procedure.The trivial way to write this labelling procedure is :min_max(parallel_generation(SL), setting_values(SL))This new labelling procedure does, however, seem more appropriate when using the min-imize built-in than for the min max. In fact, :2the formula is the combination CYX , but giving an example with a realistic value is the only way toshow the improvement from PSAP 2 to PSAP 3 70



� a priori there is no point in restarting the branch and bound from the top of thesearch tree where the interval change point subsets are generated,� it is more e�cient to re-start from the bottom of the tree where interval changesand interval values are �xed.Hence, this labelling procedure has been rewritten :minimize(parallel_generation(SL), setting_values(SL))Tuning the parallel labelling in PSAP 3 consisted in �nding with one and several workerswhich amongst the solutions is the best. Benchmarks always showed best running timewith the minimize built-in use whatever the number of workers.Use of the new cost parallel min max and cost parallel minimize built-ins also has to bestudied.Benchmarks showed running times with the minimize built-in use outperform those withthe cost parallel min max built-in use. The late availability of the cost parallel minimizebuilt-in has not allowed to benchmarking it.The PSAP 3 search tree, although it has the same shape as the PSAP 2 search tree, issmaller, the PSAP 3 labelling is more driven by the pre-computation, the PSAP 3 pre-computation is more reliable and more tractable by the end-user : the PSAP 3 optimalsolution access time is much more reasonable than the PSAP 2 access time.New LabellingThe idea of this new labelling consists in reducing the number of possible values for aproduction interval, P , in a realistic way without removing \good solution" in terms ofcost.This new labelling is implemented as the interval direction labelling, i.e. the highestpossible production interval is chosen in order to obtain the shortest storage time. But,once this value has been chosen, the following points are added in the new labelling:� �rst, store the �rst value that is compatible with the propagation of the whole setof constraints,� then, starting from this value in order to try only relevant values, allow other possibleP � 1 values.As the production interval �rst value is the highest possible value and, as the aim is toreduce the storage cost, it appears meaningless to search a solution with a high P value.The writing of the formal proof of this statement has yet to be completed. Once sucha formal proof exists, we will be able to say that the optimal solution of the remainingsearch tree is also the optimal solution of the whole search tree (i.e. the search tree withP = 90).This labelling is hereafter called new interval direction.71



6.3 PSAP 2 BenchmarkingAs PSAP 2 did not prove a successful way to solve the problem, we only present the moremeaningful parallel execution benchmarks in order to assess what has been explained inthe above PSAP 2 sections.Moreover, on account of the long running time needed for sequential execution, only a fewbenchmarks were conducted.All benchmarks were only done for (sub)optimal cost research.All benchmarks concern one assembly line schedule, most often the last one, the mostdi�cult to schedule as already said.The benchmarks consider the time required for labelling, i.e. the time for the parallelizedprocedure. The labelling time is the running time, starting from the �rst call for thelabelling procedure, that is necessary to prove the (sub)optimality of the solution. It isalso called the elapsed time. This labelling procedure takes the longest running time ofthe PSAP 2 program. The running time to set all constraints and to make the statisticalpre-computation is between 20 seconds to 2 minutes for all data sets.The PSAP 2 benchmarks were not complete for the following reasons :� they were not run at least 5 times, due to the very long time needed to �nd solutionswith one worker,� they were not made for all possible numbers of workers,� some of them were made with a greater number of workers than available on theused computers (this was done to get an idea on the actually needed parallelism).The selected benchmarks are those which are most relevant to show the di�erent optimiza-tions (storage time and number of interval changes) and the main drawbacks (search spacetoo big and running time too long) of PSAP 2. They also assess the need for parallelismon account of their speed-ups.The result of these �rst benchmarks and the di�culty to achieve them have led to designingPSAP 3 instead of �nishing the benchmarks on PSAP 2.Three benchmarks are presented : the aim of the �rst benchmark was to minimize thenumber of interval changes, the aim of the others was to minimize the storage time for agiven maximum number of interval changes.First BenchmarkingThey concerned a data set of 198 Mirage 2000.Statistical pre-computation and parallel 3 100 labelling were used.The used branch and bound built-in was the ElipSys min max. The found number ofinterval changes cost was the optimal solution because the lower bound was set to 1 and72



of there was no use of the X percent better solution than the previous one in the min maxbuilt-in.The same optimal number of interval changes with the same storage cost was foundwhatever the number of workers.The following results were obtained on the 12 processors of the Sequent Symmetry com-puter.One trial from one to eight workers were made and the following array shows for eachnumber of workers :� labelling time in mn. is the labelling time to prove the optimality of the number ofinterval changes,� speed-up is the speed-up between the one worker elapsed time and the two, three, ...and eight workers elapsed time.number of workers 1 2 3 4 5 6 7 8time in mn. 625 234 199 180 166 149 129 122speed-up - 2.67 3.14 3.45 3.75 4.19 4.85 5.11As shown in this array, the speed-ups are quite super linear for 2 and 3 workers, then "sublinear" (i.e. 7 workers are 5 times as fast as 1). Even if it is interesting to save 8 hoursout of 10 hours computation time for 7-8 workers, and to save 6.5 hours with 2 workers,it is still too long for an interactive tool.Second BenchmarkingThey concerned a data set of 105 Falcon.The maximumnumber of interval changes was 5. Statistical pre-computation and intervaldirection labelling were used.The used branch and bound built-in was the ElipSys min max. The found storage timecost was a suboptimal solution because of the set lower bound and because of the use ofthe 10 percent better solution than the previous one in the min max built-in. The lowerbound was set to search a solution at least 20 percent better than the �rst found.The following results were obtained on the 12 processors of the Sequent Symmetry com-puter.One trial for six workers and one for one worker were made, and the following array showsfor each number of workers :� labelling time in mn. is the labelling time to prove the suboptimality of the storagecost,� �rst solution (1/2days) is the �rst found storage cost in half days,73



� second solution (1/2days) is the second found storage cost in half days.� third solution (1/2days) is the third found storage cost in half days.number of workers 6 1labelling time (mn.) 85.38 more than 20 hours�rst solution (1/2days) 2952 2952second solution (1/2days) 2648 2612third solution (1/2days) 2298 not found after 20 hoursThe same benchmark on the 4 processors of the ICL DRS 6000 computer gave (the legendof this array is the same as the previous one, except that 8 workers were used instead ofsix and that a forth solution was found with 8 workers) :number of workers 8 1labelling time (mn.) 15.33 more than 12 hours�rst solution (1/2days) 4291 (found in few seconds) 2952 (found in few seconds)second solution(1/2days) 2952 (found in few seconds) 2612 (found in few mn.)third solution (1/2days) 2648 (found in few mn.) 2323 (found in 12 hours)forth solution (1/2days) 2207 not found after 12 hoursIn the two benchmarks, note that the last solution found with 6 and 8 workers was notfound with one worker and that its search was stopped, hence the suboptimality yet tobe proved. Moreover, the second and third solutions were not the same with one workeras with several workers. This is due to parallel execution which explores branches in thesearch tree which are di�erent from those searched in sequential execution.The speed-ups on Symmetry and on DRS 6000 are super linear, since the result with oneworker respectively was at least 10 and 44 times as slow than with 6 and 8 workers. Wesay at least because the last solution was not found and the suboptimality not proved.Moreover, if we consider the quality of the solution, 8 workers on DRS 6000 found abetter solution than 6 on Symmetry. It may not be meaningful to compare DRS 6000and Symmetry results, but it is clear that more parallelism improves the speed-ups andexplores a more fruitful part of the search space in the alloted time.Third BenchmarkingIt concerns a data set of 130 Mirage 2000. For once, it involved the second assembly line(used only for the manufacture of single seater aircraft) where 70 aircraft are manufactured.This line is as di�cult to schedule as the last assembly line because the following linemanufactures both single and twin seater aircraft.The maximum number of interval changes was 3. Interval direction labelling was used butnot statistical pre-computation.The used branch and bound built-in was the ElipSys min max. The found storage timecost was a suboptimal solution because of the set lower bound and because of the use of74



the 10 percent better solution than the previous one in the min max built-in. The lowerbound was set to search a solution at least 20 percent better than the �rst found.The following results were obtained on the 4 processors of the DRS 6000 computer. Onetrial for eight workers and one for one worker were made, and the following array showsfor each number of workers :� labelling time in sec. is the labelling time to prove the suboptimality of the storagecost,� �rst solution (2842 half days) is the elapsed time (in seconds) needed to �nd the�rst found storage cost (2842),� second solution (2548 half days) is the elapsed time (in seconds) needed to �nd thesecond found storage cost (2548).� third solution (2248 half days) is the elapsed time (in seconds) needed to �nd thethird found storage cost (2248).� forth solution (2012 half days) is the elapsed time (in seconds) needed to �nd theforth found storage cost (2012), which is the suboptimal cost.number of workers 8 1labelling time (sec.) 98 340�rst solution (2842 half days) 8 sec. 1 sec.second solution(2548 half days) 5 sec. 2 sec.third solution (2248 half days) 7 sec. 2 sec.forth solution (2012 half days) 10 sec. 256 sec.8 workers were 25 times faster than one in reaching the 71 percent better solution (2012half days) and 3 times faster to prove its optimality. In this case, the same storage costwere found with eight and one worker.ConclusionsBenchmarks with greater size data sets are impossible because the running time takes morethan 10 hours with one worker and more than one hour with 4 or 8 workers. However,the promising speed-ups found with these two small data sets led us to safely prune thesearch tree in such a way that parallelism would give results in an acceptable runningtime. PSAP 3 was the way chosen to prune the search tree.Moreover, ParSee analysis showed :� no parallelism overhead in PSAP 2 (e.g. due to communication between ElipSysworkers),� all the workers are well used,� 30 workers would be used by PSAP 2.75



At that time, it would have been worth having access to a 30-processor computer to checkthis forecast and look at the speed-ups.6.4 PSAP 3 BenchmarkingNumerous benchmarks were conducted. In our search to �nd the bounds of the searchtree manageable by PSAP 3, three classes of benchmarks emerged :� benchmarks on a small search tree whose speed-ups given by parallel execution aresub linear, i.e. for N workers the speed-ups are smaller than N ,� benchmarks on a large search tree but with small grain size whose speed-ups givenby parallel execution are sub linear,� benchmarks on a large search tree but with large grain size whose speed-ups givenby parallel execution are super linear, i.e. for N workers the speed-ups are greaterthan N .One representative benchmark of each classes is presented hereafter.All benchmarks were only done for (sub)optimal cost research.All benchmarks concerned one assembly line schedule, it was always the last one, the mostdi�cult to schedule as already said.As for PSAP 2, the benchmarks consider the elapsed time to label, i.e. the time for theparallelized procedure. But, the PSAP 3 labelling procedure consists in a interval changesub-list generation followed by interval values setting. Parallelism was introduced into thesub-lists generation. The interval values are set by the compulsory new interval direction.This labelling procedure takes the longest running time of the PSAP 3 program. Theelapsed time to set all constraints and to make the statistical pre-computation is between20 seconds to 2 minutes for all data sets.Their aim was to minimize the storage time for a given maximum number of intervalchanges. They were made on the 4 processors of the ICL DRS 6000 computer.The benchmarks were made on the �rst PSAP 3 optimization. This optimization searchesY production interval changes out of X possible aircraft. The X aircraft are given by theslope di�erence pre-computation.The �rst task done was to de�neX and Y for each data set. As Y is a subjective parametergiven by the planner, it remained to be de�ned which values of X, for a given Y and agiven data set, would give an acceptable behaviour (i.e. acceptable running time andacceptable solution quality) in sequential execution and speed-ups in parallel execution.For a sequential execution, CYX must not be too big, for a parallel execution X � Y mustnot be too small. As a matter of fact, CYX gives an idea of the search tree size, and toobtain improvements from parallel execution, this size must not be too small. Severalbenchmarks with an X value from Y +1 to 10 for the small-size data sets or up to 20 for76



the large-size data sets have shown some bounds to the value of CYX . The conclusion ofthis section will give these bounds.When X is chosen for a given data set, the solution's quality must be checked by theplanner. The graphic interface shows him the di�erent X change possibilities. He cancheck that no relevant aircraft is removed from the interval change possibilities list.The �rst two presented benchmarks are the lower and upper bound of the actual data setsize. The last one is a medium size data set.The �rst benchmark concerned a small data set and search for the optimal storage cost.The second benchmark concerned a large data set and search for a suboptimal storagecost.The third benchmark concerned a medium size data set and search for the optimal storagecost.First BenchmarkingA data set of 70 Mirage 2000 was chosen.The maximum number of interval changes was 3. Slope di�erence pre-computation andnew interval direction labelling were used.The chosen optimization was to choose 3 production interval changes out of 10. Thesearch tree size hence was the combination C310, i.e. there were 120 subsets with 3 changesto be explored.The used branch and bound built-in was the ElipSys minimize. The found storage timecost was the optimal solution because the percent parameter of minimize was not usedand the lower bound set in the minimize built-in was smaller than the found storage cost(1199 half days for the lower bound, 1636 half days for the optimal cost).Whatever the number of workers, two storage time values were found before the optimalstorage time value.8 trials for each number of workers were made, and the following array shows two meansfor each number of workers :� time in sec. is the arithmetical mean of the eight elapsed times, given in seconds,� speed-up is the geometrical mean of the eight speed-ups between the one workerelapsed time and the two, three and four workers elapsed time.number of workers 1 2 3 4time in sec. 534 280 198 160speed-up - 1.9 2.69 3.32Second BenchmarkingA data set of 250 Mirage 2000 was chosen. 77



The maximum number of interval changes was 11. Slope di�erence pre-computation andnew interval direction labelling were used.The chosen optimization was to choose 11 production interval changes out of 14. Thesearch tree size hence was the combination C1114 , i.e. there were 364 subsets with 11possible changes to be explored.The used branch and bound built-in was the ElipSys minimize. The found storage timecost was a suboptimal solution as (although if the percent parameter of minimize was notused) the lower bound set in the minimize built-in was greater than the found storagecost (7000 half days for the lower bound, 6627 half days for the optimal cost). Besides,only 84 subsets were explored instead of the 364 possible subsets.With one worker, �ve storage time values were found before the optimal storage timevalue.With two, three and four workers, four storage time values were found before the optimalstorage time value.8 trials for each number of workers were made, and the following array shows two meansfor each number of workers :� time in mn. is the arithmetical mean of the eight elapsed times, given in minutes,� speed-up is the geometrical mean of the eight speed-ups between the one workerelapsed time and the two, three and four workers elapsed time.number of workers 1 2 3 4time in mn. 212 52 22 18speed-up 4.02 9.7 11.51This optimal storage time only needs 10 interval changes which means that one possiblechanges was removed by the good behaviour of new interval direction labelling.Third BenchmarkingA data set of 99 Falcon was chosen.The maximum number of interval changes was 3. Slope di�erence pre-computation andnew interval direction labelling were used.The chosen optimization was to choose 3 production interval changes out of 11. Thesearch tree size hence was the combination C311, i.e. there were 165 subsets with 3 changesto be explored.The used branch and bound built-in was the ElipSys minimize. The found storage timecost was the optimal solution because the percent parameter of minimize was not usedand the lower bound set in the minimize built-in was smaller than the found storage cost(3000 half days for the lower bound, 3122 half days for the optimal cost).78



Whatever the number of workers, the �rst storage time value found was the optimalstorage time value, except sometimes with 4 workers.Ten trials for each number of workers were made, and the following array shows two meansfor each number of workers :� time in sec. is the arithmetical mean of the ten elapsed times, given in seconds,� speed-up is the geometrical mean of the ten speed-ups between the one worker elapsedtime and the two, three and four workers elapsed time.number of workers 1 2 3 4time in sec. 77 43 32 33speed-up 1.79 2.39 2.34The speed-ups were smaller here than for the �rst PSAP 3 benchmark because the optimalcost was in one of the �rst left branches of the search tree and the 3 interval changesconstraint propagation thus became very e�cient and reduced the parallel grain size insuch a way that the communication overhead slowed down the parallel execution.ConclusionsThis conclusion discusses the reasons for such speed-ups di�erences between the secondbenchmarking and the others. The object is to �nd the bounds within which PSAP 3bene�ts from parallel execution.From these two benchmarks, and from others benchmarks not presented here, the searchtree size manageable by PSAP 3 can be discussed. This size depends on the value of CYX ,on the size of the parallel grain and on the data set size.The following search space bounds were found for an optimal storage cost search withfour workers :� CYX smaller than 100, whatever data set size smaller than 100 aircraft :parallel execution provides no meaningful improvement, as running times are belowten minutes with one worker. Although in the �rst benchmarking, it is worth to getsolutions in less than 3 minutes with four workers, the search tree size is not enoughlarge to require parallel execution. As can be seen in the �rst benchmarking above,speed-ups are sub linear, i.e. for N workers the speed-ups are smaller than N . Thiscondition means also that it is not worth trying X � Y +2, as the planner will neverrequest more than 10 for X3 (for such small-size data sets).� whatever CYX, whatever data set size smaller than 100 aircraft :if constraint propagation reduces the parallel grain size too much, thespeed-ups become non-existent. This case may also occur for data set sizes greaterthan 100 aircraft. The problem here is to know a priori the parallel grain size. Thissize depends on the number of interval changes, on the data set size and on the �rstsolution found. The following remarks can be made :3C810 = 45 79



{ if the number of interval changes is smaller than 4, a small parallel grain sizesare possible, whatever data set size,{ small parallel grain sizes mainly occur for small data set sizes which are notthe actual data set sizes of PSAP,{ if the �rst solution found in sequential execution is the optimal solution, theparallel grain size may be too small to obtain speed-ups while searching for thesolution optimality proof if there is good constraint propagation.� CYX greater than 100, whatever data set size greater than 150 aircraft :parallel execution with 4 workers cannot handle such a large search tree in an accept-able time . First trials with more than 7 workers on a 12-processor SGI computershowed that such large search trees can be handled in an acceptable time.This last point concerns the actual data sets, those which really require parallel execution.PSAP 3 was modelized to �nd solutions for actual data sets on 12-processor computerand it does.The search space bounds may be studied for an suboptimal storage cost search with fourworkers (cf. second benchmarking). There, the suboptimal cost was found in the �rst84 subsets studied out of the 364 subset possibilities.To give an idea of the time needed to prove solution optimality in the case of the secondbenchmarking, the parallel generation procedure was reversed in order to generate thesubsets in the reverse order, and the same benchmark gave, with one worker on DRS6000, the same suboptimal storage cost4 after 7 hours and 16 minutes' running timeinstead of the previous 212 minutes (i.e. 3 hours and 32 minutes). This running time istoo long to conduct benchmarking with four workers.PSAP 3 parallel execution for actual data sets improves the running time to prove thestorage time cost optimality or to �nd a suboptimal storage time cost. In its currentstate, PSAP 3 needs more than seven workers to provide a running time of less than �veminutes for a suboptimal search. More benchmarks are needed with the 12-processor SGIcomputer to determine the running time to prove a cost optimality.6.5 Interaction between Parallel and Sequential ImprovementsThe purpose of the sequential improvements introduced in PSAP 2 mainly are to put thesuboptimal solutions in the left part of the search tree but the search tree remains toolarge to obtain the remaining search tree optimal solution.The sequential improvements introduced in PSAP 3 thus are mainly aimed to reduce thesearch tree in order to obtain the remaining search tree optimal solution.The sequential improvements introduced in PSAP 3 result in poor speed-up in parallelfor the small-size data sets (e.g. 3 times faster with 4 workers instead of dramatic superlinear speed-up in PSAP 2).4this suboptimal cost thus is the optimal cost 80



For the actual data sets, super linear speed-up are even more important for PSAP 3 thanfor PSAP 2. This is mainly due to the PSAP 3 search tree pruning provided by newinterval direction labelling.Nevertheless, for all the data sets, the access time has been improved, i.e. whatever thenumber of workers between 1 and 4, the access time for a given number of workers is muchbetter in PSAP 3 than in PSAP 2.In terms of access time, the sequential improvements has improved both sequential andparallel behaviour of PSAP 3.7 Conclusions7.1 Parallel CLP AssessmentPSAP belongs to a mixed scheduling and planning application area : scheduling area by itsprecedence constraints and planning area by the pacing problem. The main characteristicsof PSAP application area can be de�ned by the PSAP speci�cations :� the precedence and interval production constraints,� two cost criteria, they are the storage time and the workload,� the compromise between these two costs depends on the current production policy,moreover there is no function to optimize these two costs,� the planners do not use any algorithm but their expertise to pace the assembly lineswith respects to the current production policy about the resulting costs.The given compromise between the two costs is to give a maximum number of intervalchanges and to let PSAP searching for the (sub)optimal storage time cost.Given the simpli�ed optimality search, our initial intuitions were that :� CLP could express in an easy and declarative way the speci�ed constraints butthese constraints do not much propagate on the domain variables, this leads to aninfeasible optimality search,� parallel execution could help to search the optimal (or at least suboptimal) cost intothe large remaining search tree.These initial intuitions were veri�ed and super linear speed-ups were �nd. But they weretoo simplistic, as PSAP 2 ParSee analysis showed : more parallelism than currentlyavailable was needed. This is because of the weakness of propagation between the di�erentconstraints implies a too huge search tree.Considering PSAP 3 results, the use of parallel CLP and its analysis tool, ParSee, is wellsuited for PSAP, as it allows : 81



� to know the search tree size and to give ideas to reduce it to a size manageable bythe current ECRC's computers,� to tackle previously infeasible problem as:{ the optimality proof search for small data sets,{ to �nd, for actual data sets, suboptimal costs which are actually better thancosts found with a sequential execution. And it may be possible to prove costoptimality in an acceptable running time.Characteristics for applications in the same area than PSAP can be :� some constraints which the propagation does not prune a lot the search tree,� a function for the cost criteria which the propagation does not prune a lot the searchtree,� a lot of man expertise to assess the modelization, pre-computation and heuristicschosen to prune the search tree,� a need of an interactive tool used by the experts,� a need to quickly optimize the solution quality and costs,� a sequential execution of an optimal cost search takes several hours.If an application has those characteristics, parallel CLP is adequate as it was for PSAP.7.2 Enhancements and Extensions to Parallel CLP SystemMost of the enhancements and extensions to parallel CLP system, useful for PSAP, arealready included in ECLiPSe. Some of them are the cost parallel branch and bound built-ins : cp min max and cp minimize. Another is to allow the use of more workers : bythe port to new multi processors platforms as the 12-processor SGI or, when super linearspeed-ups are expected to allow the use of more workers than available processors.Some useful enhancements concern rather the ECLiPSedebugging and analysis tools.When a parallel execution takes too long it could be useful to stop it and to switch intoa debug mode to check if :� all the processors are actually active,� they are doing more communications than processing.� there is no loop, or any other bugs, because this can occur in a branch of the searchtree never reached by a sequential execution.82



ParSee analysis was the key point to understand the PSAP 2 performance, it will be niceto provide it with ECLiPSe. As it can predict the ability of thirty processors use from afour processors execution, it can also predict parallel grain size or parallelism need froma sequential execution.Another analysis tool, could also give an idea of the constraint propagation size in termsof elapsed time and in terms of search tree branch pruning.7.3 Development Total E�ortIt is di�cult to estimate the total e�ort required for developing PSAP :� as several engineers and last year students contributed to the development whichstarted before the APPLAUSE project. Most of the persons, with PROLOG back-ground, learnt CLP then parallel CLP developing PSAP which is not the best wayto learn a new technology. But most of these students and all the engineers becamee�cient within two months, which is a good indication of the declarativity of thetechnology and to its accessibility by new users.� Before the APPLAUSE project beginning, PSAP was stopped then restarted.� Moreover, the Argenteuil's planner changed and some PSAP speci�cations changedwith them.To reach PSAP 3 and its user-friendly interface, more than 5 man-years were requiredwithout the speci�cations time. From today, such a system will need one man-year forthe speci�cations and 3 man-years of development e�ort.The di�culty encountered in the parallelization process was very small. As a matter offact, most of the time lost was due to di�culties with temporary problems of the prerelease of ElipSys and ECLiPSe. The time spent for introducing parallelization is anywaysigni�cantly less than for each of the other phases : speci�cation, modelling, expressionof the constraint, sequential improvements. The time to adjust the search tree to a sizemanageable by the provided parallel computers was the time to improve the sequentialbehaviour. This last timewas the most important since this means several trials of di�erentpre-computations, heuristics and optimality searches.7.4 Other ConclusionsCLP in sequential execution has proved adequate in the search for good solutions, sincee�cient (though simple) pre-computation with a graphic user-friendly interface could bedesigned.PSAP has induced the development in the ElipSys and ECLiPSesystem of some generalpurpose features, like time/4 and adaptation of the cost parallel branch and bound to theminimize built-in.ECLiPSecannot be applied for the moment to the practical PSAP application because offactors which have nothing to do with parallelism as :83



� a formal proof of the new interval direction labelling to convince the planner ofthe actual optimality of the solution,� an idea in French Francs of the savings obtained by (sub) optimal storage costs withregard to current storage costs in the case of an identical number of changes and ofa similar workload,� the availability of ECLiPSeon a network of workstations with the same performancesas those seen on the SGI computer.The main conclusions are :� Parallel execution has made possible to produce a better quality solution with super-linear speed-ups,� parallel resources when available, can be e�ciently and relatively easily exploited inECLiPSefor this kind of application.7.5 AcknowledgmentsLet the ECLiPSeteam at ECRC be thanked for their highly quali�ed and friendly help. AtDassault Aviation, Patrick Albers, Andr�e Chamard, Marc Sicard and Annie Fischler haveworked on the internal application together with the author of this report; this work couldnot have been carried out without their e�cient participation. The PSAP 3 benchmarkswere mainly done by Patrick Albers (LAAS-CNRS) and by Shyam Mudambi (ECRC).Thanks also to Vincent Sarracanie who did hard work on this problem and its complexityduring its stay at Dassault. Last but not least, thanks to Ute Nichols for her patience tocorrect my poor English in almost all this report and some others.
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1 IntroductionThe training of aircraft pilots is an important issue for an aircraft manufacturer. This hasto be taken into account from the initial design until the commercial phase. It has indeedbecome impossible to sell an aircraft without consideration for the appropriate trainingsystem. This is the reason why an internal study on pilot training has been launched atDassault Aviation. Increasing cost and complexity of the training process, indeed, havemade it necessary to re-consider the whole training curriculum. This implies assessing therelative capabilities of the training means, taking into consideration the fast progress ofsimulation and estimating the potential bene�ts from an earlier training for some of thepiloting tasks.Pilot training has been modelled by operational experts at Dassault Aviation. The per-spective is now to develop a decision support system based on the model they have elab-orated. This task has been assigned to the Arti�cial Intelligence and Advanced ComputerTechniques Department of the Advanced Studies Division. A prototype has been imple-mented in Constraint Logic Programming (CLP), bene�ting from the Department's previ-ous experience with these techniques, in particular for production management problems[BCP92, CF94, CF95, BCF95, CFGG95a, CFGG95b]. Parallel CLP has been identi�edas a potential way of overcoming certain performance limitations of sequential CLP dueto the highly combinatorial nature of the problem. Therefore the TCO application hasbeen chosen as a contribution of Dassault Aviation to APPLAUSE, and a parallel versionof the prototype has been developed and systematically tested for the project.This report provides a description of the problem, of its modelling and the strategiesfor solving it, both in sequential and parallel CLP (ECLiPSe). The approach adoptedhere could be applied to any training problem involving a variety of training means withsigni�cantly di�erent e�ciencies and costs. The conclusions drawn do not seem, therefore,to be limited to this particular training optimization problem.2 Problem DescriptionThe ContextPilot Training Pilot training is a long and selective process. The pilot students' cur-riculum consists of several phases, each characterized by the location at which they takeplace and the type of training. They can be thought of as school years, even though theirdurations may not be a year. The number of pilot students decreases at each phase. Thereare currently �ve phases: Primary, Basic, Advanced, OTU (Operational Training Unit),OCU (Operational Combat Unit).The whole range of piloting competences the pilot should have acquired at the end ofthe curriculum is divided into what is called piloting tasks. Taking O�, Landing, NightFlying, Patrol Flying, Low Altitude Flying are examples of tasks. This division dependson the level of granularity at which the curriculum is considered: Low Altitude Flying, forinstance, can be further decomposed into Low Altitude Flying with Visibility and Radar-Based Low Altitude Flying. For curriculum planning purposes, however, it is useless to86



go into much detail. 22 tasks have been identi�ed as a basis for this study. For eachtask, the pilot has to reach a required level, referred to by convention as 100%, at theend of the curriculum. The tasks are usually taught in more than one phase, often in allof them. Continuity is important. The teaching of Acrobatic Flying eg. currently startsin the Primary phase on small planes, continues in the subsequent phases and is �nallycompleted on the operational combat aircraft (currently, the Mirage 2000).Training is performed on training means available in the training schools and air-forcebases: these are planes, of course, ranging from small training planes to two-seater andsingle-seater combat aircraft, as well as a variety of simulator types, from simple PCsimulator programs to complete mission simulators, including cockpit trainers, partialtask trainers, etc. Their cost dramatically increases with the level of sophistication andrealism. Simulators may have a cost greater than that of the small training planes.Current Trends The level of performance required from modern aircraft has a stronginuence on pilot training at least in two respects:� They are more and more expensive. This has a direct impact on the cost of training,since combat aircraft have to be used for the training. The overall cost is already ofthe order of two million Ecus per pilot. It will increase dramatically if the currenttraining structure is kept.� The systems are more and more complex. This makes the pilot's tasks harder andharder and the tendency is towards a longer training.The design of the future pilot-training schemes has to take these evolutions into account.Designing a Training System. The TCO Project The training means cannot beconsidered in isolation. A global view of the training system is necessary if one wantsto use the means in such a way that the cost is kept down at a reasonable level. Theaim of the TCO (Training Curriculum Optimization) project is to allow to design optimalcurricula given a set of means considered as available. This availability may be real, in theperspective of a short-term improvement of the current practice, or potential, in a moreprospective approach.A Learning ModelThe Basic Learning Model Comparing the characteristics of means is a key issue,which requires choosing a learning model. Most training processes can be represented by`sigmoid' curves (Figure 2.1): early progress is slow, then learning proceeds at a constantspeed until some asymptotic level is approached.This kind of model has been adopted in TCO for the training to a particular task on agiven means. But this model is basically non-linear and would lead to great computationaldi�culties in an optimization perspective if it were kept as such. The curve, however, canbe simply characterized by three parameters: a familiarization (adaptation) time (f), an87
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Figure 2.1: Learning Curvee�ciency (e), which is the learning speed, and a maximum reachable level (m) | in short,maximum level or ceiling. In practice, the learning curve has been considered (by theoperational experts themselves) as piecewise linear: �rst, the familiarization (adaptation)time during which no progress is achieved, then a constant learning speed, until the ceilingis reached. This kind of law is much more tractable, with no signi�cant alteration of themodel's signi�cance.Reaching the Required Competence Level for a Task Learning a task is achievedby using a set of means. For instance, the task Normal Domain Flying was decomposedin 1992 as follows:PHASE # PHASE NAME TRAINING1 Primary 5 hours on Epsilon2 Basic 25 hours on Alpha Jet3 Advanced 4 hours on mission simulator4 OTU no training for this task3 hours on complete simulator,5 OCU 3 hours on two-seater combat aircraft,3 hours on single-seater combat aircraftThis leads to the kind of representation given in Figure 2.2.The temporal aspect is expressed by the phases. In the model adopted here there is nonotion of chronology inside a phase: the means are simply sorted by increasing orderof their maximum levels. How their utilization by all the students will be eventuallyscheduled is not relevant for the TCO project. TCO is about planning the curriculumand is not concerned with scheduling nor time-tabling.It is important to note that a means with a relatively low maximum level cannot be usedif its ceiling has been already overstepped by a more powerful means in an earlier phase.This is a crucial point which will be discussed in detail later. For the model to be complete,a notion of maturing should also be introduced: the learning speed in a given phase alsodepends on the level reached previously; the higher the already acquired competence (in88



100 %

Ph. 1

Level

Training hours

Ph.2 Ph.3 Ph.5

5 hrs. 25 hrs. 4hrs.

3hrs.

3hrs.

3hrs.

9 hrs.Figure 2.2: The Normal Domain Flying Taskprevious phases, with other means), the higher the speed. This presentation of the chosenlearning model allows us now to de�ne the problem in a more complete way.Problem DescriptionData and Results A tasks decomposition is assumed, as well as the declaration ofthe means available in the phases. De�ning the curriculum amounts to determining thenumber of training hours (possibly a non integer number) assigned to each means for eachtask in each phase. This provides a kind of teaching programme, comparable to thoseapplicable to standard education at the state level. They de�ne the number of hours tobe dedicated to the various activities and lessons, for each school year and each subject,and the levels to be reached. Time-tabling is left up to the teachers' and headmasters'organization skills.The basic data are therefore the following:� a list of tasks� a list of phases� a list of means declared as available for each task and each phase� the utilization cost per hour of each means� the maximum reachable level for each means declared as available in a phase for atask� the relative e�ciencies of the means (in the di�erent phases and tasks) compared tothat of the two-seater combat aircraft� the utilization times of the means in the current curriculum (which will allow tocompute absolute e�ciencies).Constraints of pedagogical or organizational nature are speci�ed:89



� total duration of the curriculum� total duration for certain phases� minimum or maximum utilization of certain means� minimum number of ying hours� minimum level to be reached at the end of certain phases for certain tasks� etc.The results are� for each phase and each task, the utilization time of all the available means.The objective is in general to minimize the total cost. But one may also want to computethe theoretical minimum duration (ie. with no cost constraint). The cost minimum withno duration constraints on the one hand, the duration minimum with no cost constrainton the other hand are nothing but two extreme points of a Cost = f(Duration) curvewhich is quite meaningful for the users, and on which they intend to perform sensitivityanalyses. The most acceptable compromise between cost and duration is likely to be insome area of the curve where the cost is relatively low, but a signi�cant duration decreasecan be achieved by just slightly increasing the cost (Figure 2.3).
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admissible areaFigure 2.3: Cost{Duration CurveA Global Problem Constraints such as maximum duration for the whole curriculumor for a phase, or minimum number of ying hours, involve all the tasks. This makes itimpossible to split the problem by optimizing the tasks separately. As a consequence, afull problem with the current data does correspond to 22 tasks and 5 phases.Origin of the Data Maximum reachable levels and relative e�ciencies are parameterswhose necessity is implied by the learning model. But they are not normally handled bydomain experts and are not accessible through immediate experience. A reection on theprocedures to be set up in order to provide experimental criteria for the comparison of the90



means is under way. The current data on the tasks have been so far de�ned by one expert.They are consistent but more based on intuition than on observable criteria. Yet they aresu�cient for the purpose of testing the model and its computer implementation. In anycase, the issue of parameter acquisition and validity, though crucial for the TCO project,is outside the scope of APPLAUSE and will not be discussed further in this report.Approximate Optima The retained learning model, being piecewise linear, has a cer-tain degree of approximation. It is then sensible that the requirements should not be forexact optima, but for approximate ones. The practical objective is therefore to �nd solu-tions within a given percentage (5% eg.) of the theoretical (but not totally meaningful)optimum. It is in fact expected that the computer system will be able to produce severalcurricula, whenever possible, within a speci�ed percentage of the global optimum.3 Problem Quali�cationA Mixed Integer-Linear ProblemSketch of the Problem Structure In the rest of this document, the following nota-tions will be adopted:� the means are indexed in chronological order of the phases and in order of increasingmaximum levels inside each phase� the utilization time of means mi is Ti, expressed in hours� its cost per hour is ci� Pi = ei � Ti denotes the (possibly null) progression achieved with mi, where Pi isexpressed in percents of the required level and ei is the e�ciency of mi, in percentsof level per hour� Li = P1 + :::+ Pi�1 + Pi is the level reached after the (possibly null) utilization ofmi.For the purpose of explanation, a simpli�ed problem featuring a single task will be con-sidered now. It will be assumed that 4 means are declared available, over 2 phases: the�rst two means can be used in Phase 1, the other two ones in Phase 2. It will be assumedas well that the familiarization times are negligible. The means' characteristics are givenbelow: Phase Means E�ciency Maximum Level Cost1 m1 4 40% 1m2 8 60% 52 m3 2 50% 2m4 10 100% 2091



The corresponding set of equations will express that� the level reached just after actually using a means cannot be higher than its maxi-mum reachable level; if the means is not used, then no constraint is imposed� the level reached at the end should be 100%� the overall cost is the sum of the utilization times multiplied by the costs per hour.The equations are the following (with conjunction between equations noted by commas):MINIMIZE Cost = 1 � T1 + 5 � T2 + 2 � T3 + 20 � T4UNDERT1 � 0; P1 � 0; L1 � 0,T2 � 0; P2 � 0; L2 � 0,T3 � 0; P3 � 0; L3 � 0,T4 � 0; P4 � 0; L4 � 0,Cost � 0,P1 = 4 � T1; L1 = P1,P2 = 8 � T2; L2 = L1 + P2,P3 = 2 � T3; L3 = L2 + P3,P4 = 10 � T4; L4 = L3 + P4,(L1 � 40 _ P1 = 0);(L2 � 60 _ P2 = 0);(L3 � 50 _ P3 = 0);L4 = 100The basic constraints are linear and it can be assumed that the variables are continuous. Apriori, this kind of problem seems to be within the scope of classical linear programmingmethods, like the Simplex algorithm. This small example, however, already shows theexistence of disjunctions which will deeply a�ect the problem's complexity.Several Sources of Disjunctions a) Maximum LevelThe above example features three disjunctions related to maximum reachable levels. Onlythe third one, actually, is a real disjunction, since for means m1 and m2 the maximumreachable levels cannot be overstepped by previous ones. Therefore, the associated con-straints are also true if these means are not used. Only m3 is such that a level greater thanits own maximum (50%) may be reached by a preceding means (m2 with ceiling 60%).This allows us to write the following, equivalent but simpler, system:MINIMIZE Cost = 1 � T1 + 5 � T2 + 2 � T3 + 20 � T4UNDERT1 � 0; P1 � 0; L1 � 0;T2 � 0; P2 � 0; L2 � 0;T3 � 0; P3 � 0; L3 � 0;T4 � 0; P4 � 0; L4 � 0;Cost � 0;P1 = 4 � T1; L1 = P1; 92



P2 = 8 � T2; L2 = L1 + P2;P3 = 2 � T3; L3 = L2 + P3;P4 = 10 � T4; L4 = L3 + P4;L1 � 40;L2 � 60;(L3 � 50 _ P3 = 0);L4 = 100The remaining disjunction cannot be removed. Instead of a conjunction of constraints,which would de�ne a convex polyhedron in the solution space (the intersection of thehalf-spaces de�ned by the inequality constraints), the disjunction leads to a non convexpolyhedron. The Simplex method is no longer applicable, and the choice of particularbranches needs to be made. Moreover, if this simple example features only one disjunc-tion, real problems will show a great number of them. With respect to the maxi-mum reachable level constraints, a disjunction will be encountered each timea means has a maximum level lower than that of at least a means availablein a preceding phase. Such means will be called `disjunctive means'. Since themeans are sorted by increasing ceilings inside each phase, a means can be disjunctive onlybecause of the presence of a higher-level one in a preceding phase, not in the same phase.Other sources of disjunction exist, which will now be explained.b) FamiliarizationFamiliarization times T 01, T 02, T 03, T 04 can be added to the above example. These times leadper de�nition to no progress, but they have a cost. Moreover, one needs to stipulate thatthese new variables may only take two values: either 0 (if the means is not used), or agiven �xed value (respectively, F1, F2, F3, F4). The new constraint system is the following:MINIMIZE Cost = 1 � (T1 + T 01) + 5 � (T2 + T 02) + 2 � (T3 + T 03) + 20 � (T4 + T 04)UNDERT1 � 0; T 01 � 0; P1 � 0; L1 � 0;T2 � 0; T 02 � 0; P2 � 0; L2 � 0;T3 � 0; T 03 � 0; P3 � 0; L3 � 0;T4 � 0; T 04 � 0; P4 � 0; L4 � 0;Cost � 0;P1 = 4 � T1; L1 = P1;P2 = 8 � T2; L2 = L1 + P2;P3 = 2 � T3; L3 = L2 + P3;P4 = 10 � T4; L4 = L3 + P4;((T1 > 0; L1 � 40; T 01 = F1) _ (T1 = T 01 = 0));((T2 > 0; L2 � 60; T 02 = F2) _ (T2 = T 02 = 0));((T3 > 0; L3 � 50; T 03 = F3) _ (T3 = T 03 = 0));T 04 = F4; % m4 has to be usedL4 = 100These new disjunctions make the problem even more complex. In addition, it has beenassumed that the familiarization time, whenever applied, is �xed. It would certainly bemore realistic to make it a function of the history of the learning process: if eg. a pilot93



student has already own on a two-seater combat aircraft, the adaptation time to thesingle-seater will be almost negligible. It is obviously not the case if he has only pilotedtraining planes. Taking this into account would introduce further di�culties both formodelling and resolution.c) MaturingModelling the maturing process is another hard issue. One may consider de�ning a ma-turing factor, by which the means' e�ciencies in a given phase will be multiplied. Thisfactor would be a function of the amount of training already carried out eg. at the endof the previous phase (expressed as a duration or a level). In order to keep the basicconstraints linear, one would have to introduce thresholds. Durations or levels previouslyreached being only known a posteriori, this would lead to additional combinatorics.A Mixed Integer (Binary)-Linear Problem This altogether makes the problem aMixed Integer (Binary)-Linear Problem. It is binary since all choices can be expressedby boolean variables: pieces of equations like T 01 = F1 _ T 01 = 0 can, indeed, be replacedby T 01 = F1 � B1; (B1 = 1 _ B1 = 0). Finding feasible (not necessarily optimal) solu-tions may imply exploring somehow all binary choices corresponding to utilization or nonutilization of the disjunctive means (plus, with more complex models, checking whethercertain thresholds are reached). Finding the optimumwill imply traversing at least implic-itly the whole search space. The time required to solve the problem can thus be expectedto be polynomial in the best case and exponential in the worst case as a functionof the total number of disjunctions.Hints on the Problem's Size The current data feature 22 tasks with 12 generictraining means in 5 phases. The total number of unknown is however less than the productof these �gures, since only part of the means can be available for a given task and in agiven phase. In fact, there are 262 availability declarations for means to tasks in phases,ie. 262 utilization times to be determined. The number of constraints is of the order of500. But the crucial point is not the number of continuous variables or the number ofconstraints. If the problem boiled down to solving the linear constraints, that would beeasily achievable by Simplex-based tools. The number of disjunctions, or equivalently of0-1 variables, is what really determines the complexity.Let us consider only the maximum level-related disjunctions. With the current data sets,there are 63 disjunctive means. If, in order to minimize the overall cost eg., one (naively)enumerated all the combinations of utilization / non utilization of these means, and if foreach combination a Simplex were run (with the idea of eventually computing the minimumof all linear minima) that would mean running the Simplex 263 times, which is certainlynot feasible in practice. If �xed familiarization times are added, all the means become`disjunctive'. The size of the naive search space is then 2262 instead of 263, making theproblem even more intractable. A realistic account of maturing would add another 88disjunctions (4 phase level thresholds per task), which would give a �gure of 2350. It isclear that the entire search space need not be explicitly traversed. The �gures are howeverhuge and it is very unlikely that `absolute' optima can be found within a reasonable time.A sensible objective is to provide good quality solutions within a proven distance to thetheoretical optimum and in a relatively short time. This is still hard. For the time94



being, the model will take into account only the disjunctions originating from themaximum reachable level constraints. If this can be solved in a proper way, furtherre�nements will be introduced.Previous Attempts to Solve the Problem The experts made several attempts tosolve the problem, manually and by using spreadsheets. Optimization, indeed, can beachieved on each task separately by using a greedy algorithm, as far as no phase durationor global duration constraints are introduced. However, as soon as such constraint arestipulated, even for one task, no simple algorithm seems to allow to solve the problem.With several tasks, it is impossible to decide a priori how these constraints will `distribute'over the di�erent tasks, so that the problem cannot even be split. It can no longer besolved by manual or semi-automatic methods. This is what led to the idea of applyingadvanced resolution techniques.Choice of CLP, ECLiPSe's Rational Solver and ParallelismChoice of CLP For solving this problem, two major candidate techniques appear apriori: dedicated Mixed Integer-Linear Programming (MILP) packages on the one hand,and CLP on the other. A general discussion about CLP compared to Operations Researchtechniques in general can be found in [CFGG95a]. For this particular problem, the per-formance level to be expected from a MILP package is certainly higher than that of CLP,but the exibility of CLP programming languages has been a strong argument in theirfavour. The requirement, indeed, is for a decision support system, and raw performanceis not as important as the possibility for the user to interact with previous results (eg.introduce new pedagogical constraints). These results are possibly approximate (withina given distance to the optimum) but should be delivered in a short time. In addition,as far as performance is concerned, the number of continuous variables is not a limitingfactor here. In contrast, ease of implementation of the heuristic methods is crucial, and forthat purpose CLP languages have a decisive advantage over MILP packages. Finally, thesystem's speci�cations may evolve. CLP's declarativeness (meaning ease of expression andmodi�cation of the constraints and strategies) will much better allow the evolutions of thesystem. The Arti�cial Intelligence and Advanced Computer Techniques Department hasa previous experience in the development of CLP-based decision support systems, mainlyfor production planning and scheduling [BCP92, CF94, CF95, BCF95] and has worked onmethodological aspects [CFGG95a, CFGG95b]. User interaction principles designed forscheduling problems are also valid for TCO and will be applied.Choice of a CLP Rational Solver It has been assumed so far that the problemwould be handled by some combination of linear programming and enumeration methods.When choosing CLP languages like CHIP or ECLiPSe, one has the choice between linearsolvers (LS) over continuous (rational) variables and also a Finite Domain (FD) solver. Acomparison can be found in [CFGG95a, CFGG95b]. The Finite Domains are widely usedfor all kinds of planning and scheduling problems and need to be considered seriously.Below will be given arguments in favour or against the two solvers as far as TCO isconcerned, and the conclusion reached. 95



In Favour of Finite DomainsTCO is a discrete problem, even for the utilization times, for in practice these times willbe integer numbers (possible null) of learning hours or half-hours. It is not sensible toplan eg. that the pilot students should use a given mission simulator 2.37 hours in phase2. One needs to round this �gure, eg. to 2.5 hours.The local propagation-based FD solver will handle larger-sized problems than the LSsolver, which performs global manipulations over the constraint network. This is howeverprobably not decisive here, since the number of constraints is not very large.In Favour of a Linear SolverPropagation is rather weak with the Finite Domains for the kind of disjunctive constraintsencountered in TCO. Basically, one would use conditional propagation, viz. a disjunctiveconstraint would be frozen (leading to no propagation at all) until, as an e�ect of thedecisions made by the program, one of its alternatives becomes either true or false for anypossible values combination of its variables. This implies that a considerable amount oflabelling would be required before some signi�cant propagation is achieved. In addition,not the 0-1 variables need to be labelled (63 variables with the current data), as witha linear solver, but the utilization-time variables (262 variables with the current data),since propagation is not complete and only instantiation of all variables can ensure correctsolutions. Global constraints have been developed in the Finite Domains for certain classesof problems, mainly in the area of scheduling, logistics and placement [BC94, CHI94, V�93],but there is apparently no such global constraint that would �t the TCO planning problem.It is not a scheduling problem, not the problem of �nding an order among training actions.The (now) classical disjunctive or cumulative constraints do not apply. TCO is a planningproblem, where the issue is to decide at a high level which resources (the means) haveto be used, which number of them are required and in which phases. The relativelyweak handling of disjunctions achieved with conditional propagation might actually beacceptable if the aim were only to �nd a feasible solution. But one wants optimize, evenif it is with some approximation, and the cost function is the sum of a large number ofelementary costs. In the Finite Domains this often leads to a poor evaluation of the costobjective when the underlying propagation is weak (refer to the experience with the PSAPsystem in APPLAUSE). This was con�rmed by experiments made at the beginning of theTCO project with the Finite Domain solver of CHIP.In contrast, with linear solvers over continuous variables, linear relaxation techniquesprovide a global handling of the disjunctive constraints. A better evaluation of the costobjective may be expected, since the approximation of the not yet solved disjunctionscombine linearly, whereas with Finite Domains an unsolved disjunction handled withconditional propagation would have simply no e�ect at all. For these reasons, the LinearSolver was preferred for TCO.The rest of this document will be devoted to describing the constraints and strategies usedin the prototype, and the way the system was parallelized.Parallelism Applying OR-parallelism is a natural way of speeding up of the explorationof the choice points. More precisely, the initial expectations about parallelism for TCOwere the following: 96



� in exploration phases, the users will want to get a set of signi�cantly di�erent accept-able solutions within a limited time; parallelism should help to increase the numberof structurally distinct satisfactory solutions� when the user has reached a stable de�nition of the problem, he may want to run theproof of optimality to completion (with some speci�ed accuracy); here, parallelismis expected to substantially reduce the time needed for this proof.4 Constraint Expression and PrototypingThe Mock-up The �rst mock-up was written in CHIP in 1993-1994, using the RationalSolver [B�94]. It allowed to solve optimally only small problems (5 tasks). An algorithm forthe distribution of the global constraints (such as maximum total duration) to the taskswas implemented, with which larger problems could be solved. But this approach was�nally abandoned, since the distance of the thus obtained solutions to the actual optimacould not be satisfactorily estimated.A totally new mock-up was written at the end of 1994, which forms the base of the workin APPLAUSE. It was designed so as to give a pre-view of the �nal tool and, at the sametime, facilitate the development work and the search for e�cient resolution strategies.A high-level control of constraint setting and interaction with data is provided. Theresolution core is implemented in CHIP / ECLiPSe, ie. it can run in both languages givena very limited number of speci�c predicate re-de�nitions. The mock-up has a graphicaluser interface for parameter acquisition and result display, written in CHIP's graphicallayer (this has not been ported so far to ECLiPSe, since it can be used independently fromthe resolution to exploit results produced by the CHIP and ECLiPSe versions).All examples of code given in this report will be in ECLiPSe.Constraint ExpressionIntroduction of Linear Relaxations a) General PresentationThe disjunctions of the problem cannot be handled as mere choice points. As was alreadymentioned, the combinatorics are huge and it is simply impossible to construct all thealternative sets of linear constraints and for each of them run a linear optimization. Theidea of linear relaxation is then to replace a disjunction of constraints by a conjunction,in a way such that� the conjunction's solution set is a superset of the disjunction's� it is as close as possible to it� ways are provided to express the choices and when a particular branch is chosen,the solution set reduces dynamically to that of the branch.This is achieved by introducing continuous variables for each choice point which are ini-tially constrained to range between 0 and 1, and will eventually be assigned the value 097



or 1 (it is impossible to impose integrity constraints from the start, ie. to mix continuousand integer variables). These variables express the relative validity of the branches atany step of the computation. The best (tightest) possible linear relaxation of a problemconsisting of linear constraints and disjunctions of linear constraints is the one whose so-lution polyhedron is the convex hull of the (non-convex) polyhedron de�ned by the initialproblem. Computing it proves however very hard as soon as the initial problem featuresmore than one disjunction. The intersection of the convex hulls of several disjunctions,indeed, is in general larger than the convex hull of their conjunction. Thus, computingthe convex hull requires a time, and leads to a number of constraints, which may be ex-ponential in the number of disjunctions in the worst case [DBH93]. Therefore, in general,looser relaxations are looked for, and several methods exist for this purpose. The basicrelaxation method adopted for TCO is common in Mixed Integer-Linear Programming.Assume that the original disjunction isA1:X � B1 _ A2:X � B2where A1, A2 are matrices with numeric coe�cients, X is a vector of unknown, B1, B2are vectors of numbers. The relaxation is the following:A1:X � B1� + U1(1� �)A2:X � U2� +B2(1� �)where the vectors U1 and U2 are suitable upper bounds for A1:X and A2:X, respectively.This kind of relaxation may de�ne the convex hull but may also be signi�cantly larger[DBH93], depending on the dimension and the accuracy of the upper bounds. Reasonablebounds, however, can often be found from practical considerations related to the problem'ssemantics, which has been the case for TCO. It is still worth trying to tighten them. Thecloser the relaxation to the convex hull, the closer the cost of the linear optimum to thatof the feasible optimum (ie. that of the best solution satisfying the integrity constraintson the � variables), and the earlier useless branches will be eliminated in the search for thefeasible optimum. As a matter of fact, if computing the convex hull were tractable, anysearch on the � variables would be avoided | except some limited enumeration in certaindegenerate cases | for the vertices of the convex hull (where linear optima are located)correspond to integer values of the � coe�cients. The experiments carried out for TCO totighten the constraints by using knowledge about what they mean will be explained later.b) ExampleConsider the small example given in 3 a). The disjunctive constraint(L3 � 50 _ P3 = 0)or, equivalently (since P3 � 0)(L3 � 50 _ P3 � 0)will be replaced by the relaxation 98



L3 � 50� + U3(1 � �);P3 � V3� + 0(1 � �)where appropriate values for the upper bounds U3 and V3 need to be found. This is doneby considering the maximum level that can be reached before m3. It is that of m2, 60,and this allows to take U3 = 60. For V3, it is easy to see that if the means m3 is used,the progression cannot be more than its level, which is limited to 50, hence V3 = 50. Therelaxation is therefore (after eliminating the null term in the expression of P3):L3 � 50� + 60(1 � �);P3 � 50�Discrete Optimization Since at least some search is inevitable, this has to be con-ducted in such a way that useless steps are avoided: when a solution has been found witha given cost, it is no use searching for solutions that may have a higher cost. Branch &Bound methods have been developed for that purpose. For the TCO problem, procedurescorresponding to min max and minimize of the Finite Domains of ECLiPSe[ECL94] havebeen used. We will shortly recall the principles of these procedures. What relates toparallel execution will be explained in the section on parallelism.a) Min maxThe principle is simple:� usual depth-�rst backtracking search is performed;� each time a new solution is found, the search is restarted from scratch, with theconstraint that the cost should be strictly less than the cost of this solution;� the procedure stops when the current search fails; then, either at least one solutionhas been found, in which case the last found one is optimal (the search for a betterone has failed), or the problem has got no solution at all.Practically, the stronger the constraints, the better the dynamic implicit evaluation of thecost lower bound performed by the constraint system and the quicker useless brancheswill be pruned.A min max for the rationals was �rst written from scratch for TCO, but �nally it wasfound wiser to bene�t from the built-in's safer implementation, and to use it with rationalcosts by simply rounding them down whenever a solution is found.Finding approximate optima is often enough, as is the case for TCO. This is done byimposing a percentage: when a solution is found, then the search restarts with a new costupper bound equal to the previous cost minus the percentage. Then, when the last searchfails, the distance of the last solution (if there are solutions) to the absolute optimum isguaranteed to be less than the percentage. Time-limits can also be speci�ed (this featurewas implemented in ECLiPSe for TCO). Note that in that case if the system stops becauseof the time-limit no optimality (even by some percentage) has been proven.99



b) MinimizeAn alternative method consists in having the system backtrack with a new cost constraintwhen a new solution has been found, instead of re-starting the search from the top of thetree as with min max. The idea is that no solution to the new constraint may have existedin the part of the search tree already visited, since no solution to the previous, weaker,constraint, existed there. All that was said above about the strength of the constraintsystem, the possibility of optimizing by n % or of imposing a time-out equally applies tothat method. (It is, however, much harder to implement than min max.)Predicting which of the re-computation-based min max or the backtracking-based mini-mize will perform better on a given problem is not easy, and one has to experiment. ForTCO, both min max and the minimize-like predicate with cost-parallelism were tried. Thelatter proved to be very e�cient (this is explained in detail in 6).c) ExampleThe equations of the small example given above easily translate to ECLiPSe code. Withoutmin max, enumeration of the branches leads to:[eclipse 1]:T1 $>= 0, P1 $>= 0, L1 $>= 0,T2 $>= 0, P2 $>= 0, L2 $>= 0,T3 $>= 0, P3 $>= 0, L3 $>= 0,T4 $>= 0, P4 $>= 0, L4 $>= 0,P1 $= 4*T1, L1 $= P1,P2 $= 8*T2, L2 $= L1 + P2,P3 $= 2*T3, L3 $= L2 + P3,P4 $= 10*T4, L4 $= L3 + P4,L1 $<= 40,L2 $<= 60,D3 $>= 0, D3 $<= 1,L3 $<= 50*D3 + 60*(1-D3),P3 $<= 50*D3,L4 $= 100,Cost $>= 0,Cost $= 1*T1 + 5*T2 + 2*T3 + 20*T4,(D3 $= 0 ; D3 $= 1), % `;' is the `or' operatorrmin(Cost). % linear minimizationP1 = 40P2 = 20P4 = 40L1 = 40L2 = 60 100



L3 = 60P3 = 0L4 = 100T1 = 10T2 = 2.5T3 = 0T4 = 4D3 = 0Cost = 102.5 More? (;)P1 = 40P2 = 10P4 = 50L1 = 40L2 = 50L3 = 50P3 = 0L4 = 100T1 = 10T2 = 1.25T3 = 0T4 = 5D3 = 1Cost = 116.25yes.[eclipse 2]:With r min max (min max adapted to rationals), the second branch is abandoned beforeits complete exploration, for it leads to a cost higher than the previous one:[eclipse 3]:T1 $>= 0, P1 $>= 0, L1 $>= 0,T2 $>= 0, P2 $>= 0, L2 $>= 0,T3 $>= 0, P3 $>= 0, L3 $>= 0,T4 $>= 0, P4 $>= 0, L4 $>= 0,P1 $= 4*T1, L1 $= P1,P2 $= 8*T2, L2 $= L1 + P2,P3 $= 2*T3, L3 $= L2 + P3,P4 $= 10*T4, L4 $= L3 + P4,L1 $<= 40,L2 $<= 60,D3 $>= 0, D3 $<= 1,L3 $<= 50*D3 + 60*(1-D3),P3 $<= 50*D3,L4 $= 100, 101



Cost $>= 0,Cost $= 1*T1 + 5*T2 + 2*T3 + 20*T4,r_min_max((D3 $= 0 ; D3 $= 1), Cost, 0), % optimum by 0% soughtr_min(Cost).Current cost 102.5Optimal cost 102.5P1 = 40P2 = 20P4 = 40L1 = 40L2 = 60L3 = 60P3 = 0L4 = 100T1 = 10T2 = 1.25T3 = 0T4 = 4D3 = 0Cost = 102.5yes.[eclipse 4]:Linear minimization is performed after r min max in order to commit the cost to itsactual minimum in the optimal branch. In this example, this is enough to instantiate allthe problem variables. In general, an additional procedure is required for that, which hasbeen omitted here for the sake of simplicity.The TCO Program Operation The basic mechanisms have been explained. We willnow say a few words on how the program works globally. For each resolution, the followingoperations are successively performed:� The data and parameters are loaded and processed, and a single term representingthe curriculum is constructed, whose characteristics will be accessed in the rest ofthe program in an object oriented-type way.� The various types of constraints are successively set up. Failure may occur duringthis phase. In the operational system, information will then be displayed aboutwhen the constraint system has become inconsistent, and the user will be invited toreconsider at least some constraints of the latest introduced type.� The discrete minimization procedure is run on the labelling of the decision variables,possibly with a time-limit and a speci�ed accuracy. Experience has shown that102



failure seldom occurs at this step, for most of the time solutions exist, even if ata very high cost. However, this is not guaranteed, and the operational system willhave to provide practical hints for constraint relaxation.� The optimum solution found is displayed in a spreadsheet form via the graphicalinterface (see Figure 4.1). A multi-solution variant of the resolution program basedon the results of parallelism will be implemented and exploited at the user-interfacelevel in the next version of the prototype.

Figure 4.1: A Result Displayed by TCOPerformance of the Basic Program With the basic linear relaxation mechanismsthat have been explained above and with no particular strategy for the labelling of thedecision variables, performance is rather poor. Due to the combinatorial nature of theproblem, an exponential behaviour in the worst case is inevitable, but it should be reducedto its minimum. Before parallelism was applied, several tracks were explored, some ofwhich led to signi�cant improvements both for sequential and, later, for parallel execution.They concern the improvement of the constraint system, on one side, and simple orderingprinciples for the decision variables inside the labelling routine, on the other side, and willbe explained in section 6. We will �rst expose the principles of the parallelization of TCO.103



5 ParallelizationThis section is about the basic principles, initial expectations and �rst results regardingthe parallelization of TCO. Optimization of parallelism will be dealt with in section 6,where a detailed account and representative �gures are provided.Parallelizing the Labelling Using OR-parallelism on choice points is the most naturalidea, which means here parallelizing the assignment of 0 or 1 to the decision variables. Ithad to be checked that these choices are of enough coarse grain. This is, indeed, of utmostimportance since the time spent in communication and reallocation of workers depends onit. Experience has proved that this parallelization is quite e�cient, ie. of an acceptablegrain. This is probably due to the fact that the most important decisions are put �rst(see section 6). The parallelizing strategy which has been used for the �rst experimentsconsists in using:� an analog of par indomain for rationals applied to the decision variables� min max as the minimization procedure.The Program The program can be sketched as follows:tco :- get_data(Data),set_up_constraints(Data, Decisions, Cost, UtilizationTimes),value_order(Domain01), % [0, 1] or [1, 0]: parameteraccuracy(Percent), % parameterr_min_max(label01(Decisions, Domain01), Cost, Percent),instantiate_all(UtilizationTimes). % ensure ground solutionlabel01([], _).label01([D|Decisions], Domain01) :-r_par_indomain(D, Domain01),label01(Decisions, Domain01).r_par_indomain(X, Domain) :-par_member(V, Domain),X $= V.Results This strategy works well for the proof of optimality: the results show quasi-linear speed-ups with the hardest problem instances (see the �gures with min max in thetables given in section 6). They are, however, worse for the easier problems. Note thatthis parallelism has absolutely no e�ect on the time spent to �nd the solutions. This mayseem disappointing, but probably only shows that the heuristic ordering of the variables104



and the values (see 6) is good. Though these results were already satisfactory, it was feltthat parallelism could bring more in terms of quality and variety of the solutions. Thislead to a second phase of experiments, which is explained in section 6.It is worth noting that this introduction of parallelism was extremely simple and requiredalmost no speci�c debugging e�ort. This may be due to the fact that the system wasinitially programmed in a very declarative way, with no assert/retract eg., and with globalvariables used only in the pre-processing part. Only certain phenomena caused by theinherent asynchronism of parallel execution were slightly puzzling at the beginning. Forexample, if the results are written into a �le in Prolog format, then a term and the followingcomma, or dot, written by a given worker should never be separated by a write statementperformed by another worker in the same �le; it is therefore crucial to use an atomic goallikeprintf(Stream, "%q, ", [Term])and not a complex goal goal likewrite(Stream, Term), write(Stream, ", ")Such features, however, are easily mastered.The Rational Solver The ECLiPSerational solver used for the experiments is clp(Q,R) [Hol95]. It is signi�cantly slower than that of CHIP for example, which had severalconsequences:� only small to middle-sized data could be tested within a reasonable time (between 9and 21 decision variables, as compared to the 63 of the real-sized problem instances)� it might be the case that with a faster solver the communication overhead ceases tobe negligible and the speed-ups are slightly lower� some strategies like having parallel choice points on dichotomic constraints for thephase durations could not really be tested, for the additional constraints resulted inunacceptable slow-downs.6 Performance Debugging and OptimizationImprovements to Sequential (and Parallel) Performance In this section will bediscussed the improvements made necessary by the poor performance level of the basicconstraint model, and which proved valuable both for sequential and parallel execution.Enhancements relating speci�cally to parallelism are discussed in 6.105



Improving the Constraint System a) Adding Constraints on the Levels toSeparate the BranchesIn the example already used, the relaxationL3 � 50� + 60(1 � �);P3 � 50�expresses that eitherm3 cannot be used (� = 0), or it may be used (� = 1) and the level L3reached after its (possibly null) utilization is less than its ceiling (50). However, nothingdoes actually prevent L3 to be less than 50 with � = 0, and P3 to be zero with � = 1.In other words, the con�guration L3 � 50; P3 = 0 is common to both branches, ie. adisjunction has been expressed, but not a mutual exclusion. This is logically not a problem,but procedurally may lead a computational redundancy and slow down performance.To obtain separated branches, one needs to express eg. that� either the level reached before m3 is not greater than its ceiling, and m3 may beused� or this level is greater than the ceiling of m3, and m3 may not be used.This means that the original disjunction has to be re-written asL2 � 60;((L2 � 50; L3 � 50) _ (L2 > 50; P3 = 0))where L2 � 50 and L2 > 50 guarantee that no solution to the global problem common tothe two branches can be found. Since L2 � 50 is implied by L3 � 50, the disjunction canbe simpli�ed, givingL2 � 60;(L3 � 50 _ (L2 > 50; P3 = 0))The relaxation is straightforward:L2 > 50(1 � �);L3 � 50� + 60(1 � �);P3 � 50�Since strict inequalities are not always handled e�ciently by linear solvers, an arbitrarysmall quantity � can be introduced:L2 � 50(1 + �)(1� �);L3 � 50� + 60(1 � �);P3 � 50�Though one constraint is added to each disjunction, performance has been improved bya factor between 2 and 7 on the data sets that have been tried, due to the removal of106



redundant computations. The method exposed in the next paragraph, however, subsumesthis improvement.b) Adding Propagation Constraints Between Decision VariablesIf a disjunctive means in a given phase cannot be used because its maximum level isoverstepped by the utilization of some other means before it, then no means of the sameor of a subsequent phase having a ceiling lower or equal to its own can be used either, fortheir maximum levels will be also overstepped. In terms of decision variables, this meansthat if the one attached to the given means is assigned value 0, the variable of these othermeans has also to be 0. This is only partially expressed by the equations written so far.Let us consider the example below with an additional means m30, belonging to the samephase as m3 and also disjunctive but with a higher ceiling (55). We obtain the followingsystem:L2 > 50(1 � �3);L3 � 50�3 + 60(1 � �3);P3 � 50�3;L2 > 55(1 � �30);L30 � 55�30 + 60(1 � �30);P30 � 55�30If �30 takes value 0, �3 should as well. In practice, when �30 = 0 occurs, then L2 � 55is imposed, but this implies only that �3 should be at least equal to 0.5 in order thatL3 � 50�3+60(1� �3) be satis�ed. The way of enforcing value 0 to be propagated in sucha case is quite simple: it is enough to add a new constraint between the decision variables:�3 � �30to ensure that �3 = 0 will be entailed by �30 = 0, or �30 = 1 from �3 = 1. When addedsystematically to the previous equations these new propagation constraints lead to a slightperformance improvement. More interesting is the fact that when the branch-separatingconstraints (L2 > 50(1 � �3) and L2 > 55(1 � �30) are removed, then performance isimproved by a factor of 10. This may mean that the main e�ect of the branch-separatingconstraints was in fact to achieve some propagation between the decision variables, whichis now taken over in a more e�cient way by the new constraints, and that the branch-separating action in itself was not so crucial. But this explanation has not been proven.Anyway, in practice, the best system for this example appears to beL3 � 50�3 + 60(1 � �3);P3 � 50�3;L30 � 55�30 + 60(1 � �30);P30 � 55�30�3 � �30even though it may allow some redundancy between the branches. (It might be thecase that some of the separation constraints could be kept, but this has not been yetinvestigated.) 107



In general a �j � �i constraint has to be written between any two means mi andmj such that the maximum level of mj is lower or equal to that of mi and mj isin the same phase as mj or in a subsequent one. There may be in principle someredundancy between these constraints due to transitivity. To eliminate this, a simple adhoc procedure using the Finite Domain solver has been written for TCO, which computesthe minimal set of propagation constraints to be set up. In practice, however, redundancyis seldom encountered and this procedure may be skipped.Improving the Labelling a) Ordering the DecisionsThe reason for ordering the decisions is to be able to make �rst those decisions which havethe most signi�cant impact on the most constrained aspects, ie. here cost and durations.Which decisions have more inuence was hard to determine a priori, and experiments werenecessary. The results are simple and they are explained below.Ordering the Decisions for each TaskA number of tests have been performed on the order of the decisions for a given task.The basic choice is whether to start from the �rst phases (the beginning of the training)or the last ones. Starting from the end, ie. ordering the variables in antichronologicalorder of the phases and decreasing order of means' ceilings inside each phase, seems tobe statistically better, in particular for the proof of optimality, which is about 1.5 fasterthat the reverse order on the tested examples. It is likely that this order enforces strongerconstraints on the curriculum. These results, however, are in no way absolute, and couldbe reconsidered. The ordering is simply an execution parameter. Attempts to start eg.with the means with highest cost or highest maximum level have not proved conclusive.Ordering the TasksWith the current labelling, the decisions for a task are completely made before the systemgoes to the next task, and performance is extremely sensitive to the order in which the tasksare handled. Attempts to correlate this to simple criteria like the number of disjunctivemeans in the task, the means' costs, etc, have �rst failed. Finally, a good agreementbetween execution time and a synthetic criterion was found. This criterion is the absolutee�ciency of the two-seater combat aircraft (coe�cient `k') for the task. Starting with thetasks with the lowest values of k pays o� most of the time. The meaning of k is thefollowing. The e�ciencies given in the data are relative values, expressed by conventionas a percentage of the e�ciency of the two-seater combat aircraft (100 %). If a meansis declared as having a relative e�ciency of 50 % eg., learning with it is assumed to betwice slower than with the two-seater. This is conventional since the two-seater may notbe adapted at all for learning the task in the particular phase (beginners cannot use itfor instance). Important is the overall consistency of the relative values: if a means in aphase has an e�ciency of 30 % and another one of 60 %, then learning with the second oneshould be twice as fast. Computing k for a given task is done by reference to the currentcurriculum, assuming that it allows to reach level 100%. The normalization formula is thefollowing:k �PiRelativeEfficienciesi � CurrentUtilizationT imei = 100108



As a consequence, k�1 is a measure of the (virtual) time that would be required to reachlevel 100 if only the two-seater were used. The tasks with lowest k are therefore the mostdemanding, those which are likely to be the most expensive and/or the longest ones, andit is sensible that making decisions �rst on them improves performance. The improvementis indeed very signi�cant compared to a random order of the tasks, since execution timeis divided by a factor ranging between 10 and 50 (the greatest di�erence is observed withthe tests that take the longest times). In practice, tests have become handleable in a fewminutes in CHIP that would not be run to completion beforehand.Ordering the decisions �rst by phases, then by tasks (eg. by increasing k), though expectedto give good results, has not proved interesting.b) Ordering the ValuesOrdering the decisions is not enough. The order in which values 0 and 1 will be tried hasto be �xed. This can be done for each decision independently, either statically (ie. onceand for all before the labelling), or dynamically, just before the decision is made. It mayconsist eg. in computing the lower bound for the cost by linear optimization with bothcandidate values and taking as �rst choice the one giving the lower cost. The experimentscarried out statically did not prove convincing, probably because the assessment of thecost is not enough accurate before the labelling starts. Doing it dynamically on the otherhand is extremely expensive. Starting with either 0 or 1 for all the tasks is much simplerand gives better results. The experiments have shown that starting with 0 is in generalbetter, for statistically the optimum curriculum are obtained by using few disjunctivemeans. (Stochastic methods for value ordering have also been tried in sequential search;they will not be explained here | see [Per94]).Improvements to Parallel PerformanceImproving the Quality and Variety of the Solutions As was mentioned above,the �rst and most natural parallelizing strategy using min max and par member proved tobe already a satisfactory utilization of parallel resources, yielding quasi-linear speed-upsfor the hard problem instances. The lack of improvement for the �rst solutions is not aproblem, since these are anyhow obtained rapidly with the ordering heuristics describedin 6. One might, however, expect to get better quality solutions, and a greater numberof them. This could be achieved to some extent by running min max with with a lowpercentage (ie. a high accuracy), but this would be detrimental to the length of the proofof optimality, which on hard problem instances changes of order of magnitude between eg.10% and 5%, or 5% and 1%.The solution was provided by Cost-Parallelism (CP) in Branch & Bound [PM94, PM95].The idea behind CP is that a part of the parallel resources can be usefully applied toexploring various cost bounds, instead of having all workers exploiting the parallel anno-tations of the program. With CP, in addition to the conservative search (the one performedwith the usual minimize or min max), optimistic searches and/or a pessimistic search arealso performed. Assume that at some time during the resolution process, there is a globalcost bound G, used by all the searches. The pessimistic search has then Cost < G as costconstraint, the (possible multiple) optimistic searches use Cost � E �G � F (where E is109



the accuracy as a fraction of 1, and F is a �xed integer which is di�erent for each optimisticsearch), and the conservative search uses Cost < E �G in the same way as with the usualminimize or min max. Whenever a solution is found by one of the searches, all of themare given a new, tighter bound. Whenever a search fails, all searches with a tighter costconstraint are abandoned and their workers reallocated. It is expected from the optimisticsearches that they will go quickly to very good solutions by cutting short several cost stepsand that the loss of one or more workers for the parallel annotations of the program will becompensated by the speed-up of the search for good solutions. The task of the pessimisticsearch in contrast is rather to shorten the proof of optimality by gradually improving thesolution. This tightens progressively the cost bound, which in general makes the proofeasier. It has also the e�ect of yielding better solutions for a given required accuracy thanwould have been obtained otherwise. Let us illustrate this with an example. With a 10%accuracy (E = 0:9), if a solution has just been found with cost 1000, the conservativesearch will proceed with a cost upper bound of 900 (ie. what an ordinary min max orminimize would do). The pessimistic one will simply look for solutions stricly better than1000. An optimistic search may look for better than 800, assuming a F = 100. If now thepessimistic worker �nds the next solution, eg. with cost 950, then the conservative searchwill proceed with a cost constraint of 855 (10% better than 950), the pessimistic one willlook merely for stricly better than 950 and the optimistic one with 755 (ie. 855 minusthe �xed 100). Each time a solution is found by a conservative or optimistic search, it islikely to be further improved by the pessimistic search. And each time a solution is foundby the pessimistic worker, the proof of optimality with the speci�ed percentage is madeeasier, since the cost constraints get tighter. Optimality is proven when the conservativesearch fails (or the pessimistic search, which is rather unlikely for it is less constrained).The experiments carried out at ECRC have shown that pessimistic search will usually payo� with su�ciently high optimization percentages.CP is implemented in two predicates: cp min max uses a restarting strategy and hasonly conservative and optimistic searches; cp min uses a backtracking strategy (it is aminimize-like predicate) and has conservative, optimistic and pessimistic searches. Thecp min predicate has been adapted to rationals for TCO by ECRC. The sketch of the TCOprogram using it is exactly the same as with min max (5). Very little adaptation has beennecessary; this amounts practically to adding a cost-monitor argument in the labellingprocedure. After various experiments, the combination of pessimistic and optimistic searchhas been found the most e�ective and has been extensively tested in comparison withmin max. The results are illustrated by the tables given below. They are very satisfactory.With cp min(opt, pess) and a 5% or 10% accuracy� the whole search including the proof of optimality according to the speci�ed accuracyis completed for most of the tests with signi�cant speed-ups, quasi-linear (sometimeseven super-linear) in the number of workers for the hardest instances� a number of solutions are obtained, quite diverse in their structure, some of thembeing in fact very close to the absolute optimum (this can be seen from runs with1% accuracy).We will now explain and comment in detail several tests that constitute consistent andcomplete sequences. 110



The TestsThe example data sets are subsets of the real data. They have been chosen so as tofeature a su�cient number of disjunctions, but not too many linear equations. This hasbeen achieved by taking the hardest piloting tasks, in terms of number of disjunctivemeans. Data t04 features the four most di�cult tasks, with a total of 21 disjunctions(ie. a third of the disjunctions of the full problem), with no phase or curriculum durationconstraints. Data t04.50 is more realistic: the tasks are the same but maximum durationconstraints for all phases have been added. Smaller data have been also tested, consistingof two tasks, with 9 disjunctions (taa1sr.25.20.10) and 12 disjunctions (taa2sr.25.20 andtaa3sr.30.20). These smaller data have all relatively tight phase duration constraints.All tests have been performed on SunSparc20 work stations with 4 processors. For eachtest the results are given for� sequential execution; parallel execution with 2, 3, 4 workers� min max and cp min in parallel execution; in sequential mode only min max, sincecost-parallelism does not make sense� optimization by 10%, 5%, 1% (except for t04 and t04.50 which take too much timewith 1%).The tests have been executed several times (with one exception). The times measured insequential mode are all very similar for the same parameters and the number and qualityof solutions are always identical. Therefore, the results for sequential runs are simply� the number of solutions found� the cost of the optimum solution (rounded)� the time taken to �nd this optimum (geometric mean over the di�erent runs)� the time taken for the whole search including the proof of optimality (geometricmean).For the parallel runs the number and quality of the solutions may vary from one run to theother. To reect this diversity, for each test (given data, optimization predicate, accuracy,number of workers), the following results are provided:� the list of the numbers of solutions produced during the search, for all runs� the di�erent optimal costs obtained, with the indication of the type of search whichled to them if the optimization predicate is cp min (c for conservative; o for opti-mistic; p for pessimistic)� the geometric mean over all runs of the speed-ups for the computation of the opti-mum solution, with respect to the sequential execution� the corresponding standard deviation; geometric mean and standard deviation arecomputed according to [Pre94a], based on [Ert94]; notice that a standard deviationof 1 means no deviation (all results identical)111



� the geometric mean of the speed-ups of the search including the proof of optimality� the standard deviation.No �gure has been given for the proof of optimality alone. The reason is that this hardlymakes sense with cp min, since in many cases this proof actually starts before the op-timum is found and its bound is gradually re�ned as better solutions are produced bythe pessimistic search. The time when it actually starts does not seem accessible. So,only the total time and the associated speed-up are meaningful. Note that if the timefor the proof of optimality was to be de�ned as the time elapsed between the momentwhen the optimum is found and the end of the whole search, then many of the speed-upswould be higher than those given in the tables. It often takes, indeed, a longer time tothe pessimistic search to produce the optimum than it does in sequential search (but theoptimum is better).In order not to overload the tables, the times are not given for the parallel tests, thespeed-ups being more signi�cant. (To compute the mean parallel times, simply divide thesequential times by the speed-ups.)
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taa1sr.25.20.10 10% 5% 1%min max cp min min max cp min min max cp minSeq. Nbr of solutions 1 - 2 - 6 -Optimum 933 - 871 - 861 -Time optimum 5.1 - 22.7 - 75 -Time optimality 42.7 - 60.0 - 135 -2 Wkrs Nbr of solutions 1,1,1,1, 6,6,6,6, 2,2,2,2, 6,6,6,10, 6,6,6,6 15,15,14,1,1,1 6,6,6 2,2,2 6,6,6 6 14,14Optimum (wkr) 933 893(p) 872 861(c), 861 855(p)867(c)Speedup optimum 0.98 0.27 0.99 1.18 0.8 1.01Std deviation 1.02 1.02 1.03 1.23 1.02 1.03S-up optimality 1.39 1.75 1.19 1.72 0.95 1.65Std deviation 1.04 1.02 1.02 1.03 1.01 1.013 Wkrs Nbr of solutions 1,1,1,1, 5,5,5,5, 2,2,2,2, 7,9,7,7, 5,5,4,4, 15,15,15,1,1,1 5,5,5 2,2,2 9,7,9 5 16,17Optimum (wkr) 924, 908(p) 866, 861(c), 855, 861(p)933 871 888(c) 861Speedup optimum 0.95 0.43 1.4 1.14 1.1 1.33Std deviation 1.03 1.03 1.06 1.09 1.06 1.04S-up optimality 1.52 2.26 1.44 1.96 1.2 1.87Std deviation 1.02 1.02 1.05 1.1 1.04 1.034 Wkrs Nbr of solutions 1,1,1,1, 5,5,5,5, 2,2,2,2, 8,7,7,8, 5,5,5,5, 14,19,17,1,1,1 5,5,5 2,2,2 7,8,7 6 15,13Optimum (wkr) 924, 908(p) 866, 861(c), 855, 855(p),933 871 893(c) 861 861(p),862(p)Speedup optimum 0.93 0.41 1.43 1.17 0.99 1.38Std deviation 1.03 1.04 1.07 1.05 1.04 1.12S-up optimality 1.53 2.64 1.46 2.51 1.13 2.09Std deviation 1.02 1.03 1.03 1.05 1.03 1.06Comments on taa1sr.25.20.10This is an easy problem instance, perhaps too easy, since increasing the number of workersto more than 2 does not pay o� much, neither in terms of speed-up nor in terms of quantityof solutions produced during the search and quality of optimum. cp min is better thanmin max: it is most of the time faster for the whole search, it always gives more solutionsduring the search, it provides better optima in most cases. When compared to sequentialsearch, parallelism normally gives better optima, but there are exceptions (eg. here 888in cp min 5%). These are cases when a parallel annotation of the program has led toan optimal solution quicker than the left-most path followed in sequential mode, but thissolution, though optimal according to the required accuracy, is worse than the sequentialone.Note, and this is a general remark, that the speed-ups on the time taken to �nd the opti-mum, are not really signi�cant. In the cases when the �rst sequential solution is alreadyoptimal according to the required accuracy (which means that the heuristics worked well),113



then if this solution is also the �rst one found in parallel, the speed-up will be about 1(slightly less due to the communications overheads), otherwise anything can be observed:worse or better optimal solution, speed-up > 1 (as with these data) or < 1 (see the nexttests).All these tables show only the cost as a characteristic of the various solutions. Thesesolutions actually have a great strucural diversity, even if the costs are similar. Theycorrespond to signi�cantly di�erent utilizations of the training means. This diversity hastwo sources:� Exploitation of the parallelism of the program is the �rst source. Very high in thesearch tree, an alternative to the left-most path is explored in parallel and leads toa good solution. Since the decisions with greatest impact on the curriculum are put�rst, this solution is signi�cantly di�erent.� When the cost bound gets close to the global optima, producing new solutions impliesbacktracking rather high in the search tree, which has the same e�ect.This structural diversity is present in all the tests.taa2sr.25.20 10% 5% 1%min max cp min min max cp min min max cp minSeq. Nbr of solutions 1 - 1 - 3 -Optimum 893 - 893 - 861 -Time optimum 7.4 - 7.5 - 41.0 -Time optimality 146.7 - 165.5 - 221.1 -2 Wkrs Nbr of solutions 1,1,1,1, 4,4,4,4, 1,1,1,1, 4,4,4,4, 3,3,3,3,3 6,6,5,51,1,1 4,4,4 1,1,1 4,4,4 6Optimum (wkr) 893 861(p) 893 861(p) 861 861(c)Speedup optimum 0.98 0.51 0.97 0.52 0.93 2.0Std deviation 1.01 1.02 1.04 1.02 1.02 1.01S-up optimality 1.71 2.49 1.7 1.57 1.35 1.15Std deviation 1.02 1.02 1.02 1.02 1.01 1.013 Wkrs Nbr of solutions 1,1,1,1, 5,5,5,5, 1,1,1,1, 5,5,5,5, 3,3,3,3,3 6,7,7,6,1,1,1 5,5,5 1,1,1 5,5,5 6Optimum (wkr) 893 861(p) 893 861(p) 861 861(c)Speedup optimum 0.97 0.49 0.97 0.5 0.8 1.65Std deviation 1.02 1.03 1.02 1.02 1.04 1.04S-up optimality 2.1 3.35 2.19 2.51 1.42 1.37Std deviation 1.02 1.1 1.02 1.02 1.02 1.024 Wkrs Nbr of solutions 1,1,1,1, 6,6,6,6, 1,1,1,1, 6,6,6,6, 3,3,3,3,3, 7,7,6,5,1,1,2 6,6,6 1,1,1 6,6,6 5Optimum (wkr) 893, 861(p) 893 861(p) 861 861(c)885Speedup optimum 0.94 0.48 0.95 0.48 0.7 1.5Std deviation 1.02 1.03 1.03 1.03 1.03 1.05S-up optimality 2.37 4.18 2.54 3.05 1.43 1.47Std deviation 1.03 1.03 1.02 1.03 1.02 1.03114



Comments on taa2sr.25.20Notice here that parallelism does not pay o� with 1% and that with this accuracy cp minis not better than min max. Generally speaking, pessimistic search is not expected to dowell with low percentages like 1%, for the pessimistic and conservative searches will havealmost the same bound. But with 10% eg. the results can be very good, as is the casehere. They are satisfactory also with 5%. It is worth noting that the pessimistic searchwith 10% and 5% has given solutions that are in fact optimal by 1% (and possibly less)!In practice, of course, one will not normally attempt to prove this optimality by 1%, andonly 10% or 5% will ge guaranteed. But it is satisfactory to know that quite often thesolution given is actually much better than the required accuracy.taa3sr.30.20 10% 5% 1%min max cp min min max cp min min max cp minSeq. Nbr of solutions 1 - 2 - 4 -Optimum 999 - 944 - 944 -Time optimum 10.1 - 51.1 - 82.9 -Time optimality 53.5 - 89.5 - 192.4 -2 Wkrs Nbr of solutions 1,1,1,1, 5,5,5,5, 1,1,1,1, 5,5,5,5, 3,4,4,5,3 7,7,7,71,1,1 5,5,5 1,1,1 5,5,5 6Optimum (wkr) 980 950(p) 980 950(p) 944 944(p)Speedup optimum 1.11 0.6 5.59 3.27 0.96 1.42Std deviation 1.03 1.02 1.02 1.03 1.13 1.03S-up optimality 1.26 1.74 1.27 1.89 1.18 1.34Std deviation 1.0 1.02 1.02 1.02 1.07 1.033 Wkrs Nbr of solutions 1,1,1,1, 6,6,6,6, 1,1,1,1, 6,6,6,6, 4,3,3,4,4 8,7,7,8,1,1,1 6,6,6 1,1,1 6,6,6 7Optimum (wkr) 980 950(p) 980 950(p) 944 944(p)Speedup optimum 1.12 0.63 5.68 3.02 0.98 1.15Std deviation 1.04 1.02 1.05 1.09 1.16 1.04S-up optimality 1.31 2.05 1.51 2.31 1.26 1.51Std deviation 1.02 1.02 1.02 1.04 1.1 1.024 Wkrs Nbr of solutions 1,1,1,1, 5,7,7,7, 1,1,1,1, 7,7,7,6, 3,3,3,3,2 7,8,7,7,1,1,2 7,6,7 1,1,1 6,7,7 8Optimum (wkr) 980 950(p) 980, 950(p) 944 944(p)955Speedup optimum 1.11 0.6 5.7 3.16 1.27 1.03Std deviation 1.04 1.08 1.03 1.03 1.09 1.02S-up optimality 1.34 2.0 1.72 2.92 1.5 1.78Std deviation 1.02 1.14 1.15 1.03 1.05 1.02Comments on taa3sr.30.20cp min is signi�cantly better here than min max in all respects. Parallelism pays o� with10% and 5% (the speed-ups are less than linear, but still signi�cant). Note that theparallel runs by 5% lead to solutions that are worse than that of the sequential search,a phenomenon already observed on taa1sr.25.20.10. It is interesting to explain in detailwhat happened in the sequential executions and the ones with eg. 2 workers:115



� Sequentially, the �rst solution produced is 999. It is not optimal by 5%. The nextone has cost 944 and is optimal.� With min max and 2 workers, the exploitation of a parallel annotation leads quicklyto an optimal solution with cost 980. But the proof of optimality is slow (totalspeed-up only 1.27), for 980 is a bound signi�cantly less stringent than 944.� With cp min the unique worker of the conservative search (the other worker beingused by the pessimistic search) �nds the sequential solution with cost 999. Then thepessimistic search achieves a progressive re�nement of the optimal cost (5 solutionsare produced). As a consequence, the cost constraint of the conservative search isgradually strengthened and this results in a greater speed-up for the whole searchthan with min max (speed-up 1.89).t04 10% 5%min max cp min min max cp minSeq. Nbr of solutions 1 - 1 -Optimum 1437 - 1437 -Time optimum 7.2 - 7.3 -Time optimality 612.8 - 14803.5 -2 Wkrs Nbr of solutions 1,1 7,7 1 7,7Optimum (wkr) 1437 1414(p) 1437 1414(p)Speedup optimum 0.83 0.06 1.04 0.06Std deviation 1.27 1.21 1.0 1.2S-up optimality 1.73 1.76 2.06 1.49Std deviation 1.19 1.19 1.0 1.013 Wkrs Nbr of solutions 1,1 8,8 1,1 8,8Optimum (wkr) 1437 1414(p) 1437 1414(p)Speedup optimum 0.89 0.05 0.92 0.06Std deviation 1.12 1.13 1.12 1.16S-up optimality 2.43 3.04 2.56 2.5Std deviation 1.15 1.15 1.2 1.174 Wkrs Nbr of solutions 1,1 9,9 1,1 9,9Optimum (wkr) 1437 1414(p) 1437 1414(p)Speedup optimum 0.76 0.05 0.74 0.05Std deviation 1.15 1.18 1.28 1.25S-up optimality 2.82 3.62 3.1 3.16Std deviation 1.23 1.21 1.25 1.29Comments on t04This test and the next one are harder. The speed-ups of the total search time withcp min are quasi-linear with 10%, a little less with 5% but still good. The 1414 solutionis actually optimal by less than 0.1% (this was shown by separate tests, not shown here).And, as usual, several solutions are produced during the search (all of them in this casebeing already optimal by the required accuracy). Note once again that the speed-ups onthe optimum are meaningless, for the optimum eventually found is not the same as insequential mode. 116



t04.50 10% 5%min max cp min min max cp minSeq. Nbr of solutions 1 - 1 -Optimum 1475 - 1475 -Time optimum 27.3 - 27.6 -Time optimality 1306.7 - 14865.9 -2 Wkrs Nbr of solutions 1,2 5,5 1,1 5,5Optimum (wkr) 1475, 1440(p) 1475 1440(p)1470Speedup optimum 0.9 0.28 0.95 0.27Std deviation 1.31 1.24 1.26 1.27S-up optimality 1.86 6.98 1.84 1.13Std deviation 1.15 1.24 1.22 1.253 Wkrs Nbr of solutions 1,1 6,6 1,1 6,6Optimum (wkr) 1470 1440(p) 1470 1440(p)Speedup optimum 1.26 0.24 1.31 0.24Std deviation 1.29 1.35 1.25 1.35S-up optimality 2.68 8.03 2.55 2.02Std deviation 1.31 1.23 1.33 1.334 Wkrs Nbr of solutions 1,1 7,7 2,1 7,6Optimum (wkr) 1470 1440(p) 1470 1440(p)Speedup optimum 1.49 0.31 1.05 0.24Std deviation 1.03 1.02 1.45 1.3S-up optimality 4.04 11.25 3.07 2.6Std deviation 1.04 1.03 1.39 1.47Comments on t04.50The interesting point here is 10% with cp min which shows super-linear speed-ups of thewhole search.General Conclusions on the Testscp min with optimistic and pessimistic search, together with parallel annotations in thelabelling procedure, is a very good parallelization strategy when optima are sought witha 5% or 10% accuracy. It is better than min max with parallel annotations. The bene�ts,compared to sequential executions, are:� better solutions for a given required accuracy, often close to the absolute optimum;this is not guaranteed, but it seems to be a general tendency� much more solutions produced during the search, structurally di�erent, a number ofthem being actually optimal by the required accuracy� a speed-up of the whole search which is of the order of magnitude of the number ofworkers.From the TCO user's point of view, the structural diversity of a set of solutions closeto the optimums is extremely important. There is not one solution to the curriculum117



optimization problem, but several, with possibly similar �nancial costs but quite di�erentpedagogical and organizational implications. The user has to be given as many of thesesolutions as possible and it is up to him to choose the most appropriate one.Other Possible Tests A number of potentially interesting experiments could not becarried out before the end of APPLAUSE:� minimize could be tried instead of min max (see 4). This would require a speci�cadaptation of the predicate to the rationals, as was done for cp min.� A time-out was implemented for min max. Once it is available also for cp min, onecould measure the number and quality of the solutions generated within a giventime-limit. It is already clear from our experiments that cp min bears a de�niteadvantage over min max, but this could be quanti�ed.� Once the optimum cost has been assessed, by 5% eg., one could search for all solu-tions not worse than eg. 5% of the optimum found (which would mean solutions notworse than roughly 10% of the absolute optimum) and measure the speed-up as afunction of the number of workers. This is no longer minimization but a �ndall-typesearch, and quasi-linear speed-ups are expected.� Other hardware platforms will have to be tried, with more processors. This willallow a better exploitation of the parallelism of the program (with only 4 processors,one is used for the pessimistic search, one for the optimistic, and only two remainfor the parallel annotations, which is very little).7 ConclusionIn sequential execution CLP had proved adequate in the search for good solutions, sincee�cient (though simple) heuristics could be designed. Parallel execution, with cost-parallelism and pessimistic search, has made it possible to produce in a shorter timea much greater number of good quality solutions of quite di�erent structures. When theproof of optimality is required, this is achieved with a speed-up of the total search whichis of the order of magnitude of the number of workers. The di�culty encountered in theparallelization process proper have been very small and the time spent for parallelizationis signi�cantly less than for each of the other phases: speci�cation, modelling, expressionof the constraints, sequential optimization. The main conclusion is that parallel resources,when available, can be e�ciently and easily exploited in ECLiPSefor this kind of applica-tion.It is interesting to note that the results are rather predictable, not for individual runs ofcourse, but as to the general tendencies. The fact that cp min with pessimistic searchwould pay o� for the proof of optimality and the quality of the solutions had been indeedpredicted by the ECRC team before the tests were actually performed. It seems that somecon�dence can be attached to a few general rules. A useful methodological advance wouldprobably consist in presenting these rules (with `con�dence intervals') in a systematic wayand making them accessible to the average Parallel CLP programmer.118
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Chapter 5.A Decision Support System for theVenice LagoonGiuditta Festa, Giuseppe Sarduand Roberto Felici
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1 Problem descriptionThe main role of EDS-Systems & Management in the APPLAUSE project was that ofinvestigating the suitability of the ECLiPSe environment for the development of DecisionSupport Systems. The Decision Support �eld represents a commercially important classof applications which is meeting remarkable interest and is subject of research e�orts. Inparticular, our application addresses a social and economical critical aspect: environmentalmonitoring and control. The availability of information on the natural environment isincreasing much more rapidly than the development of tools for the interpretation andthe use of such information. Furthermore, more and more crucial is becoming the needfor systems which will support e�ective management of the ecosystem. Particular featuresthat must be supported include the timely availability of data on the dynamic changes inthe ecosystem, the ability of the system to provide decision support tailored to a particularlegislative framework and also the ability to provide forecast of the outcome of particulardecisions taken by the managing authority. We have planned the Venice Lagoon DSS,trying to meet these requirements. In the following we shall outline the DSS developmentand the experiences we have gathered working in the ECLiPSe environment.1.1 The Venice Lagoon and its safeguardThe unique character of Venice mainly derives from its tight relation with the Lagoon onwhich it dominates. Alas, the Lagoon, though conferring a charming look to the city, isa�icted by the growing environmental pollution e�ects.The ecosystem of the Venice Lagoon is a complex system involving a number of di�erentelements (cities, rivers, tides,...) and a wide territory which even includes regions distantfrom the Lagoon but having signi�cant e�ects on it, because of the action of rivers or otherdi�usion means. An index of the complexity of such an ecosystem is the great extensionof the geographical area which a�ects the Lagoon environment; it is composed by:� the proper Lagoon territory, whose borders can be demarcated by the Brenta mouthon the south and the town Iesolo on the north;� the whole hydrological basin connected to the Lagoon. It concerns a wide areacrossed by rivers, channels but also underground streams which will ow in theLagoon;� the range of sea bordering the Lagoon. The water coming from the sea, through thetides, interacts with the Lagoon environment by activating exchange and dilutionmechanisms.Trying to categorize the di�erent pollution sources, three main classes can be identi�ed:agricultural, urban and industrial. The agricultural pollution is mainly due to the in-troduction in the Lagoon of polluting substances by rivers coming from other regionsintensively cultivated. As for the urban pollution, it mainly consists of organic pollu-tion arising from the presence of inhabited areas, hospitals, tourist accommodations; itis noteworthy that Venice doesn't have sewers nor it is possible to build them. The in-dustrial pollution originates from the discharges of the industrial plants. The Lagoon is121



home to some of the most important chemical and oil-re�nery sites of northern Italy. Thee�ects arising from the discharges of such a relevant quantity of polluting substances inthe Lagoon are of great danger for the balance of the whole ecosystem but even for theinhabitants' health and the state of preservation of the Venetian historic buildings. It is,therefore, easy to understand the relevance of the Lagoon safeguarding problem.The necessity to e�ciently carry out a controlling activity a�ecting the levels of pollutionin the Lagoon was already felt during the bygone centuries. To this end, the Venice WaterMagistracy was founded in 1501. Its institution originated from the need to acquire anintimate knowledge of the issues connected with the whole Lagoon environment, to ensuretimely and e�cient actions aimed at safeguarding the Lagoon and its inhabitants. TheWater Magistracy was in charge of the centralized management of all matters which mighthave had e�ect on the Lagoon hydraulic system: the state of the channels which crossthe city, the control of the discharges in the Lagoon. Over the centuries, the duties of theWater Magistracy have not been basically modi�ed, but the conditions a�ecting the areaconstituting the environment of the Lagoon changed substantially. Su�ce it to mentionthe growth of the population, the creation of the industrial site of Porto Marghera, thechangeover, for both nature and quantities, of the substances discharged in the Lagoon.Nowadays the Venice Water Magistracy has to keep control on thousands of discharges,besides facing the analysis of an increasing number of factors, which the most recentstudies in the �eld of anti-pollution have turned out to be of great interest.The activity of the Venice Water Magistracy is carried out in compliance with a numberof regional, national and European laws and directives. Such regulations state the inspec-tions that have to be performed, but also prescribe threshold values to which pollutionparameters must conform. One of the most important tasks which is in charge of theWater Magistracy is the management of the granting of licenses for new discharges. Aseach single new emission of polluting substances must obtain a speci�c authorization, thenatural or legal persons who are involved with the emissions are requested to supply theWater Magistracy with data broadly regarding:� the quantity and the nature of the discharged substances;� the treatment plants which will be performed to reduce the polluting e�ects of thedischarged substances.The Water Magistracy sta� have to check that the substances discharged from the newemission point do not cause a threshold value violation. For this they have to compare thedeclared values with the ones indicated by the di�erent laws and directives which regulatethis scope. Of course, they are also in charge of the checks related to the authenticityof the declared data; this involves an activity of water sample collection and analysis.Against detected irregularity the Water Magistracy can force the culprit of the o�endingemissions to introduce more e�ective treatments and, in very critical situations, it caneven revoke the license.Since recent, this time-consuming administrative activity has been supported by an auto-mated system which deals with the whole bureaucratic procedure relative to the grantingof the emission licenses. This system essentially consists in a database storing information(emitted substances and declared quantities, location of the polluting source, depura-tion treatments, status of the �le in the bureaucratic procedure and so on) relative to122



each discharge for which a license has been requested. Objective of such an operationalenvironment is that of responding to the pollution e�ects instead of acting to preventcontamination, and as such it does not allow to evaluate the e�ects of a new discharge onthe Lagoon ecosystem. Even the granting of a new emission license is, at present, onlysubordinated to the observance of some static threshold values. Such values are stated bylaws and are relative to the maximum allowed concentration values of substances in theemissions, but don't take into account the actual pollution in the location where the sub-stances are to be discharged. A further re�nement for supporting the Water Magistracydecision making activity may concern an optimization phase, as in fact, besides obtaininga complete overview of the pollution state, this institution is interested in �nding the bestsolution to face critical situations.Considering the requirements suggested by the Venice Water Magistracy experts we haveenvisaged a number of problems which seemed suitable to be tackled with the method-ologies put at our disposal by ECLiPSe. We intended to develop a decision support toolwhose aim is not in totally substituting the human responsible and expertness but ratherin improving its ability by a thorough analysis of the possible technical solutions. This hasbeen the origin of the Venice Lagoon DSS; we will now describe the DSS functionalitiesand its implementation.1.2 A DSS for the Venice LagoonTwo di�erent phases can be identi�ed in the decision making process: a �rst data interpre-tation phase and a further decision making phase. In our context, the data interpretationphase consists in getting the pollution status of the Lagoon and comparing it with anacceptable one, in order to point out alarming discrepancies. The decision-making phaseconsists in planning technical interventions aimed at restoring an acceptable state at \aslow a cost" as possible. To cover such two phases the Venice Lagoon DSS is composed by:� a database containing environmental data;� a hydrodynamic model of the Lagoon;� a knowledge-based core;� an interface module for the end-user.Its structure together with the interactions is depicted in the �gure 1.1.Here is a brief description of the DSS components and of their relationship.The environmental databaseThe environmental DB provides information on polluting sources and polluting substanceswhich are necessary for the evaluation of the pollution states in the Lagoon. The inputdata for the DSS is described by a set of predicates that supply it with the knowledge onthe physical state of the Lagoon, the bounds imposed by government regulations, and the123



Figure 1.1: The components of the Venice Lagoon DSScost parameters necessary for the optimization problems. The most important predicatesare listed in the following:source(Id_No, X, Y) which describes the positions of the pollution emitting sources;substances(Id_No, Name) describing each substance name;emission(Source, Substance, Quantity) indicating the Quantity of Substance emit-ted by Source;e_bound(Substance, Bound) stating the maximum concentration value allowed for Sub-stance in the Lagoon;cost_redc(Source, Substance, List_of_Costs) indicating the cost necessary to re-duce the quantity of Substance emitted by Source;cost_relc(Active_source, Inactive_source, Cost) indicating the cost necessary torelocate the emission of the Active_source on the Inactive_source;concentrationFactor(Source, X, Y, Factor) representing the factors which, multi-plied by the quantity of substance emitted by Source, return the expected concentrationvalue for the substance in point (X,Y).The DSS prototype we have developed for the APPLAUSE project considers 12 di�erentpolluting substances and up to 80 polluting sources.Unlike the objective nature of the data relative to the quantities emitted by the sources andthe allowed bounds, the costs are dependent from subjective evaluations. In this context,in fact, costs do not represent \simple" monetary values, rather they denote a more124



complex evaluation of social, economical and technical factors whose \value assessment"can only arise from the experience gathered daily \on the �eld" by the sta� which isinvolved with the Lagoon safeguard.The hydrodynamic model of the LagoonThe role of an hydrodynamic model in such a DSS consists in describing the Lagoonhydrodynamic behaviour to simulate the di�usion of polluting substances and, therefore,to forecast their concentration values in the Lagoon.The implementation of a mathematical model, tailored for a complex ecosystem such asthe Lagoon environment and designed to meet a high degree of accuracy, should haverequired remarkable e�orts; so, for the current phase of prototyping, we have deemed tobe su�cient to build a simpli�ed model, which anyway could generate the necessary inputsto the interpretative knowledge-based system.Such basic hydrodynamic model accepts as input the following data:� a polygon broadly describing the Lagoon morphology;� a list describing the positions of the three Lagoon access points to the sea;� a list describing the positions of the polluting sources in the Lagoon.Considering the physical equations relative to the di�usion of substances in a liquid and anumber of simpli�ed hypothesis (no viscosity, two dimensional movements,...), the modelproduces as output a matrix, whose coordinates represent physical lagoon coordinatesand cells contain lists of Source, Factor couples indicating the emitting sources and theconcentration factor relative to the emitting source Source in point (X,Y). This matrix isthen converted into the set ofconcentrationFactor(Source, X, Y, Factor)statements required as input by the DSS.Due to the large amount of calculations necessary, we have implemented the hydrody-namic model using the C language. We have decided to use ASCII �les to implement thecommunication between the model and the DSS optimization core written in ECLiPSe.This means that the model reads an ASCII �le to obtain its input data and, in turn,puts the resulting concentration factors in another ASCII �le, which will then be readto produce the ECLiPSe concentrationFactor/4 predicates. We have opted for such asolution to make the model as much as possible independent from the DSS optimizationcore; in such a way, the simpli�ed model can be easily replaced by a more sophisticatedone as soon as it becomes available.As the concentration factors depend on the position of the sources, it is necessary to re-runthe hydrodynamic model to obtain new concentration factors each time the number orthe location of the polluting sources change. This can be done directly from the DSS.125



The knowledge-based coreThe logic core of our DSS is composed of several conceptual modules, corresponding todi�erent problems and phases which can be activated independently. As said, they havebeen conceived to meet the requirements of the DSS potential end user: the Venice WaterMagistracy. The modules consist essentially of constrained search and optimization tasks,so the use of ECLiPSe for their realization has allowed to exploit the main features of thislanguage concerning parallel programming and constraint handling. The tasks covered bythe modules are explained in the following:Analysis: It calculates the concentration values for the polluting substances in the La-goon, compares such values with the maximum bounds that are imposed by law,and gives as result a list of points where the bounds are exceeded.Reduction: It aims at restoring the pollution back to legal values in the locations inwhich the previous Analysis has discovered violations. To obtain such a result,the most cost e�ective reduction plan for the emissions of the polluting sources issuggested.Relocation: The relocation strategy constitutes an alternative solution to the problem ofthe excessive concentration levels. To reduce the concentration values in the pointsdetected by Analysis, the emissions are not reduced, but they are partially relocatedin some other admissible areas (inactive sources). The problem aims at minimizingthe global cost arising from the relocation of the emissions.Monitoring: This task aims at planning a monitoring network. It �nds a plan for dis-locating the minimum number of monitoring stations which allow to have each pol-luting source controlled by a monitoring station.Detection: It compares the concentration values collected by a monitoring campaignwith the ones predicted by the hydrodynamic model. As a result it returns a list ofpolluting sources which may emit more than they have declared.The user-interfaceA considerable part of our development e�orts has been devoted to supply the DSS withan e�cient and user friendly interface. The user interface constitutes an importantfeature for a DSS whose target user is not necessarily skilled in the computer science �eld.We have used graphical displays as much as possible to give the user an immediate andintuitive grasp of the situation of the Lagoon. All the tasks performed by the DSS aremade accessible by a menu-bar which, in turn, shows tiled-menus. On the screen a mapof the Venice Lagoon is always visible; the results of the requested tasks are superimposedover it. An on-line help has been conceived to support the user in the DSS navigation;it supplies brief explanations of the tasks included into the system and detect sequencesof not allowed operations and wrong inputs introduced by the user. Furthermore, theuser-interface, allows to graphically update the data (costs, emissions, polluting sourcelocation, : : : ) which de�ne the Lagoon environment.126



As for the user-interface implementation, we have used a public domain graphic tool:Tcl/Tk. Tcl and Tk are two software packages providing a programming system foreasily developing and using graphical user interfaces. In particular, Tk is an extensionto TCL allowing to construct Motif-like user interfaces. The connection between Tcl/Tkand ECLiPSe is supported by Pro Tcl, a Prolog interface to the Tcl/Tk toolkit, whichhas been built by ECRC. Tcl/Tk commands are made accessible from ECLiPSe throughthe tcl_eval/2 predicate (which accepts any Tcl expression and passes it to the Tclinterpreter; Pro Tcl also allows to call ECLiPSe predicates from a Tcl command or scriptand to get back the value of variables. Pro Tcl frees the ECLiPSe user from the burden ofplunging into the interconnection issues, in fact it does the job in a user transparent way.2 CharacterizationAs explained in the previous section, the Venice Lagoon DSS is an experimental applicationwhose realization has started within the APPLAUSE project. The problems composingthe DSS have been studied and jointly pointed out with the VeniceWater Magistracy sta�.Even though such problems arise from the daily controlling activity, and therefore referto existing needs, no previous attempts to scienti�cally solve them had been made. Our�rst investigation concerned in particular the feasibility of an ECLiPSe - based approachto the handling of the tasks that our DSS was intended to cover. The question was: \Is(Parallel) CLP adequate for our application �eld?".From a general viewpoint, an ecosystem is a dynamic system, intrinsically non-linear,in which every decision can either have no consequence, by virtue of the homeostaticpower of the system, or induce dangerous degeneration because of the priming of pro-gressive concatenations of damages to the whole system. On the other hand, part ofthe decision process (e.g. minimizing costs of planned reductions of polluting emissions)can be viewed as the activity of solving optimization problems. In particular, the WaterMagistracy decision-making activity, even though relying on quantitative estimations, isbased on logical de�nitions of casual relations, laws, regulations and technical knowledge;such further characteristic advised us to investigate other techniques than the traditionalmathematical ones (e. g. Operations Research) having a consolidated history in the prob-lem solving world. An interpretative model, therefore, inspired by mathematical logicrather than by classical analysis, seemed to best support the knowledge processing andqualitative reasoning. Actually, in the context of our application, the constraint logic pro-gramming paradigm has been adopted to bridge the gap between knowledge processingand optimization problems.The problems we had to tackle were characterized, among other things, by a large amountof computation required to generate, compare and combine the large amount of hypothesesrepresenting all the possible solutions to reduce the pollution levels. Constraints allowedthe knowledge representation and execution, but only a parallel exploration of such largesearch spaces could obtain the performances levels necessary to achieve reasonable execu-tion times.The initial set of problems (mainly Reduction and Relocation) constituting the DSS were,therefore, characterized by: 127



� a non-linear nature� a large search space (just to give an order of magnitude: the search space of Reduc-tion for 80 sources is 1180!)and the joint action of constraints and parallelism put at our disposal by the ECLiPSeenvironment seemed to be a valid candidate to e�ciently tackle them.During the project development, we have worked to achieve a correct and e�cient mod-elling for our problems in terms of variables and constraints. To this regard, it must bepointed out that the declarative nature of ECLiPSe has made the introduction of addi-tional constraints in the programs an easy task. In some cases (e. g. for the Analysisproblem), we got aware of the fact that the nature of the problem (Analysis is essentiallyan unconstrained search problem on a large data set) discouraged the use of a logic pro-gramming approach and we have exploited the possibility, given by ECLiPSe, to use animperative language (\C") to give an alternative representation of it.Unlike Reduction and Relocation, the other two problems (Monitoring and Detection)don't require the joint action of constraints and parallelism; for both of them, the set ofconstraints which de�nes the problem succeeds in heavily pruning the search space so thateven the sequential version works with low execution times. It must be pointed that theuse of constraints has made the representation of such two problems simple and intuitive.3 Constraint Modelling and PrototypingIn this section we shall describe, in a more detailed way, the problems that constitute thelogic core of the Venice Lagoon DSS. During the DSS development, our main e�orts havebeen spent in �nding the most adequate constraint modelling to represent the di�erentmodules. The selection of constraints able to prune the search space as much as possiblehas turned out to be fundamental to obtain acceptable execution times for problems witha large search space, as are the ones composing our DSS.As already stated, our optimization problems are characterized by non-linear relationsand high complexity. The Propagation over integers with Finite Domains, provided byECLiPSe, has allowed to e�ciently face the non-linearity and the combinatorial nature ofthe problems. Where a linear representation of the problem was possible, we have testedthe ECLiPSe linear solver over rationals, which uses the Simplex algorithm. The conclu-sion we can draw on this comparison, which of course only refers to linear or linearizableproblems, are the following: when the number of constraints is too low to ensure a validpruning of the search space, the Simplex method turns out to be far more e�cient thanthe enumerative method; whereas, when the set of constraints is meaningful enough, thetwo methods have comparable performances.3.1 Constraint modelling for the DSS modulesThe modelling of a problem is always an exacting job. We have introduced constraintsin a progressive manner, stating initially only the most obvious ones necessary to supply128



a preliminary formalization of the problem, and then trying to adopt more speci�c andcomplex constraints, suitable for a more e�cient and complete pruning of the search space.In the following, each module composing the DSS will be described in terms of variablesand constraints.The Analysis problemThe Analysis module covers the data interpretation phase of the decision making process.It aims at detecting the points in the Lagoon where the concentration value for a givensubstance exceeds the maximum allowed bound.In a point (X;Y ) the concentration value for a substance Sub is given by:Conc(Sub;X; Y ) = fs1(X;Y ) � es1;Sub + � � �+ fsN (X;Y ) � esN;Subwhere:fsi(X;Y ) is the concentration factor for the source si in the point (X;Y ) (given by theconcentrationFactor(Source, X, Y, Factor) fact in the database).esi;Sub is the quantity of the substance Sub emitted by the source si (given by theemission(Source, Substance, Quantity) fact in the database)s1; : : : ; sN are the active sourcesOur �rst modelling of the problem consisted in collecting (via the findall/3 predicate)the (X;Y ) points for which the disequationConc(Sub;X; Y ) � Bound(Sub)was veri�ed. Such points were then recorded in a Prolog factviolations(Sub, [(X1, Y1, Gap1), ..., (Xn, Yn, Gapn)].The resulting execution times were unacceptable (for 80 sources we obtained executiontimes of 6600 sec.!).A further and more thorough study about the nature of the Analysis problem has de�nitelyshown that a logic programming approach was not the best candidate to tackle this prob-lem. In fact, Analysis is essentially an unconstrained search problem on a large data set,whose goal is to calculate the pollution concentration values for a relevant number of pointsin the lagoon. Analysis spends most the time accessing the concentrationFactor/4pred-icates, which represent the concentration factor for a point and an emitting source in theLagoon. To reduce such access times we have decided to exploit the possibility of usingthe \C" language to imitate the action of a Prolog predicate. So we have used the C129



language to insert the concentration factors in a C table in order to make them accessibleusing the source number and the coordinates of the point as indexes.The introduction of these C procedures has not compelled us to rewrite the Analysisprogram, we have just had to declare the predicate concentrationFactor/4 as externalin order to link it to the correspondent C function (p_get_factor); in such a way, areference to the concentrationFactor/4 predicate in the Analysis program results in acall to the p_get_factor function whose code has been previously compiled and loaded.Using this access strategy we have reduced the execution time by a factor of 20.The Reduction problemThe Reduction procedure computes a reduction plan for the sources emissions in order tobring the concentration values relative to the violation points back to the allowed ones.The violation points are those detected by a previous running of the Analysis procedure.For a given substance Sub and for each violation point (X;Y;Gap) listed in the factviolations(Sub, [(X1, Y1, Gap1), ..., (Xn, Yn, Gapn)].the constraint stated is:fs1(X;Y ) � es1;Sub � Vs1 + � � �+ fsN (X;Y ) � esN;Sub � VsN � Gap(X;Y )wherefsi(X;Y ) is the concentration factor for the source si in the point (X;Y )esi;Sub is the quantity of the substance Sub emitted by the source sis1; : : : ; sn are the active sourcesVsi is a domain variable which represents the percentage of necessary reduction relativeto the source si. The domain for such variables is composed of the integers in theinterval between 0 and 10. This means that the emissions can be reduced by 0%,10%, 20%....... 100%.Reduction is an optimization problem and it aims at minimizing the following cost func-tion: Cs1;Sub;V s1 + Cs2;Sub;V s2 + � � � + CsN;Sub;V sNbeing Csi;Sub;V si the cost to reduce the emission of the source si by the percentage indicatedby the variables Vsi. Such costs are given by facts as:cost_redc(Source, Substance, [C0, C10, C20, ..., C100]).130



The parameters for the Reduction problem are:� the number of active sources� the number of violation points� the domain cardinality for Vsi variables.The dimension of the search space is given by:domain card: for Vsi variablesnumber of active sourcesand can become really large. Just to give an idea: with 11 values in the domain (from 0to 10) and 80 sources, it becomes 1180.Reduction is therefore a non-linear minimization problem with a large search space, soit is particularly suited to be tackled by CLP. The non-linear nature of the problem isinherited by the non-linearity of the reduction costs. According to the Water Magistracyexperts' opinion, non linear costs may best represent the combination of economical, socialand technical factors which are a�ected by a reduction of the emissions.The resulting execution times are highly sensitive to data in the sense that some setsof violation points (and therefore of constraints) cause a strong pruning of the searchspace, whereas in some other cases the pruning action is not su�cient and the consequentexploration of the search space by enumeration results in a time-consuming activity (morethan 3 hours for 80 sources).Of course, we have aimed at reducing the execution times for the worst case.Our attempts to �nd further constraints for a stronger pruning of the search space has notbe completely successful, so we have tried to reduce the execution times by other means.In a �rst version of the Reduction procedure we stated a constraint for each violationpoint detected by Analysis. Here is a set of execution times we have obtained:20 sources 40 sources 80 sourcesViolations cpu time50 - 180 2.1 sec 5.98 sec + 2h100 - 500 2.5 sec 15.17 sec + 3h380 - 800 5.9 sec 46 sec + 3hSuch results were, in a certain sense, unexpected. In fact one could think that with ahigher number of violation points (and, consequently, a higher number of constraints)lower execution times would have resulted as a consequence of a stronger pruning of thesearch space. As a matter of fact, a logic explanation exists for the rise in the executiontimes: if a subset of violations points are contiguous, they have very similar concentrationvalues, and therefore, the resulting constraints do not cause further pruning of the searchspace, but only increase the computational e�orts required for the propagation method ona large number of constraints. Following this observation, we have grouped the violation131



points by locality; this means that, if a subset of violation points are contiguous, we statethe constraint only on the one amongst them having the highest concentration value.A further action to obtain acceptable execution times has consisted in making a smallersearch space by reducing the cardinality of the Vsi domain variables (it represents thebase for the dimension of the search space). We have considered 6 values in the domain(instead of 11) obtaining a remarkable reduction for the execution times (60 sec. vs. 2hfor 80 sources).The Relocation problemLike Reduction, the Relocation procedure aims at reducing the concentration values in theviolation points pointed out by a previous running of the Analysis procedure. To obtainsuch a result, it devises a transfer plan of emissions from some active sources to otherinactive ones.With the term \inactive source" we indicate potential places where polluting substancescan be discharged without causing critical levels of pollution. Obviously those areas shouldbe characterized not only by current low pollution levels. Firstly, they must be \laweligible", meaning that they should not, explicitly or implicitly, be \emission restricted"areas, as an example mussels cultivation areas (hopefully!) low pollution levels, but itis forbidden to locate a polluting source in their premises. Moreover, there are certaintechnical and socio-economical considerations which must be taken into the due account,a shallow water area, is not, from the technical viewpoint, a candidate as an alternativedischarge place. Similarly, there are places either too close to critical areas, monumentsor historical palaces, or interested by water streams owing towards critical areas whichare not obviously admissible. So, as one can easily understand, inactive sources selectionis a very complex task requiring a deep knowledge of several Lagoon aspects, and as suchis conducted on ad hoc basis by the Water Magistracy sta�.For a given substance Sub and for a violation point (X;Y;Gap) listed in the factviolations(Sub, [(X1, Y1, Gap1), ..., (Xn, Yn, Gapn)].the constraint stated is:Fs1;Is1(X;Y ) � es1;Sub � Percs1 + � � �+ FsN;IsN (X;Y ) � esN;Sub � PercsN > Gap(X;Y )where:Fsi;Isi(X;Y ) = fsi(X;Y )� fIsi(X;Y ) is the di�erence between two concentration factorsand can be seen as representing the convenience in transferring a percentage of theemissions from the active source si to the inactive source indicated by the variableIsiesi;Sub is the quantity of the substance Sub emitted by the source sis1; :::; sN are the active sources 132



Percsi is a domain variable which represents the percentage of emission relocation for thesource si. The domain for such variables is between 0 and 10. This means that theemissions can be relocated by 0%, 10%, 20%....... 100%.Isi is a domain variable which indicates which is the inactive source to which part of theemissions of the active source si must be relocated. The domain for such variablesis the set of the inactive sources.Relocation is an optimization problem and it aims at minimizing the following cost func-tion: Percs1 � Cs1;Is1 + � � �+ PercsN � CsN;IsNbeing Csi;Isi the linear cost to relocate the 10% of the emission of the source si to theinactive source indicated by the variable Isi. Such costs are given by facts as:cost_relc(Active_Source, Inactive_Source, Cost).A further kind of constraint is imposed for each inactive source. It states that the sumof the emissions relocated to an inactive source must be lower than the allowed value(Bound): NXi=1 esi;Sub � Percsi � BoundSubThe parameters for the Relocation problem are:� the number of active sources� the number of inactive sources (it is the domain cardinality for Isi variables)� the number of violation points� the domain cardinality for Percsi variables.The dimension of the search space is given by:(num of inact: sources � domain card: for Percsi vars)num of act:s ourcesconsidering 11 values for the domain, 15 active sources and 2 inactive sources the cardi-nality for the search space becomes (2 � 11)15!The non-linear nature of the Relocation problem appears in the structure of the constraintswhich de�ne it. Each constraint involves two kinds of domain variables: the �rst one(Percsi) indicating the percentage of emission that must be relocated, the second one(Isi) representing the inactive source where the relocation must be routed. The choice of133



considering only linear costs for the relocation problem arises from the need of avoiding afurther increase in the problem complexity.No further constraints have been pointed out for a stronger pruning of the search space,so we have worked on the above described ones to reduce the execution times as muchas possible. Such times have turned out to be very high even for a low number of activesources and a small set of violations: 20 sources 40 sourcesInactive sources cpu time2 26.1 sec 1741 sec3 559 sec +3 h4 6052 sec +3 hThe presence of non-linear terms in Relocation has made necessary the introduction ofa user-de�ned constraint. This type of constraint forces the propagation even where theECLiPSe automatic propagation over linear terms cannot not deduce any new information.We shall relate about it in the section 5.2.In order to obtain lower execution times we have tried:� to reduce the search space by considering a smaller domain for the Percsi variables.The resulting computation times are shown in the below:11 domain values 6 domain values 4 domain valuesInactive sources cpu time2 26 sec 20 sec 9 sec3 559 sec 190 sec 20 sec4 6052 sec 5400 sec 104 sec� to introduce pre-computation rules aiming at detecting, in a preliminary phase,the violations which can't be solved by the relocation strategy. Such rules will beaddressed in section 5.1.The Monitoring problemThe Monitoring problem devises a dislocation plan for the monitoring stations in orderto obtain information about the e�ective concentration of polluting substances in theLagoon.A monitoring station is a tool having its own technical range; this means that a source iscontrolled by a monitoring station if it is located within the technical range of the station.Our aim was to minimize the number of monitoring stations (whose cost is relevant) byplacing them in the potentially most dangerous points in the Lagoon. Since concentrationfactors in a point P decays with an exponential law which is function of the distance fromthe polluting sources, we can consider the polluting sources as the most dangerous points.According to this consideration we have only considered the positions of the pollutingsources as potential locations for the monitoring stations.134



Monitoring aims at minimizing the number of necessary monitoring stations, in a waysuch that each source will be within a radius R of a monitoring station. For each pollutingsource si, a domain variable Csi has been created. This will contain the identi�cationnumber of the source in correspondence of which the monitoring station controlling thesource si is placed. The domain for Csi is therefore composed of the sources which arelocated within a range R centred on sidomCsi = fj j Sj in a range R centred on SigThe constraints imposing that each source must be controlled by a monitoring station arequite simple. For each pair of source si, sj they state that:if two variables have the same element in their domains then they must have the samevalue domCsi \ domCsj =) Csi =CsjThe cost function is given by the number of di�erent values given to the Csi variables.The predicate which builds the cost function constitutes a good example of the ECLiPSeexpressive power; it is:state_cost([Cs1, Cs2, ..., Csn], Cost]):-prune_instances([Cs1, Cs2, ..., Csn], Pruned),length(Pruned, Cost).where prune_instances/2 and length/2 are both built-in predicates; the �rst one pro-duces a list without any duplicated element, the second one calculates the length of alist.The above described constraints well represent the problem, in fact we have obtainedlow execution times even with a high number of sources. Monitoring is an optimizationproblem with a small search space. Its CLP modelling has turned out to be e�cient andintuitive.The Detection problemThe Detection procedure compares the concentration values collected by a monitoringcampaign with the ones predicted by the hydrodynamic model. Its aim is in detectingthe polluting sources which are emitting more than they have declared. The principlewhich underlies such procedure is the following: assuming that the hydrodynamic modelsimulates correctly the hydrodynamic behaviour of the Lagoon, if the actual values di�ersfrom the values forecasted by the hydrodynamic model, then some sources are emittingmore than they have declared.The collected data are in the form (X;Y;Act val) where Act val is the concentration value(for a given substance) in the point (X;Y ). For each of such points the constraint statedis: 135



Act val�G � fs1(X;Y ) �D1 + � � �+ fsN (X;Y ) �DN � Act val+Gwhere:fsi(X;Y ) is the concentration factor (the one given by the hydrodynamic model) for thesource si in the point (X;Y )s1; : : : ; SN are the active sourcesDsi is a domain variable which represents the actual emission for the source si. Supposingthat it is not likely that a source may emit less than it has been declared, we havestated the domain for the Dsi variables to be between esi;Sub and 3 � esi;Sub, beingesi;Sub the declared value for the source si.G is a \tolerance value" which takes care of possible deviations for the data calculated bythe hydrodynamic model.Detection is a search problem. It looks for a set of emission values that may explain theactual concentration values. The role of the above described constraints is not in �ndinga precise single value for the Dsi variables, but in reducing their domains to obtain theemission values intervals which may cause the measured concentration values.Detection gives as results two lists of sources:Lying sources: contains the sources whose actual emissions are surely higher than thedeclared one. The minimum value in the domain for the Dsi variables associate tosuch sources is higher than the declared value.Maybe lying sources: contains some sources that are likely to be emitting more thanthey have declared. The minimumvalue in the domain for theDsi variables associateto such sources corresponds to the declared one, while the maximumvalue is higher.Execution times have proved to be very low.3.2 Some general remarksOur search for an e�cient representation of the problems composing the DSS has beendriven by the need to obtain acceptable execution times. The indication regarding thelimit under which an execution time can be considered \acceptable" has been indicated bythe end users: the Water Magistracy sta�. Their opinion is that computation times higherthan a few hours (two or three at the most) should not be considered. When the problemsare very complex and have a large search space, just the joint action of constraints andparallelism can obtain reasonable execution times.One of the weakness of the CLP approach is, undoubtedly, the sensitivity to data andtherefore the impossibility to predict execution times. We have often incurred into sets136



of data which caused high execution times even with a problem formalization that, upto then, had been considered e�cient enough. Anyway, an accurate analysis of the na-ture of such data has helped us to point out some principles which, translated into pre-computation rules or further constraints, have improved the problem modelling (the pre-computation rules for the Relocation problem have been generated in such a way).The declarative nature of the ECLiPSe language has made the introduction of additionalconstraints in the programs an easy task. ECLiPSe makes the expression of constraintsas simple as possible, and the wide range of powerful tools at the user's disposal can helpto obtain remarkable results in terms of performance even with very complex problems.The expressive power of ECLiPSe is undoubtedly valuable, but the best way of achievingan e�cient computation for a problem consists in �nding an appropriate formalization ofit in terms of variables and constraints. The complexity of such a task is not ascribableto ECLiPSe or to any other programming language, but it arises from the more generaland complex �eld of modelling. We have often been forced to restate our problems andthe improvements obtained, when the new formalization has proved to be more suitablethan the previous one, have sometimes turned out to be remarkable.3.3 A foreseeable evolution for the DSSThe realization of the Venice Lagoon DSS within the APPLAUSE project has been ameans of assessing the parallel programming system ECLiPSe. Nevertheless, our e�ortshave been aimed at building a prototype which reects the topics of the operative envi-ronment to which it is dedicated. The prototype version of the DSS considers 12 di�erentpolluting substances and up to 80 polluting sources. Even though, for legal reasons,the Venice Water Magistracy has to trace each discharge in the Lagoon (at the momentsomething as 2500 sources are traced), just a few tens of these, the most important anddangerous ones, are taken into consideration by the Water Magistracy for the Lagoonsafeguarding. The dimensioning of the prototype is, therefore, not so far from consideringa realistic scenario.Thinking of a possible evolution for the prototype, we have considered a two-level structureto raise the number of polluting sources considered by the DSS. This two-level approachconsists in grouping a number (20 or 30) of real polluting sources (Low Level Sources) bylocality, to constitute a \virtual" polluting source (High Level Source). The data relativeto the High Level Sources are intended to summarize the polluting contribution of thecomposing Low Level Sources: the high level emissions are given by the sum of the lowlevel emissions, while the high level costs are the average of the low level costs. The logiccore of the DSS should remain essentially unchanged, but for the Reduction and Reloca-tion problems (the most time-consuming ones) two levels of computations are allowed. A�rst level of computation considers just the High Level Sources and obtains the percentageof reduction or relocation for the emissions. The second level, if activated, redistributesthe results obtained for a given High Level Source on the Low Level Sources which com-pose it. In our context, \to redistribute" a percentage of reduction (relocation), relativeto a High Level Source, means to �nd a reduction (relocation) plan for the emissionsof the composing Low Level Sources; the sum of the quantities reduced (relocated) onthe Low Level Sources must be equal to the global reduction (relocation) indicated from137



the �rst level of the computation. We have created a �rst version of the two procedures(Low-Level-Relocation and Low-Level Reduction) which have to perform the redistribu-tion. Both are optimization problems in that they minimize the cost arising from thereduction (relocation) plan. Low-Level-Relocation and Low-Level Reduction are a simpli-�ed version of the correspondent high-level problems; they don't deal with concentrationfactors nor violation points and, therefore, a low number of constraints are involved. Thesimpli�cations introduced in Low-Level-Relocation have made it a linear problem and wehave obtained an e�cient solution by using the simplex method adopted by the ECLiPSerational solver.The implementation of the two-level structure has been just outlined during the Applauseproject, but it constitutes the guideline for a further evolution of the Venice Lagoon DSS.4 ParallelizationThree distinct modes of parallelism are supported by the ECLiPSe environment: OR-parallelism, independent AND-parallelism and data parallelism. Our experience is mainlyrelated to data parallelism which turned out to meet the requirements of our application.The DSS logic core description, which has been supplied in the previous section, makesit clear that not all the DSS modules needed a parallel approach. As for Detection,Monitoring and Analysis, the small search space (specially Monitoring), the nature ofthe problems and an e�cient representation of these have allowed to obtain satisfactoryperformances even in the sequential version. So we have invested our e�orts in exploitingparallelism in the Reduction and Relocation procedures, whose large search spaces requiredthe joint action of constraints and parallel executions.4.1 \Our parallelism"Reduction and Relocation essentially consist of constrained search and optimization tasks;they compute the reduction/relocation plan for the source polluting emissions in order tobring the concentration values back to an allowed bound at the minimum cost. For boththese procedures we have a two-level parallelism: a larger grain one, which originates aparallel computation for the substances considered by the DSS:par_member(Substances, List)and a �ner one on the domain of domain variables representing the percentages of reduc-tion/relocation:par_indomain(Dom_variables).The size of the search space for these problems is quite large, and the bene�ts comingfrom parallel annotations grow when the number of pollutant sources increases. Thegraph shown below refers to the Reduction problem; it displays good speed-ups (even asuper-linear speed-up with 80 sources) arising from the independence of computations anda coarse-grained parallelism which outweigh the overhead of starting parallel processes.Although the Relocation problem is more complex than the Reduction one, its parallel138
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execute the program in parallel; on this topic, our experience validates the suggestion givenby the language developers: the number of workers should match the number of physicalprocessors available on the machine.5 Performance debugging and optimizationThe whole DSS development has been characterized by a continuous search for perfor-mance improvements. To obtain such a result we have investigated about a number offactors which might a�ect the computation, ranging from considering pre-computationrules, to testing the e�ects of the di�erent search algorithms provided by ECLiPSe. In thefollowing we report about our experience in this optimization process.5.1 About pre-computationThe pre-computation rules often have originated by the analysis of sets of data whichcaused particularly high computation times. Such data helped us in detecting some logicalrules which, at �rst sight, had not been pointed out or considered important for theformalization of the problem.There are two examples of pre-computation rules relative to the Reduction and Relocationproblems:The involved-sources ruleThe principle which underlies this rule is valid for both the Reduction and the Relocationproblems. It is very simple and sounds as follows: \If the emissions of a source S don'ta�ect any violation point (X;Y ) (this is true if the concentration factor for the source Sis equal to zero in every point where the concentration value is higher than the allowedbound) then, reducing the emissions of the source S, no reduction of the concentrationvalues in the violation points will follow".In the �rst version of Reduction and Relocation procedures we created a domain variablefor each source considered by the DSS, but we soon realized that, if the number of theviolation points were low, the execution times were often high. Such a result is explainableconsidering that with a low number of violation points, we had a low number of constraints(as many as the number of violation points present) and a large search space (the numberof sources is the exponent for the cardinality of the search space both for Reduction andRelocation). To e�ciently deal with a low number of violation points, we have createda predicate involved_source/3 which, before stating the constraints and entering theminimization phase, inserts in a list only the sources whose emissions a�ects at least oneviolation point. The computation time for this predicate is negligible, but the e�ects onthe cardinality of the search space are remarkable.As an example, using the involved-sources rule in the Reduction problem: with 40 pollutingsources considered by the system and 4 violation points, the cardinality of the search140



space has been reduced from 1140 to 118, where 8 is the length of the list returned by theinvolved_source/3 predicate.The non-solvable points ruleThis second rule a�ects the Relocation problem. The principle on which the rule is based is:\A violation point can't be solved by relocating a quantity equal or greater than the bound(for a given substance) from an active source to an inactive one. In fact, in such a case, theinactive-source would, in turn, become a violation point". Such a consideration has allowedto reduce, a priori, the domain of the variables Percsi, representing the percentage ofemission that must be re-routed for the active source si. In a �rst version of the Relocationproblem, each Percsi variable had the interval between 0 and 10 as domain; after insertingthe non-solvable points rule, the maximum value for the domain (Max dom Percsi) iscalculated as follows: Max dom Percsi = Bound � 10=esi;Sub(where esi;Sub is the quantity of the substance Sub emitted by the source si)in fact the disequationesi;Sub �Max dom Percsi � 10=100 < Boundmust be veri�ed. This, in a way, can be seen as pruning the domain \from the top".An accurate analysis of the above mentioned principle has allowed us to prune, further-more, the domain of the Percsi variables from the bottom. The reasoning is the following:the concentration value (Conc val) in a point (X;Y ) is given byConc val(X;Y ) = fs1(X;Y ) � es1;Sub + � � �+ fsN (X;Y ) � esN;Subthat is the sum of the contributions arising from the emitting sources whose concentrationfactor in the point (X;Y ) is not zero. If the contribution of a single source si in point(X;Y ) (Conc Si(X;Y )) is greater than the allowed Bound, then the emissions of thesource si have to be relocated by a percentage which is equal or greater than:Min dom Percsi = (Conc Si(X;Y )�Bound) � 100)=(Conc Si(X;Y ) � 10)Min dom Percsi is the minimum value for the domain of the Percsi.If for a domain variable Percsi, it results thatMin dom Percsi > Max dom Percsithen the point (X;Y ) cannot be solved by the Relocation strategy, but the only way toreduce its concentration value is by the reduction of the emissions.141



Min dom Percsi and Max dom PercSi are worked out before stating the constraint andentering the minimization phase, so the non-solvable points rule immediately detects setsof violation points for which there is not a solution by Relocation.5.2 User-de�ned constraintsThe non-linear nature of the constraints de�ning the Relocation problem has made nec-essary to create a predicate (qeq/3), in order to force the propagation mechanism in thenon-linear terms.As stated in 3.1, the Relocation problem involves two di�erent kinds of domain variables:� the Percsi variables which represent the percentage of emission relocation for thesource si.� the Isi variables that indicate which is the inactive source to which part of theemissions of the active source si must be relocated.Such variables are used in the de�nition of both the constraints and the cost function.Let's consider the cost function. This is de�ned as:Percs1 � Cs1;Is1 + � � �+ PercsN � CsN;IsNwhere Csi;Isi is a domain variable representing the linear cost to relocate the 10% of theemission of the source si to the inactive source indicated by the variable Isi. The domainfor Csi;Isi is composed by all the relocation costs associated to the active source si (thereexists a relocation cost for each inactive source). Each term of the cost function is thereforegiven by the product between two domain variables. In such a case (non-linear terms)the ECLiPSe automatic propagation mechanism doesn't work, that is the updates on thedomain of a variable don't automatically cause the updates on the domains of the othervariables linked to the modi�ed one by the constraints. qeq/3 aims at forcing such apropagation. The principles on which qeq/3 is based are the following:if A and B are two domain variables and C = A�B, then C is, in turn, a domain variableA;B;C � 0 and1. minC � minA �minB (minA, minB, minC are the minimum values for the vari-ables A, B, and C respectively)2. maxC � maxA � maxB (maxA, maxB, maxC are the maximum values for thevariables A, B and C respectively)so the values higher than maxC and lower than minC must be eliminated from the domainof C.Considering that C = A � B can be expressed also as A = C=B and B = C=A, thefollowing relations can be stated: 142



3. maxA � maxC=minB (and maxB � maxC=minA)4. minA � minC=maxB (and minB � minC=maxA)From relations 1. 2. 3. and 4., it is manifest that each change involving the domain limitsof a variable a�ects the domains of the other variables, so the qeq/3 predicate must bewoken as soon as a domain variable limit is updated.In the following the de�nition of the predicate qeq/3 is given. The predicates propmax/5,propmin/5 and ntimes/3 are user-de�ned predicates, the remaining ones are ECLiPSebuilt-in predicates. propmax/5 and propmin/5 refers to the relations 3. and 4. respec-tively, while ntimes/3 refers to the case in which the variables are equal to zero.qeq(Perc,CP,C) :-dvar_domain(Perc,DomPerc),dvar_domain(CP,DomCP),dvar_domain(C,DomC),dom_range(DomPerc,MinPerc,MaxPerc),dom_range(DomCP,MinCP,MaxCP),dom_range(DomC,MinC,MaxC),Min is MinPerc*MinCP,Max is MaxPerc*MaxCP,(Min > MinC ->dvar_remove_smaller(C,Min),Upd = 1; true),(Max < MaxC ->dvar_remove_greater(C,Max),Upd = 1; true),propmax(MaxC,MinPerc,MaxCP,CP,Upd),propmax(MaxC,MinCP,MaxPerc,Perc,Upd),propmin(MinC,MinPerc,MaxCP,Perc,Upd),propmin(MinC,MinCP,MaxPerc,CP,Upd),(nonvar(Upd) ->qeq(Perc,CP,C); Vars = p(C,Perc,CP),term_variables(Vars,VL),length(VL,N),(N = 3 ->make_suspension(qeq(Perc,CP,C),4,Susp),insert_suspension(Vars,Susp,min of fd,fd),insert_suspension(Vars,Susp,max of fd,fd)143



;N = 2 ->ntimes(Perc,CP,C); times(Perc,CP,C)),wake).The introduction of qeq/3 has proved to be determinant in obtaining acceptable executiontimes. In the previous version, when the propagation for the non-linear terms was notactive, the constraints didn't succeed in reducing dynamically the domain variables andthis resulted in ine�ective performances.5.3 min max and minimizeThe logic core composing the Venice Lagoon DSS deals mainly with optimization problems,so we have made an intensive use of the built-in predicates minimize/2 and min_max/2,which ECLiPSe provides for minimization purposes. min_max and minimize have di�erentsearch strategies (local backtracking for minimize vs. recomputation for min_max), and wehave tested both of them in each of our optimization problems to choose the most e�ectiveone. As for our experience, min_max has always proved to provide the best performances.We have found the min_max/5 and minimize/5 predicates very useful. These predicatesallow to de�ne a minimum and a maximum value for the cost function and a percentagePerc of tolerance. The predicates with arity 5 consider equivalent the solutions within therange of Perc% and, therefore, start the search for the next better solution with a mini-mized value Perc% less than the previously found one. Even by indicating low percentageof tolerance (5%) we have obtained remarkable improvements for the execution times.A 5% approximation, on the other hand, doesn't a�ect the relevance of the optimizationprocess, in fact, in the context of such complex modelling problems, it is often su�cient to�nd a solution which is close enough to the best one instead of searching for the optimum.6 ConclusionsThe development of the Venice Lagoon DSS has constituted one of the test benches onwhich the APPLAUSE project aimed at assessing the suitability of ECLiPSe as a validprogramming environment. ECLiPSe has been designed to exploit the combined potentialof parallelism and Constraint Logic Programming. The joint action of both such ap-proaches was promising in e�ciently tackling the complex �eld of the environmental DSS.The decision-making activity the DSS intends to support is a�ected by a relevant num-ber of di�erent factors: regulations, laws, hydrodynamic principles, social and economicalinterests. As a consequence of such a complexity, the problems composing the DSS logiccore have turned out to be mainly characterized by a non-linear nature which makes itnecessary to consider a large amount of possible solutions. The constraint logic program-144



ming paradigm and its declarative nature have eased the knowledge representation, whileparallelism has allowed to face the involved large search spaces.The DSS development has required a noteworthy e�ort, but it has led us to gather expe-rience both in knowledge based systems and constraints logic programming.The search for an e�cient modelling of the DSS problems in terms of variables and con-straints has proved to be the most challenging activity during the development process.We have found that the constraint handling of ECLiPSe and its expressive power wellsupport the formalization of even the most complex relations and knowledge. The use ofparallelism has been fundamental to deal with search spaces which were not pruned heav-ily enough by the constraints. ECLiPSe enables the programmers to express parallelismvery easily, but a tuning activity has been necessary to exploit it at its best.As for the user-interface development, ECLiPSe provides the access to an external publicdomain graphic tool: Tcl/Tk. Tcl/Tk has been especially planned to support the creationof graphic interfaces, so it has been quite easy to supply the DSS with an e�cient anduser-friendly interface.Concluding, our contribution for the assessment of ECLiPSe as a programming environ-ment results in a positive judgement. Of course, parallel CLP may not be adequate forsome kinds of problems, but the winning strategy of ECLiPSe consists in allowing theuse of the most adequate approach for the problems by integrating or interfacing existingsystems.
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1 Problem Description - Predicting Protein Struc-tureProteins mediate most biological activities in the body including respiration, cell growthand cell di�erentiation. The success of many aspects of medical science and the biotech-nology industry is dependent on a detailed understanding of the structure of proteins andin particular how changes in structure inuence the function and biological role of theprotein in the cell. Many aspects of cancer research also rely on knowledge about proteinstructure and function at the molecular level.In general, a complete characterization of the function of a protein depends upon know-ing its precise three dimensional atomic structure. Solving the 3D structure by x-raycrystallography or by nuclear magnetic resonance is, however, time consuming and of-ten technically very di�cult. Methods for predicting the structure of a protein from thesequence of amino acids therefore has a signi�cant potential for resolving the cost andcomplexity of protein crystallography.The most successful developments in protein structure prediction have used model building[BSST87]. These methods rely on aligning the amino acid sequence of the protein ofunknown structure with another from a protein with known 3D structure and using thisas the structural model. However, although prediction based on model building from ananalogous 3D-structure is likely to yield the most reliable structures there is a requirementthat the amino sequences be very similar (25% or more). Unfortunately, for many of theproteins in the protein sequence databases, there is no analogous sequence present in theprotein structure database. Alternative methods for predicting protein structure fromsequence data that complement model-building are therefore required.1.1 Protein Topology PredictionProtein topology denotes a level of protein structural organization that is intermediatebetween the secondary and tertiary levels. A topological description uses spatial and orderrelationships among protein secondary structures (�-helices and �-strands in �-sheets)(Figure 1.1).A prediction of the topological structure of a protein can be used to identify proteins witha similar topological structure where the similarity is not detectable at the sequence leveland in the more general case, should provide su�cient structural information to guidethe selection of experimental investigations to verify the prediction or to help elucidateits biological function. Figure 1.2 illustrates how we represent the structure of all � and�/� proteins at the topological level. The essentially planar structure of �-sheets enablesa simple list data structure to be used.Unlike � proteins whose general folding architecture has been accepted since the �rstpublic databank of protein structure [BKW+77] and has come to be a fundamental partof the way in which information about �-structures is stored in public domain databases,a general architecture (or parameterization) of the �-helical globule has only recentlybeen proposed[MF88]. In this description the �-helical globule can be modelled by �ttingthe core regions of helices on the ribs of quasi-spherical polyhedra (henceforth deltahedra147



(a)

(b)Figure 1.1: Regular local protein structures.A schematic representation of the two most important classes of secondary structure ob-served in proteins: (a) �-helix and (b) a �-pleated sheet composed of antiparallel �-strands. Parallel �-sheets are also found, but are not shown here.(Figure 1.3) such that only one helix occupies any one vertex. The cores of individualhelices can then be though of as packing along the ribs of these polyhedra.The prediction of protein topology relies on the availability of an assignment of secondarystructure that must be predicted from the protein amino acid sequence. Despite wellknown problems with the accuracy of secondary structure prediction methods, it is never-theless possible to predict topology from secondary structure using rules of protein folding.So long as the secondary structure of the protein is accurate at a segmental level (i.e. thepredicted secondary structural regions roughly overlap the true ones allowing some errorin the speci�cation of termini) many topological folding rules (relating to handedness ofconnections, orientation, strand positions etc.) can still be applied to the predicted sec-ondary structure. Furthermore, uncertainty in secondary structural assignments can beaccommodated to some extent by relaxing the applicability conditions of some foldingrules.In this chapter we describe three di�erent programs that we have developed using parallelconstraint logic programming tools to experiment with new methods for predicting thetopology of proteins. The �rst, CBS1e addresses the problem of predicting the �-sheettopology of �/� proteins, the second CBS2e extends CBS1e to deal explicitly with theproblem of representing soft (non-categorical) constraints and the third, HFE, exploresthe problem of representing the fold topology of all-� proteins.148
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[position(1,1,u,u)
,position(2,2,u,r)
,position(4,3,u,r)
,position(3,4,d,r)]

(c)Figure 1.2: Representation of the topological structure of an �/� sheet:Panels (a) and (b) show alternative diagrammatic representations of protein topology. Inpanel (a) a simple �-sheet with �-helices packed against the upper surface is shown withthe �-helices drawn as cylinders and the �-strands as solid arrows which indicate theirrelative orientations in the sheet. Such sheets are often referred to as �/�-sheets. Panel(b) shows the same structure re-drawn in a planar topology diagram with �-strands drawnas triangles and �-helices as circles. In (b) the sheet has been drawn looking from aboveand then subjected to a single (topologically neutral) rotation so that the positions ofthe strands align. In panel (c), the list of position/4 terms for the sheet show how thistopology is represented in CBS1e and CBS2e.2 Quali�cation2.1 �/� SheetsThe principal di�culty when predicting protein topology from secondary structure is that,in the absence of other constraining information, a vast number of topological conforma-tions can potentially result from a single set of secondary structure assignments. Specif-ically, we showed in [DSR91] that, after making simplifying assumptions and consideringonly:� neighbourhood relations between strands� left or right handed parallel (crossover) connections� one type of antiparallel (hairpin) connection between strandsFor an �/�-sheet of n strands (n > 1) the number of possible strand topologies, p, is givenby: p = n!(3n�1)=2 (0.1)149
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Figure 1.3: Representation of the topological structure an �-helical globule:A deltahedral representation of �-helical proteins redrawn from [MF88] for packing ofglobular helical motifs with 3 (a), 4 (b), 5 (c) or 6 (d) helices. All deltahedra are composedof equilateral triangles.No. of strands 2 3 4 5 6 : : : 10No of topologies 4 48 768 15,360 368,640 : : : 4:75x1011Table 2.1: Values for p and n derived from equation 2If left and right handed hairpin (antiparallel) connections are also distinguished, adding afourth type of connection, then the number of topologies, p, for a given sheet of n strandsis given by: p = n!(4n�1)=2 (0.2)Typical values for equation 0.2 are given in table 2.1.The �rst program to explicitly view protein topology prediction as constraint satisfactionand to use techniques from Logic Programming was CBS1 (Constraint Based Search,version 1, [DSR91]).CBS1 demonstrated that using the LP language Prolog it was possible to succinctly im-plement both protein topological folding rules and a protein topology prediction algorithmbased on constraint satisfaction. Two key factors suggested that CBS1 should be extendedand that it would be important for the basic approach be made more computationally e�-150



No. helices No. of windings Elapsed time/s3 16 0.1364 816 3.2005 19200 89.6006 96000 410.000Table 2.2: Number of windings as a function of number of helices versus elapsed times on1 SUN Sparc2 processorcient. Firstly, in a practical protein topology prediction system it is necessary to considereither multiple secondary structure predictions or to use more detailed representationsof the protein structure. Either of these developments would greatly increase the combi-natorics of the search space. Secondly, because exceptions can be found to many of theproposed general protein folding rules the approach to constraint satisfaction in CBS1needed to be extended from one which views all constraints as categorical to one whichmanages both categorical and partial (uncertain) constraints. Again it was anticipatedthat there would be performance penalties incurred when extending CBS1e to accommo-date uncertain constraints.It was decided that parallel CLP would be an ideal environment to develop the newversions of the protein topology prediction programs. The main reason for thinking thatparallelism would be useful was the belief that the known protein folding rules would notfully constrain the search space and thus there would always be a considerable amount ofsearch to �nd topologies that were consistent with the data and constraints.2.2 all-� proteinsQuantifying the problem space for the folding of �-helical bundles from �rst principlesis not so straightforward. We therefore chose to determine the size of the problem spaceempirically from an implementation of the deltahedral framework as a CLP program. Theproblem space is characterised as the number of ways in which the protein chain can windaround the deltahedral framework.Table 2.2 shows the number of windings as a function of the number of helices along withelapsed times on a Sun MP/630 with one processor (Sparc2) and in Figure 2.1 it is clearthat the search space grows less than exponentially with respect to the number of helices inthe globule. Although the execution times for this problem were not inordinately long, itwas considered important that any developments that should stem from this work shouldbe founded on an e�cient and scalable implementation.
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Figure 2.1: Quantifying the problems space for �-helix foldingThe number of possible windings of the protein backbone as determined by the HFEprogram. The increase in the problem space is less than exponential with respect to thenumber of helices.3 Constraint Modelling and Prototyping3.1 �/� sheets topology - CBS1e/2eThe topology of a � sheet of N strands is represented in CBS1e as a list of N terms each ofthe form position(F,Y,Z,C), where F is the position of that strand in the sheet templatein the range [1,N], Y refers to the sequential position of the strand in the sequence in therange [1,N], Z is the orientation of the strand (up or down) and C is the chirality of theconnection to the preceding strand (left, right or unde�ned). See Figure 1.2c.Search strategy and use of CLP featuresIn general the most natural was to express a program in a CLP language is to (a) de-�ne the hypothesis space, (b) specify the constraints on that hypothesis space and (c)initiate a search (or labelling) procedure. In the following, we distinguish between logicalconstraints which are part of the problem speci�cation and empirical constraints whichare independent of the problem speci�cation per se, but which are selected by the useror program to constrain the hypothesis space. The empirical protein folding constraintsused in CBS1e come from a paper in which Taylor and Green predicted the topology ofa cation transporting ATPase (an enzyme involved in the transport of magnesium or cal-cium ions) [TG89]. They are listed in Table 3.1. The top level goals of CBS1e are shownin Figure 3.1.The CBS1e algorithm operates as follows1. Creation of a sheet template with the appropriate number of strand slots. The callcreate_strands_template_with_N_slots(4,Solution) causes ECLiPSe to unifythe logical variable Solution with a list of �nite domain terms which represents152



Name Descriptionc1 For parallel pairs of �-strands, �-�-� and �-coil-� connections are right handed.c2 The initial �-strand in the amino acid sequence is not an edge strand in the sheet.c3 Only one change in winding direction occurs.c4 The �-strands associated with the conserved patterns lie adjacent in the sheet.c5 All strands lie parallel in the �-sheet.c6 Unconserved strands are at the edge of the sheet.f2 Parallel �-coil-� connections should contain at least 10 residues in the coil.Table 3.1: Protein Folding Constraints used by CBS1ethe possible assignment of (in this case) a �-sheet with 4 strands. This is thus thesituation before the �nite domains (variable lists of possible values of a variable asa list in curly braces \fg") have been reduced by the application of any constraints:Solution=[position(_{1,2,3,4},_{1,2,3,4},_{u,d}, _{l,r,a,u}),position(_{1,2,3,4},_{1,2,3,4},_{u,d}, _{l,r,a,u}),position(_{1,2,3,4},_{1,2,3,4},_{u,d}, _{l,r,a,u}),position(_{1,2,3,4},_{1,2,3,4},_{u,d}, _{l,r,a,u})].2. Application of logical (structural) constraints. In this formulation of �-sheet topol-ogy the �rst strand is arbitrarily assigned to the left hand side the sheet and orientedup (with unde�ned handedness). This constrains two independent degrees of rota-tional invariance. The other strands have either left or right handed connections.A further logical constraint ensures that all strands are assigned di�erent templatepositions and that the solution gives the strand numbers in sequence order. Thehypothesis space is therefore reduced through propagation to:Solution=[position(_{1,2}, 1, u, u),position(_{1,2,3,4}, 2, _{u,d}, _{l,r,a}),position(_{1,2,3,4}, 3, _{u,d}, _{l,r,a}),position(_{1,2,3,4}, 4, _{u,d}, _{l,r,a})]Note that this provides the most general representation of the hypothesis/solutionspace.3. Constraint Ordering.In general the order in which constraints are applied in a search algorithm can a�ectthe performance of that algorithm. In CBS1e, the empirical constraints are orderedsuch that those which are non-deterministic (contain choice points) are evaluatedlast, in this case c3. The rationale for this is to maximize the amount of resolution(propagation) that the system performs to minimize the search space. To take atrivial example, if A and B are �nite domain variables f1,2,3g and 2 * A #= B,then ECLiPSe immediately infers A=1, B=2. There is no search.153



generate_topologies(N,Constraint_list,Topologies_List):-create_strands_template_with_N_slots(N,Topologies_List),apply_unary_logical_constraints(Topologies_List),extract_lists(Topologies_List,List_of_lists),apply_set_theoretic_logical_constraints(N,List_of_lists),order_empirical_constraints(Constraint_List,OC_List),apply_empirical_constraints(OC_list,N,Topologies_List,List_of_lists),instantiate(Topologies_List).apply_unary_logical_constraints([]).apply_unary_logical_constraints([position(F,Y,Z,C)|T]):-first_strand_is_orientation_up(Y,Z),first_strand_is_of_undefined_chirality(Y,C),apply_unary_logical_constraints(T).apply_set_theoretic_logical_constraints(N,Lists):-all_different_template_positions(Lists),strictly_orderedYs(Lists),first_strand_is_on_the_left(N,Lists).Figure 3.1: The top level goal of CBS1e:The basic strategy exploits the constrain and generate paradigm of CLP i.e. de�ningthe hypothesis space by producing a solution template, applying logical constraints tothis template which are part of the problem structure, then ordering applying empiricalconstraints selected by the user or program which are not part of the problem structurethen �nally instantiating any solution templates with domain variables.4. Application of Empirical ConstraintsThe empirical constraints are then applied and their e�ects propagated through thesearch tree, with the following partial solution generated as constraints are added:With constraints c2 only (the �rst strand is non edge) we have:Solution=[position( 2, 1, u, u),position(_{1,3,4}, 2, _{u,d}, _{l,r,a}),position(_{1,3,4}, 3, _{u,d}, _{l,r,a}),position(_{1,3,4}, 4, _{u,d}, _{l,r,a})]With constraints c5 (all strands are parallel), c1 (all parallel connections are righthanded), and c2 we have:Solution=[position(2, 1, u, u),position(_{1,3,4}, 2, u, r),position(_{1,3,4}, 3, u, r),position(_{1,3,4}, 4, u, r)]With constraints c1,c2, c5 and c3 (at most 1 change in winding direction) and onlynow introducing labelling/search, we have the following set of solutions:154



Solution1=[position(2, 1, u, u),position(1, 2, u, r),position(3, 3, u, r),position(4, 4, u, r)];Solution2=[position(2, 1, u, u),position(3, 2, u, r),position(4, 3, u, r),position(1, 4, u, r)];Solution3=[position(2, 1, u, u),position(4, 2, u, r),position(3, 3, u, r),position(1, 4, u, r)]There are four essential di�erences between the ECLiPSe speci�cation of constraints andthe Prolog speci�cation in the prototype Prolog version (CBS1). The ECLiPSe represen-tation of rule c3 can be found in Figure 3.2. This representation di�ers from the Prologspeci�cation since (a) all predicates must be de�ned (e.g. nonmonotonic/3) rather thanrelying on negation as failure (not(monotonic/3)), (b) predicates with choice points canbe de�ned as parallel (e.g. changes_in_winding/2, monotonic/3, nonmonotonic/ 3),and (c) using arithmetic constraint operators certain predicates can be made to `de-lay'. In this case the predicates monotonic/3 and nonmonotonic/ 3 can be made todelay until all their arguments are ground either by explicit �nite domain relational con-straints, or through mode declarations (e.g. here commented out for monotonic/3 andnonmonotonic/3 where all three arguments are speci�ed as ground).In ECLiPSe, all equalities and disequalities are speci�ed as arithmetic constraints whichare not simply instantiated and then checked, but which are implemented using a lookahead inference rule. The predicate nonmonotonic/3 is explicitly de�ned rather thanrelying on negation as failure on the predicate monotonic/3.In ECLiPSe, the predicates with choice points (changes_in_winding/2, monotonic/3and nonmontonic/3) can be executed in parallel. Finally, the goal suspension mechanismspeci�ed either by the mode declaration for monotonic/3 and nonmonotonic/3 or by usingarithmetic constraints on �nite domains has the e�ect of causing the constraint to delayif called with the inappropriate instantiation. It will, however, subsequently be \wokenup" and evaluated if the right instantiation of variables later occurs.The standard execution strategy of Prolog like systems is the so called \�xed left to rightdepth-�rst" strategy in which predicates described in the body of a clause are executed inthe order speci�ed. This is �ne for some aspects of programming however for constraintchecking it imposes the additional burden upon the programmer of ensuring that allvariables are of the right level of instantiation when checked (i.e. A > 1 will fail if A isvariable). This often has the result of reducing the declarativeness of programs.In ECLiPSe, the delay feature is a way of changing this execution model so that it de-pends on the state of instantiation of the arguments rather than their textual position inthe source code.There are many potential advantages provided by this feature including155



constraint(c3,PositionList):-max_changes_in_winding(Atmost),changes_in_winding(PositionList,Current),Current #<= Atmost.max_changes_in_winding(1).?- parallel changes_in_winding/2.changes_in_winding([P1,P2,P3|T], 0 + Current):-monotonic(P1,P2,P3),changes_in_winding([P2,P3|T],Current).changes_in_winding([P1,P2,P3|T], 1 + Current):-nonmonotonic(P1,P2,P3),changes_in_winding([P2,P3|T],Current).changes_in_winding([],0).changes_in_winding([_],0).changes_in_winding([_,_],0).?- parallel monotonic/3.monotonic(P1,P2,P3):-P1 #> P2, P2 #> P3.monotonic(P1,P2,P3):-P1 #< P2, P2 #< P3.?- parallel nonmonotonic/3.nonmonotonic(P1,P2,P3):-P1 #> P2, P2 #< P3.nonmonotonic(P1,P2,P3):-P1 #< P2, P2 #> P3.Figure 3.2: ECLiPSe representation of rule c3:greater declarativeness and more e�cient programs through simulated co- routining.CBS2eCBS2e is an extension of CBS1e that deals with weighted constraints. Its operation issimilar to CBS1e except that:The failure conditions of each constraint must be each speci�ed in addition to the successconditions. Each constraint is also assigned a pair of values (weights or penalties) corre-sponding to the truth functional states of the constraint (i.e. a value for the constraintbeing true and a value for the constraint being false) which are each � 0.These weights come from our empirical analysis of 8 nucleotide binding proteins [DSR91].156



Constraint Penalty if false [0,8] Penalty if true [0,8]c1 8 0c2 7 1c3 6 2c5 5 3f2 6 1Table 3.2: Weights for Topological Folding ConstraintsCost function de�nitionThe cost assigned to any set of topological hypotheses is de�ned as the sum of the weights(penalties) corresponding to the truth conditional states of the constraints to which itcorresponds. In Table 3.2, for example, the set of topologies for which all constraints aretrue would have a total cost of 9 assuming a simple cost function.It should be emphasizedthat although adoption of a linear cost function makes the assumptions that the constraintweights can be combined independently and additively, many more complex weightingprocedures can be reduced, via the appropriate transformation, to a linear cost function(e.g. probabilities though the use of a function such as mod(-Klog(odds))).Cost minimizationAminimumvalue for this penalty sum is then determined using a branch and bound searchusing the in built search predicate minimize/3. This algorithm operates by pruning allbranches of the search tree for which the linear cost function cannot be less than thecurrent minimum. Here it may be the case either that the value already exceeds theminimum or that the remaining choices are such that under no combination can a valueless than the minimum be found.Finally all topologies with this minimumvalue are generated using the same search proce-dure called without the minimization function but with the additional explicit constraintthat the precise value of the cost function be equal to the minimum already determined.More details of CBS2e and it's implementation can be found in references [CRS+93a,CRS+93b].3.2 all-helix bundle topologyThe representation of �-helical bundles as deltahedra uses connectivity graphs wherethe qualitative spatial relationships in each deltahedra are represented as a set of con-nectivity relations (Figure 3.3). Here each deltahedra is represented as a set of clausesconn(N,V,ListV)/3 where N is the number of helices in the globule, V is a vertex numberand ListV are the vertices connected to that vertex.The precise implementation of HFE uses both the �nite domains mechanism of ECLiPSe,goal suspension, and a number of the built-in constraints. Figure 3.4 and Figure 3.5 show157



conn(3,0,[1,2,3,4]). conn(4,0,[1,3,4,5]).conn(3,1,[0,2,4,5]). conn(4,1,[0,2,5,3]).conn(3,2,[0,1,3,5]). conn(4,2,[1,3,5,6,7]).conn(3,3,[0,2,4,5]). conn(4,3,[0,1,2,4,7]).conn(3,4,[0,1,3,5]). conn(4,4,[0,3,5,6,7]).conn(3,5,[1,2,3,4]). conn(4,5,[0,1,2,4,6]).conn(4,6,[2,4,5,7]).conn(4,7,[2,3,4,6]).conn(6,0,[1,2,3,4,5]).conn(6,1,[0,2,5,6,7]). conn(5,0,[1,2,3,4]).conn(6,2,[0,1,3,7,8]). conn(5,1,[0,2,4,5,6]).conn(6,3,[0,2,4,8,9]). conn(5,2,[0,1,3,6,7]).conn(6,4,[0,3,5,9,10]). conn(5,3,[0,2,4,7,8]).conn(6,5,[0,1,4,6,10]). conn(5,4,[0,1,3,5,8]).conn(6,6,[1,5,7,10,11]). conn(5,5,[1,4,6,8,9]).conn(6,7,[1,2,6,8,11]). conn(5,6,[1,2,5,7,9]).conn(6,8,[2,3,7,9,11]). conn(5,7,[2,3,6,8,9]).conn(6,9,[3,4,8,10,11]). conn(5,8,[3,4,5,7,9]).conn(6,10,[4,5,6,9,11]). conn(5,9,[5,6,7,8]).conn(6,11,[6,7,8,9,10]).Figure 3.3: Connectivity matrices for deltahedra:Numbers refer to vertices as labelled in Figure 1.3. In conn(+N,+V,+ListV)/3, N is thenumber of helices in the globule, V is a vertex number and ListV are the vertices connectedto that vertex. Thus, for example, in the six helical case, vertex 0 is connected to vertices1, 2, 3, 4 and 5.the top level goals which generate either all windings with short connections (a and b) orwith any connections (c and d) either in a failure driven (a and c) or list collection style(b and d).Intermediate models are also possible (e.g. at most one long loop extension), though theseare arguably best modelled as constraints on the more general models in Figure 3.5d. Aswith other ECLiPSe programs produced at the ICRF under APPLAUSE the basic strategyis one of constrain and generate as embodied in the strategy of:� de�ning the hypothesis space� de�ning the structural constraints, and� labelling/searchWindings and Motifs: de�ning the hypothesis space.The test query is based on �nding all motifs and windings for a particular helical bundle.The de�nition of motif taken is that implicit in [MF88]. Namely, a motif is a rotationallydistinct assignment of helices to ribs in a deltahedra which (a) ignores connections betweenhelices; (b) ignores the orientation of helices and (c) prohibits rotational, though notmirror, symmetries. The number of motifs associated with each deltahehra by Murzinand Finkelstein[MF88] is shown in Table 3.3.158



(a)all_windings_with_short_connections(N):-% N exists in {3,4,5,6}set_up_FDs(N,ListFD),apply_structural_constraints(N,ListFD),find_windings_with_short_connections(N,ListFD),write_out(ListFD),fail.all_windings_with_short_connections(_).(b)all_windings_with_short_connections(N,ListWindings):-setof(Winding,one_winding_with_short_connections(N,Winding),ListWindings).one_winding_with_short_connections(N,Winding):-set_up_FDs(N,ListFD),apply_structural_constraints(N,ListFD),find_windings_with_short_connections(N,ListFD),Winding = ListFD.Figure 3.4: Top Level goals (a) and (b) of HFE:No. Helices No. Vertices No. Motifs3 6 24 8 105 10 106 12 8Table 3.3: Number of Motifs as a function of the Number of helices and vertices (Murzinand Finkelstein, 1988)As the number of motifs is quite small, categorizing helix folding in terms of motifs providesa useful basis for grouping the folded structures. Several de�nitions of the concepts ofwinding are possible. In this document a winding is viewed as an ordered set (or list) ofdistinct vertex numbers v1, v2 : : :v2n for n helices, where v1 is the number of the vertexoccupied by the n-terminus of the �rst helix, v2 is the vertex number of the vertex occupiedby the c-terminus of the �rst helix, v3 is the vertex number of the vertex occupied by then-terminus of the second helix and so on, the cardinality (or length) of the set being 2nfor n 2 f3; 4; 5; 6g helices.The ECLiPSe de�nition of the hypothesis space is based on the use of �nite domainvariables representing vertex numbers. Each winding is represented as an ordered list of2n elements each element being a �nite domain variable in the range [0..m] where m is2n-1, following the vertex naming convention in Figure 1.3.159



(c)all_windings_with_any_connections(N):-set_up_FDs(N,ListFD),apply_structural_constraints(N,ListFD),find_windings_with_any_connections(N,ListFD),write_out(ListFD),fail.all_windings_with_any_connections(_).(d)all_windings_with_any_connections(N,ListWindings):-setof(Winding,one_winding_with_any_connections(N,Winding),ListWindings).one_winding_with_any_connections(N,Winding):-set_up_FDs(N,ListFD),apply_structural_constraints(N,ListFD),find_windings_with_any_connections(N,ListFD),Winding = ListFD.apply_structural_constraints(N,ListFDVertices):-alldistinct(ListFDVertices),fix_first_helix(N,ListFDVertices).Figure 3.5: Top Level goals (c) and (d) of HFE:Thus for example, prior to any structural constraints being applied, the most generaldescription of the hypothesis space of windings for 3 packed helices is given as:Winding3 = [_fdV1{0,1,2,3,4,5}, _fdV2{0,1,2,3,4,5},_fdV3{0,1,2,3,4,5}, _fdV4{0,1,2,3,4,5}, _fdV5{0,1,2,3,4,5},_fdV6{0,1,2,3,4,5}].Structural Constraints on WindingsThree types of structural constraints are applied to windings (Figure 3.6). Firstly, allvertices in a winding must be distinct. This is a very powerful constraint for pruning thehypothesis space using the consistency methods built into the ECLiPSe inference engine.Secondly, the position of the �rst helix is �xed along some rib to prohibit rotationallysymmetric windings from co-occurring. The third type of structural constraint concernsadjacency. Given the de�nition of a winding above, it follows that there is a requirement foradjacency between pairs of vertices in the vertex list when the pair of vertices correspondto the n-terminus and c-terminus of the same helix and (assuming only short connections)between pairs of vertices which link the c-terminus of one helix with the n-terminus of thenext.Figure 3.6 explains the use of �nite domain constraints in HFE: In (a) the use of �nitedomains in the representation of globular helical windings. Nhelices is an integer inthe domain {3,4,5,6}. Structural constraints on windings are: (b) all vertices must bedistinct (c) the position of the �rst helix is constrained to generate all and only rotationallydistinct windings (d) and adjacency constraints.160



(a)set_up_FDs(Nhelices,Winding):-% (+integer,-ListFD).Vertices is 2*Nhelices,MaxVertex is Vertices-1,set_up_FDs(Winding,MaxVertexNo,Vertices).set_up_FDs([],_,0):-!.set_up_FDs([Vertex|RestVertices],MaxVertexNo,VertexCount):-Vertex: 0.MaxVertexNo,VertexCount2 is VertexCount-1,set_up_FDs(RestVertices,MaxVertexNo,VertexCount2).(b)apply_structural_constraints(N,ListFDVertices) :-alldistinct(ListFDVertices),fix_first_helix(N,ListFDVertices).(c)?- parallel fix_first_helix/3.fix_first_helix(3,[0,1|_]). fix_first_helix(5,[0,1|_]).fix_first_helix(4,[0,1|_]). fix_first_helix(5,[1,0|_]).fix_first_helix(4,[0,3|_]). fix_first_helix(5,[1,2|_]).fix_first_helix(4,[3,0|_]). fix_first_helix(5,[2,1|_]).fix_first_helix(4,[2,3|_]). fix_first_helix(5,[1,5|_]).fix_first_helix(6,[0,1|_]).(d)find_windings_with_short_connections(_,[_]).find_windings_with_short_connections(N,[V1,V2|T]):-adj(N,V1,V2),find_windings_with_short_connections(N,[V2|T]).find_windings_with_any_connections(_,[]).find_windings_with_any_connections(N,[V1,V2|T]):-adj(N,V1,V2),find_windings_with_any_connections(N,T).Figure 3.6: Use of �nite domain constraints in HFE4 Parallelization StrategyParallelism in ECLiPSe gives the user access to parallel enumeration and search facilitieswhich can be used to boost the e�ciency of algorithms involved in optimization and searchproblems. The ability to employ parallelism in CLP applications is dependent upon non-determinacy in the application program. In the ECLiPSe language as with other logicprogramming languages such nondeterminacy is manifested in code for which more thanone clause can match a given goal potentially producing backtracking on a sequentialdevice. When parallelism is introduced into an application, however, an appropriate levelof granularity must be chosen such that the overhead of initiating parallel processing isoutweighed by the resulting increase in e�ciency.For CBS1e the e�ects of parallelism were investigated with a benchmark which �nds allthe solutions for a 10, 12 and 14 stranded sheet using constraints c1, c2, c3, c5 andc6 with strand 3 designated arbitrarily as unconserved giving 28, 45 and 66 solutionsrespectively from. In the case of the 10 stranded sheet the problem space is 4.75.1011161



possible topologies. This was done using the predicates marked as parallel in Figure 3.2and by replacing the de�nition of instantiate/2with a call to par_member/2 in the codelisted in Figure 3.1 using a Sequent Symmetry with up to 12 Intel 86386 processors.The strategy for parallelization adopted with CBS1e and CBS2e was to simply identifyobvious sources of indeterminacy in a serial ECLiPSe implementation and then as men-tioned above, speci�c predicates were marked as parallel. The benchmarks were thenused to investigate the e�ectiveness of the parallelization. At the time that this work wascompleted, a tool called PARTRACE, which illustrated the allocation of goals to di�erentworkers was used to visualize the e�ects of the parallelism.It did not prove at all di�cult to achieve creditable increases in performance using asimple parallelization strategy and no serious problems were encountered in debugging theparallel versions. The important factor, was however, choosing an appropriate benchmarkto assess the value of the parallelization. If the benchmark does not provide a su�cientlylarge problem space, then the e�ects are not obvious. It is also important to use a welldesigned benchmarking methodology and compare results for returning all solutions.4.1 Benchmarking methodologyFor each of the three queries (10-strands, 12-strands and 14-strands), 3 times were recordedwith each of 1, 2, 4, 8 and 12 processors (12 being the maximum on this particularmachine).The methodology for measurement of ECLiPSe program performance time evolved duringthe project until it settled upon an approach guided by the statistical principals of samplingtheory. Essentially each goal is run number of times (approximately 10N, where N is themaximum number of workers) with the precise number of workers (processors) selectedrandomly for each run. Then each of the following timemeasures is computed: the elapsedtime, the user cpu time, the system cpu time.Ideally the sum of user cpu time and system cpu time should be approximately equal tothe elapsed time, though the latter will include time for disk access, or time that otherprocesses are occupying the cpu.5 Performance Debugging and OptimizationIn all measurements of speed-up, benchmarks were run on at least two di�erent parallelcomputer systems; A SUN MicroSystems dual processor 630MP (Sparc II processors),a Sequent Symmetry (12 Intel 386 processors) or a 4 processor ICL DRS6000 (Sparc IIprocessors). The speed-up results we obtained were all essentially the same, but therewere of course di�erences in the absolute performance due to the di�erent speeds of theindividual processing elements.Measurements made using CBS1e exhibit almost ideal behaviour (Figure 5.1). By increas-ing the number of strands in the sheet the problem space could be extended to show thatas the problem space increases, the bene�ts of parallelism become close to linear with162



respect to the number of processing elements. With such results, there is little scope forsigni�cant optimisation.
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Figure 5.6: The speed-up performance for HFE with bothadj/3 and fix_first_helix/2 set parallel.1 IntroductionMaTourA [HSK+94] is an ECLiPSe [ECL95] application from the area of tourism, devel-oped by the University of Athens and Expert Systems International S.A. in the contextof the ESPRIT project APPLAUSE [LRS+93b, LRS+93a]. The purpose of MaTourA,which is a Multi-agent Tourist Advisor about Greece, is to leverage the services o�eredby travel agencies by providing an interactive way to construct personalized tours andhandle the complex underlying tourist information. Given the preferences of a tourist forhis/her holidays in Greece, MaTourA produces a personalized tourist plan, taking intoaccount the constraints of the tourist and information about potential visits, upcomingevents, particular sites, accommodation and transportation.MaTourA demonstrates the di�erent technologies integrated in the ECLiPSe system inone application, i.e. parallel CLP, the embedded database functionalities and the WWWserver support, and couples them with the technology of multi-agent systems. The latteris a major research area of Distributed Arti�cial Intelligence (DAI) [Huh87, BG88]. In amulti-agent system, the idea is to have agents of various types and capabilities to cooperatein problem solving. The cooperation among the agents is achieved in various ways, forexample by using a blackboard [HR85, EM88], contract net [Smi80, DS83] or actor [AH85,Hew88] model. In the MaTourA case, a blackboard approach has been adopted.2 MaTourA ArchitectureThe MaTourA system comprises a set of autonomous agents reecting the proceduresinvolved in a tourist advisory environment. These agents are:168



Tour Generation Agent: It is responsible for the construction of personalized tours,taking into account user wishes. These tours are time/location schedules providing,for each day, a speci�c timetable. This agent is the most computationally intensiveamong the MaTourA agents. It is the one where the parallel CLP technology isexploited in the MaTourA system. This chapter deals with the problem faced bythe Tour Generation Agent and how it is tackled in ECLiPSe.Activity Agent: It holds information about activities and is able to answer requestscoming from other MaTourA agents. Activities are possible tourist's visits to variousspots, such as museums, galleries, archaeological sites, beaches etc.Event Agent: It holds information about events and, as is the case with the ActivityAgent, it answers requests relevant to this information. Events di�er from activitiesin that they are short term shows with rather temporary nature, such as exhibitions,music concerts, theatre performances etc., while activities are more permanent intime.Site Agent: This agent deals with the sites of Greece, i.e. the geographical entities of thecountry, such as villages, cities, islands, regions etc., which are organized in a siteinclusion relation. The concept of sites is an important one for MaTourA, since thewhole tour generation facility works considering the sites as a fundamental startingpoint.Accommodation Agent: It handles information about lodgings where a tourist may beaccommodated and supplies it after the appropriate requests are made.Transportation Agent: Information about connections between sites via di�erent trans-portation means is managed by this agent. All possible transportation means arecovered, that is private car, bus, train, boat and airplane. Besides the support ofplain information retrieval, this agent is capable to solve various routing problems.Ticketing Agent: This agent holds information about connections which are establishedbetween di�erent sites all over Greece by public transportation means. Informationrelevant to prices, timetables, facilities etc., is maintained.Package Tour Agent: It is responsible for handling package tour information. A pack-age tour is a precompiled tour, as it has been constructed by a travel agency.User Interface Agent: This agent controls all user interaction with the MaTourA sys-tem. It acts as an intelligent front-end to the functionality provided by the otherMaTourA agents.The MaTourA agents, except the User Interface Agent, have a common property. Theyall accept requests for processing, one at a time, do some computation for their resolutionand, then, send back the results. For this reason, these agents are called \computationagents". The requests sent to the computation agents are formulated as messages followinga formal Prolog term syntax. Moreover, the computation agents, except the Tour Gen-eration Agent, perform direct processing of raw data contained in their local databases.Actually, these are information servers and they are called \database handling agents".The database handling agents exploit the BANG �le functionality provided by ECLiPSe.169



Earlier versions of the MaTourA system were implemented in the predecessor of ECLiPSeas far as parallelism is concerned, the ElipSys language [BBDR+90, Eli93]. Now, the wholeapplication has been ported to ECLiPSe, so as to pro�t the most from the language'sadvanced features.As far as the interaction among the MaTourA agents is concerned, a three-layered com-munication framework has been developed for this reason [SMH94]. This framework isa library of ECLiPSe (formerly of ElipSys) which, at the higher level, provides a set ofpoint-to-point communication predicates for message exchange between two agents. Thislayer is based on a Linda-like blackboard architecture [CG90] which, in turn, is supported,at the lower level, by a set of primitives for handling stream sockets in the Internet do-main [Ste90]. The experience from the implementation of the MaTourA system is thatthe structuring principle of multi-agent systems, as this is supported by the developedcommunication framework, enhances the horizon of ECLiPSe to directions where largescale development and distributed computing are central issues.Besides the structuring of the MaTourA system as a set of cooperating high-level agents,the concept of subagents has been introduced as well. A subagent may be viewed asan entity which carries out one of the subtasks that a high-level agent has to accomplish.However, while the high-level agents are, more or less, complete processing elements, whichmight be also spatially distributed, the subagents of a high-level agent are tightly coupledproblem solvers that share a common computing environment and exchange informationthrough logical variables, rather than using network facilities.The rest of this chapter is devoted exclusively to the Tour Generation Agent. The reasonis that the other MaTourA agents are rather simple \computing machines" where there isno need for exploitation of parallel CLP. On the other hand, the Tour Generation Agent isthe most computationally intensive agent of MaTourA, since it has to solve an extremelyhard combinatorial problem. The focus of the following discussion will be on this problemand the way it is tackled in the parallel CLP environment of ECLiPSe. Other interestingissues, such as the communication framework for the high-level agents, the concept ofsubagents, the functionality and the structure of the other agents etc., are presentedelsewhere [PA92, HSP+93, HSM+93, HKS+94, XSG+94, HSKG95].3 Problem DescriptionIn a tourist advisory environment, a common problem is to construct tours, that is se-quences of visits to various places, spots etc., which accommodate the preferences ofindividual tourists. In the MaTourA system, this functionality is provided by the TourGeneration Agent (TGA).As it is the case of every MaTourA agent, the TGA accepts requests which express speci�cuser requirements. There are four types of such requests whose main characteristics aregiven in the following in increasing degree of complexity:1. A full time/location schedule is provided to the agent, e.g. 15 Jul 95 | 19 Jul 95 inAthens, 19 Jul 95 | 25 Jul 95 in Rhodes, 25 Jul 95 | 31 Jul 95 in Heraklion.170



2. The visit period of the tour is given, but not the very locations. However, a widerarea is supplied or, alternatively, a starting location for the tour, e.g. 15 Jul 95 | 5Aug 95 in Cyclades.3. Speci�c locations are given but no information about time, e.g. a tour in Thessa-loniki, Edessa, Kavala, Alexandroupoli.4. Neither speci�c locations nor information about time is provided, but a tour witha given starting location or in a wider area is requested, e.g. a tour starting fromIoannina.For each type of request, cost criteria as well as interest preferences are given to the agent.Moreover, acceptable transportation means and accommodation constraints are taken intoconsideration. Finally, a set of Daily Plan Templates (DPTs) are also supplied. Each DPTcorresponds to a typical day that the tourist would like to spend on a speci�c location. ADPT consists of time period/action pairs, e.g. 10:00 | 14:00 swimming, 18:00 | 21:00sightseeing.Although the requests of type 1 are the simplest ones, they are quite complex and di�cultto cope with. For the requests of other types, heuristic procedures have been developedwhich transform such requests to requests of type 1. These procedures do not exploitparallel CLP, thus their presentation is not relevant to the current context.A scenario is that after an interaction between the user and the system, through the UserInterface Agent, the latter constructs a speci�c request and sends it to the TGA. Then,the result is computed by this agent and sent back to the User Interface Agent, so asto be presented to the user in a friendly way. As far as performance is concerned, therequirement is that a request should be answered in no more than 3{4 minutes, sinceMaTourA is an interactive system and, thus, it is not meant to be used in some kind ofbatch mode.A typical (type 1) request to the TGA is the following:tourgen_req1([culture, history],100000,accom([hotel], 'C'),[flight],[local_tour(from_to(5/8/95, 9/8/95),'Athens',[template([time_act(10:00, 13:00, [sightseeing]),time_act(15:00, 16:00, [learn])])]),local_tour(from_to(9/8/95, 12/8/95),'Heraklion',[template([time_act(13:00, 14:00, [sightseeing])]),template([time_act(16:00, 18:00, [learn])])])],no_opt/10)In this request, the TGA is asked to construct a tour in two sites, i.e. in Athens from5/8/95 to 9/8/95 and, then, in Heraklion from 9/8/95 to 12/8/95. For Athens, one DPT171



is provided which states that, for each day, the tourist wants to do some sightseeingfrom 10:00 to 13:00 and to learn things from 15:00 to 16:00. For Heraklion, there aretwo alternative DPTs for every day, one requesting sightseeing from 13:00 to 14:00 andanother for learning from 16:00 to 18:00. The terms \sightseeing" and \learn" are actionswhich have to be analyzed to activities and events of speci�c categories that may fallunder these actions. In addition, in this request, it is stated that the tour should containactivities and events that present \culture" and \history" interests, the cost of the tourshould be around 100,000 drachmas, the accommodation should be at hotels of at least\C" class and the transportation should be by air. Finally, a maximum number of 10tours is requested which have to be computed without using any optimization facilities.In the following, since requests of types 2, 3 and 4 are mapped to type 1 requests, only theprocessing of the latter is discussed. Moreover, this processing involves some \satellite"tasks, such as:� distributing the available budget among accommodation, transportation and visits� preprocessing of requests for lengthy tours to allow replication of visits to the sameactivities and events� expanding the interest macros to basic interests� communicating with the Transportation and the Accommodation Agents to requestthe satisfaction of the corresponding constraints stated by the user� communicating with the Site Agent to get the site keys of the involved sitesThese tasks do not fall into the scope of the presentation of this chapter, since they donot exploit parallel CLP as well, thus, they will not be discussed any further.So, the problem that will be considered from now on is the �lling of DPTs, for everysite and every day, with speci�c activities and events which are quali�ed for this purpose,that is they satisfy the stated constraints. Actually, this is the computationally intensivecombinatorial problem faced by the whole application. Dealing with this problem is themost time consuming part of the MaTourA system.Referring again to the previously presented example, the main input to the problem isthe �fth argument of tourgen_req1/6, which is a list of \local tour" structures. Eachstructure of this kind corresponds to a speci�c site and a speci�c time period to be spentby the tourist in this site. For each site, a list of alternative DPTs is given to use themfor the construction of the day schedules. Such schedules are not constructed for thetransportation days, i.e. the day that the tourist arrives at the �rst site, the days oftravelling from one site to another and the day the tourist leaves from the last site. Inthis example, it is requested to create tours for the dates 6/8/95, 7/8/95 and 8/8/95 (inAthens) and the dates 10/8/95 and 11/8/95 (in Heraklion). One of the tours that havebeen computed as solutions to this request is:6/8/95 --- Athens10:00 - 13:00 --> Acropolis 172



15:00 - 16:00 --> Keramikos7/8/95 --- Athens10:00 - 13:00 --> Acropolis Museum15:00 - 16:00 --> Gennadios Library Collections8/8/95 --- Athens10:00 - 11:30 --> Physics Collection of Evgenidis Institute11:30 - 13:00 --> Ancient Market15:00 - 16:00 --> Ag. Apostoloi10/8/95 --- Heraklion13:00 - 14:00 --> Koules11/8/95 --- Heraklion13:00 - 14:00 --> Venetian WallIn the following, the Tour Construction Problem (TCP) just presented will be consideredand analyzed from various points of view and the way the parallel CLP technology ofECLiPSe is used to deal with it will be presented in detail.4 CharacterizationA major characteristic of the TCP which has strongly inuenced the adopted approachis the very dense solution space of the problem. It is not possible, and, certainly, notmeaningful, to compute all, in the mathematical sense, solutions to a given request. Thereason is that there is a large number of such solutions, among which there exist tourswhich are almost identical except of a single activity or event. In addition, the almostindependent subproblems for each site imply the computation of the Cartesian productof the sets of solutions for each site to create the set of global solutions. This is anothersource of the huge number of solutions. What is needed, then, is to present to the user areasonable set of su�ciently di�erent tours, so as to give him/her the opportunity to makethe �nal decision. This concept of \su�ciently di�erent tours" is modelled appropriatelyand incorporated into the system. Of course, the user may ask for a single solution, whichmakes the whole computation simpler.As far as searching for an optimum solution is concerned, unfortunately, the raw dataprovided by the Activity and Event Agents do not distinguish between \good" and \bad"activities and events. However, an interest attribute has been introduced virtually with theaim to quantify the quality of a potential visit and, thus, to contribute accordingly to thetour it participates. This interest has been de�ned as a heuristic function of the durationof a visit and the number of di�erent interest types it presents. With this formulation, anoptimization TCP is considered as well.Another issue that has to be discussed is whether the nature and the size of the systemdatabases have a�ected the design of the system. Even from the very beginning of thedevelopment of MaTourA, databases with real data have been used, though incompleteand not from every region of Greece. There has not been any attempt to start withsome kind of randomly created data, since this might result to wrong design decisions.However, the initial data have not been sizeable enough and, thus, the developed prototype173



has been proved inadequate later on, due to the simplicity of the encountered methods.The prototype implementation has been radically changed since then, and, now, it maybe said that the system performs really well. In addition, the databases, at their currentstate, contain the full data from Athens and the Crete island and it is foreseen that inthe very near future the full data from the Peloponnese region will be available. Theincorporation of data from other regions will add only to the functionality of MaTourAwithout increasing the complexity of the problems that have to be solved. This is dueto the geographic modularity which is reected both in the design of the system and theprovided functionality for tour construction.The TCP, as it was presented in the previous paragraph, has not been tackled by anymethod in the past. A similar, though much simpler, problem to this was faced in thePETINA application [HSKM92, SKH92, SKH93], which was developed by the Universityof Athens in the context of the EDS project [SHL+92]. PETINA was implemented in theElipSys language and it was the �rst attempt to employ the parallel CLP technology insolving combinatorial problems from the area of tourism. The results were quite satisfac-tory, both as far as the exploitation of constraints and the performance gain on parallelplatforms are concerned. To this direction, it was decided to tackle the TCP of MaTourAusing the same technology. The reason is that, apart from the experience gained fromthe development of PETINA, there was much evidence that the combinatorial nature ofthe TCP would lead to a signi�cant pro�t from parallel CLP. The whole TCP might befaced as a very large constraint satisfaction problem exploiting parallelism at the labelingphase or it might be broken down into smaller constraint satisfaction subproblems whichcould be solved in parallel and have their results combined afterwards. The �rst approachwould certainly require the employment of very e�cient labeling strategies, in order to bereasonable. Thus, it was decided to follow the second approach and the results, as it willbe shown next, are very good.5 Constraint Modelling and PrototypingFrom a theoretical point of view, the TCP is a huge constraint satisfaction problem. Itmight be modelled as such, but it is doubtful whether a global formulation like that wouldlead to the desirable results. For this reason, it has been decided to divide the probleminto subproblems and deal with them, instead. As it will be explained in the following,this division facilitates also the exploitation of parallelism.At the �rst level of problem partitioning, a tour is considered as a sequence of subtours,each one corresponding to a speci�c site. At the next level, each site subtour is a sequenceof day subtours, one for each day that is being spent to the given site. More on thisdecomposition of the original TCP will be said in the next paragraph, where parallelismissues are discussed.So, what has to be solved now is the generation of a given number, say N , of su�cientlydi�erent subtours for a speci�c day at a speci�c site. These subtours have to be instanti-ated DPTs from the available ones for the given site. This instantiation has to be donewith activities and events taken from a pool that has been created for this reason. Thepool contains candidate visits for every possible time period of each template for all daysin all sites of the original request. These visits have been chosen so as to satisfy the174



interest constraints of the request and to belong to an activity or event category thatcorresponds to the action(s) of the time period into consideration. This pool is created ata pre-processing phase by sending appropriate requests to the Activity and Event Agents.The only thing that has to be checked when putting a visit into a DPT is the time periodswhen it is active. Moreover, the duration attribute of the visit has to be respected.The construction of the N su�ciently di�erent subtours is carried out by a recursiveprocedure which, at each iteration, computes a new subtour which has to be a �lled DPTfrom the available alternative ones. In addition, this subtour has to be not very similarto any other already constructed subtour. These properties of a subtour are expressed interms of constraints on �nite domains in a way that is presented below. One thing thathas to be mentioned also is that it is not guaranteed that it is possible to �nd exactlyN su�ciently di�erent subtours. Actually, N acts as an upper limit for the number ofsubtours to be computed.A day subtour, as it has been already said, corresponds to a DPT. Thus, a DPT is chosennon-deterministically and for each time period in this DPT it is decided how many visitswill be inserted there. This number of visits is computed heuristically from a formula thatinvolves the duration of the time period to be �lled and the average duration of candidatevisits. Actually, not only the resultM of this formula is considered, but M +1 andM �1in a non-deterministic way as well. Thus, there is a reasonable variety in the number ofvisits in each time period of the DPT. However, in order to reduce the complexity of theproblem, if more than 5 visits have to be inserted into a given time period, this period issplit into shorter ones where less than or equal to 5 visits are put. This is equivalent to�xing the time of the transition between two visits in the original problem. Now, havingdecided on the number of visits, say K (= M or M + 1 or M � 1), in a time period, 3domain variables are de�ned for each one of the K visits (a total of 3 �K variables), one forthe starting time of the visit, one for the ending time of the visit and one that representsan index to the pool of candidate visits. The duration, the opening time and the closingtime of a visit are also domain variables which are related to the index and, thus, to eachother through element/3 constraints. The other constraints which are put are:� The starting time of the �rst visit has to be equal to the starting time of the timeperiod that is being �lled.� The starting time of the other visits have to be equal to the ending times of theprevious visits.� The ending time of the last visit has to be equal to the ending time of the timeperiod that is being �lled.� Each visit has to be put in a time period, say (t1; t2), when it is really active, thatis t1 has to be greater than or equal to the opening time of the visit and t2 has tobe less than or equal to the closing time of the visit.� For each visit, its duration has to be respected, that is it has to be equal to t2 � t1.In order to make things more clear, the following are in ECLiPSe syntax the constraintswhich are stated for a single visit. 175



..........element(Ind, Durs, Dur),element(Ind, OTimes, OTime),element(Ind, CTimes, CTime),STime #= PrevETime,ETime #= NextSTime,STime #>= OTime,ETime #<= CTime,Dur #= ETime - STime,..........STime and ETime are the starting and ending times of the visit respectively (rangingover 0..1440) and Ind is the index to the pool of candidate visits that points to thisvisit. Ind ranges over a list of indices to legal visits, which are the ones that satisfy theinterest preferences of the tourist and the action requirements for the time period intoconsideration. Durs, OTimes and CTimes are the lists of the durations, opening times andclosing times respectively of all candidate visits. Thus, Dur, OTime and CTime representthe duration, opening time and closing time respectively of the visit to which Ind pointsto. Finally, PrevETime is the ending time of the previous visit and NextSTime is thestarting time of the next visit.The resulting subtours for each time period in a DPT are concatenated to form the daysubtour. At the day subtour level, another set of constraints which is stated is that all visitshave to be di�erent to each other. Finally, each day subtour has to be su�ciently di�erentfrom the already computed ones. The latter constraint is expressed in the following way.If a day subtour contains L visits, L random numbers are generated in the range [1; L].For each random numberR, the R-th visit of the day subtour is stated to be di�erent fromall visits in the day subtours computed so far. This results to having a reasonable numberof visits of a subtour di�erent from the visits in the previous subtours, which implementsthe idea of \su�ciently di�erent tours". As far as implementation is concerned, if for twovisits, that correspond to indices Ind1 and Ind2 to the pool of candidate visits, it has tobe stated that they are di�erent, the following constraints are set...........element(Ind1, Ids, Id1),element(Ind2, Ids, Id2),Id1 ## Id2,..........Ids is the list of identi�ers of all candidate visits and, thus, Id1 and Id2 are the identi�ersof the two visits into consideration.The total virtual interest of the visits in a day subtour may act as a cost function whichhas to be maximized. This is an option of the system which, with the overhead of amore heavy computation, results to \good" tours. The problem is that the randomnesswhich has been introduced in the selection of visits for stating the \su�ciently di�erenttours" requirement and the decomposition of the original TCP into smaller subproblems,do not lead necessarily to the N most interesting subtours. It may be the case that the176



one computed at the i-th iteration is less interesting than that of the (i+ 1)-th iteration.Thus, the optimization feature supported by MaTourA is oriented more to the assessmentof the technology rather than to the provision of a useful functionality for the end-user.The formulation of the problem, as it is presented in this paragraph, has been adopted aftera long way of experimentations and development of prototype versions. From the verybeginning of the design of MaTourA, the aim has been to couple the user appreciation,as far as the tour generation facility is concerned, with the required e�ciency. Manyattempts have been done with di�erent formulations in the direction of the exploitationof other facilities of the employed language platforms. Even the contigs/5 constrainthas been used, during the ElipSys era of MaTourA, but without having the expectedbene�ts. In order not to commit to a speci�c number of visits in a given time period,various formulations had been employed with the disadvantage of having a huge number ofdomain variables and constraints on them. For example, in such a formulation, the numberof the de�ned domain variables is proportional to the total tour time, in minutes. For theexample given in this chapter, this is something like 1000, while with the adopted approach,the number of introduced domain variables is proportional to the number of visits, i.e.around 10. This, in conjunction with the powerful constraint mechanism provided byECLiPSe has lead to signi�cant performance gains.6 ParallelizationAs far as parallelism is concerned, this facility has been exploited in various points of thesolution of the TCP. Since MaTourA is a new application, parallelism has been consideredfrom the beginning of the development and, thus, the well-known problems of parallelizingexisting sequential programs have not been faced.One major source of parallelism is related to the concept of subagents which have been im-plemented through the introduced generalized AND-parallelism (gAND-parallelism) con-struct (&/1). The gAND-parallelism is a variation of the normal AND-parallelism ofECLiPSe (&/2 predicate) which is based on a data-parallel like execution of more thantwo goals. These ideas have been applied successfully in two cases, where independentsubagents are employed:� Global tours, that is the required solutions, are computed by generating a set of sitesubtour subagents which work in parallel for the construction of subtours for eachsite. The subproblems that the subagents have to solve are not really independent,since the cost of the global tour, which is the sum of the costs of the subtours, hasto be less than a certain limit. However, these subproblems are made independentby distributing a priori the available budget to the sites proportionally to the timeperiods the tourist is going to stay at each site. Now, if N tours are required,each site subtour subagent is requested to compute N subtours for each site. Theactual number of computed subtours may be less than or equal to N for each site.Then, at a post-processing phase, an algorithm is applied, which constructsM globaltours, where M is the maximum number of subtours computed for a site by a sitesubtour subagent (M � N). This combination of subtours to construct tours iscomputationally cheap. 177



� A number of site subtours is computed by assigning to especially created for thisreason day subtour subagents, one for each day to be spent in the speci�c site, theconstruction of the same number of day subtours. That is, if N site subtours arerequired, each day subtour subagent is requested to create N day subtours. In thiscase also, it is not guaranteed that the day subtour subagents will be able to computeexactly N subtours each. The subproblems faced by the day subtour subagents arehighly interdependent, since it is not only the cost issue that has to be consideredagain, but it is not desirable to propose to the tourist to visit the same activitiesand events more than once. However, it has been decided to let the day subtoursubagents work independently in parallel and then, at a post-processing phase, takecare of these limitations for the construction of site subtours. In this phase, it is triedto combine day subtours for every day in a site which contain completely di�erentvisits, in order to formulate a site subtour. This is repeated until it is not possible tocreate a new site subtour. The number of site subtours that may be created cannotexceed the minimum number of day subtours that have been produced for everyday, which is, certainly, less than or equal to N . This post-processing phase maybe proved time consuming in some cases, but experiments have shown that, on theaverage, the adopted approach is relatively e�cient.There are two more points where exploitation of parallelism has been introduced andtested. One is the data-parallel processing of alternative DPTs for the construction of oneday subtour. The other is the data-parallel consideration of the three di�erent numbersof visits in one time period of a DPT (M , M + 1 or M � 1 of the previous paragraph).As a last comment on the parallelization issues, it has to be mentioned that it seemsthat the additional e�ort that someone has to put on the simultaneous consideration ofparallel execution when developing from scratch an ECLiPSe application is signi�cantlyless than the performance bene�ts obtained from using this facility. What is more is thatit is not always the case that di�cult debugging may be needed due to the introductionof parallelism. Actually, in the MaTourA case, parallelism helped to locate a serious\design" bug that existed in the employed communication framework for the support ofthe development of multi-agent systems.7 Performance Debugging and OptimizationThe MaTourA system, more precisely its TGA, has been evolving during the last twoyears continuously. While the prototype versions have employedmethods which have beenrather simplistic, the current state of the application is satisfactory, since the functionalityand performance targets have been achieved.The most serious and most pro�table sequential optimization that has been carried outsince the beginning of the development of the TGA has been the minimization of thecommunication transactions between this agent and the other MaTourA agents, i.e. theActivity, Event, Site, Transportation and Accommodation Agents. These transactionshave been proved very ine�cient and have been a real bottleneck of the TGA. For example,at the initial versions of the system, a highly declarative formulation of the TCP has led toan unnecessary multiplicity of the requests sent to the Activity and Event Agents, actually178



through backtracking. This, in conjunction with a trivially straightforward modelling ofthe involved constraint satisfaction problem, has given unacceptable performance resultseven with small subsets of the required raw data.Much of the e�ort to improve the sequential performance has been put on the investigationof the e�ciency of various formulations of the TCP. Many alternatives have been tested be-fore committing to the approach that has been �nally adopted. These alternatives includeuser-de�ned constraints, 0-1 formulations, disjunctive constraints, generalized propagationetc.As far as parallel optimizations are concerned, no much work has been done related to thistopic. The reason is that from the beginning of the design and the implementation, theparallel world has been the aimed execution environment and, thus, the whole developmenthas been carried out having this in mind. There have been done a few experiments relatedto whether parallelism might be pro�table in speci�c points of the adopted method, butthis cannot be considered as real work on what is called \parallel programming". Takinginto account the really good behavior of the TGA on parallel platforms, as it will be seenlater, the credit has to be given to the way the ECLiPSe language supports the conceptof parallelism.This paragraph concludes with some performance results for the TCP as it tackled bythe TGA of the MaTourA system. Two parallel platforms have been used, a Sun SparcServer 1000 at the University of Athens and an ICL DRS 6000 at ECRC. The results referto 14 representative non-optimization requests given to the TGA and the elapsed timescorrespond to the processing of the TCP. On the Sun platform, for each request, 4 runshave been measured with 1 worker and 12 runs with 2 workers. On the ICL platform,there have been measured 2 runs with 1 worker, 6 runs with 2 workers and 6 runs with 3workers, for each request as well.For each platform, the speedups S and the quasi standard deviations D are also given,as they are computed via the method proposed in [Pre94b], which is summarized in theformulas S = mnvuut nYi=1 mYj=1 T isT jpand D = evuuut nXi=1 mXj=1 1mn lnT isT jp !2 � 0@ nXi=1 mXj=1 1mnlnT isT jp 1A2The results are presented in the Tables 7.1, 7.2 and 7.3. As it may be seen, there arequite satisfactory speedups for most requests. This is true mainly for cases where thereis potential for exploitation of parallelism, which comes from large numbers of sites to bevisited, days to be spent at each site and alternative DPTs to be �lled for each day. Incase these characteristics are not met, e.g. in \req10" and \req13", the worker communi-cation overhead may result in no additional gain when increasing the number of workers(compare for \req10" and \req13" the speedups with 2 and 3 workers on the DRS 6000179



platform). However, for really computationally intensive requests, there may be consider-able exploitation of parallel machines.1 worker 2 workersreq01 6112 6491 3256 3235 3420 3760 3245 31595582 6013 3239 3294 3879 3589 3420 4098req02 2794 2805 2198 2294 2320 2328 2142 23232671 2945 2332 2194 3371 2389 2473 2227req03 2901 2802 1759 1812 1840 1807 1814 19812805 3311 2048 1882 1893 2360 1945 2072req04 4715 4632 3115 3122 3039 3210 2754 31154084 5062 3321 3202 2957 3457 2771 3252req05 18176 18453 11354 10891 11893 11756 10537 1182017247 18669 12677 11219 10581 11266 10590 11919req06 13730 13065 8837 9845 9568 9342 8934 971213013 13710 9485 6850 8489 9425 8615 8534req07 52357 51935 26489 28329 28976 29078 25858 3000650673 53418 29421 28495 27889 27963 27860 27603req08 3528 3619 2254 2376 2144 2474 2318 22263588 3935 2531 2145 2147 2361 2114 2140req09 5650 5489 2357 4784 2244 2343 2253 22375188 5900 2285 2177 2705 3943 2181 4211req10 6273 6353 3412 3450 4444 3475 3469 35306055 6815 3555 3557 3881 3891 3477 3363req11 16485 17126 10093 9371 9827 10339 9854 985816073 17122 10449 9239 10521 10203 9367 10306req12 17659 18316 9766 10118 11122 10346 10183 1000817223 19206 11008 10163 10499 11733 11145 10554req13 7351 7419 3765 3299 4135 4101 3651 36536482 7485 4213 3126 4503 4214 4032 3858req14 14058 15070 8058 8094 7785 8144 7371 771213886 15580 8590 8061 8185 8861 8062 9075Table 7.1: Elapsed times (ms) on a Sun Sparc Server 10008 ConclusionsIn this chapter, the computationally intensive problem, namely the TCP, faced by theTGA of the MaTourA system has been discussed and the way this problem has beentackled using the parallel CLP technology of ECLiPSe has been presented. It has beenproved that a parallel CLP environment may help to master combinatorial problems fromthe area of tourism. In addition, if this technology is combined with the structuringprinciple of the multi-agent systems, the \programming in the large" concept is supportedin an elegant, structured and e�cient way.180



1 worker 2 workers 3 workersreq01 20170 10820 9840 10070 10910 9130 1091020340 10950 10160 11460 11340 10220 9560req02 8910 6970 7190 7250 7570 7390 73508880 8620 8690 7540 7530 7430 7220req03 9350 6100 6040 6000 4150 4170 42109390 6040 6040 6040 4190 4170 4180req04 13410 9200 9140 9260 6730 6290 690013450 9220 9280 9220 6760 7290 7230req05 56290 38370 38500 37910 28100 27120 2432056550 38470 38560 38330 27430 28910 26500req06 44500 22500 22640 28530 22030 22310 2250044530 29680 30620 22600 23100 22840 22170req07 168290 92600 92350 86290 65330 63880 63930168500 90580 92850 92280 63860 64440 65620req08 11630 6790 6850 6910 5800 5780 620011640 6920 6950 6760 5970 5550 5260req09 17950 10120 10250 14650 5060 10400 850018060 11990 13750 10120 9890 5130 9960req10 14050 5740 5770 5770 11840 10280 1365013910 9800 11110 5790 11210 8640 8730req11 48550 28290 28920 29210 21320 22770 2379048500 29560 28370 28680 21460 22370 22700req12 63790 34740 34600 34130 26210 26820 2264063760 34360 35010 34540 27240 27190 27210req13 17710 11860 10880 10700 12030 11910 1143017770 12480 10080 9290 11250 10860 10590req14 44880 25670 27100 25180 21080 17480 1858045010 25730 25200 26550 20020 21880 19890Table 7.2: Elapsed times (ms) on an ICL DRS 6000The framework for cooperation among high-level agents that has been developed for theMaTourA paradigm is a general purpose one which, although it doesn't pro�t from par-allel CLP, may be considered as orthogonal to the latter. It has to be noted, though,that the lower level structuring technique of subagents is clearly based on parallel logicprogramming execution.As far as possible extensions of the present technology are concerned, perhaps, a moretransparent mechanism for interaction among agents, without explicit message passing,might be more friendly to the application developer. However, this is an issue that needscareful study of what is required and how it may be combined with a parallel CLP envi-ronment.Summarizing the history of the development of MaTourA, it has to be said that most ofthe e�ort has been put on the TGA, mainly on the modelling of the constraint satisfaction181



Sun machine ICL machineS2 D2 S2 D2 S3 D3req01 1.749 1.102 1.923 1.055 1.964 1.081req02 1.184 1.126 1.158 1.092 1.200 1.016req03 1.529 1.110 1.550 1.005 2.243 1.005req04 1.485 1.106 1.457 1.005 1.958 1.051req05 1.596 1.065 1.471 1.006 2.088 1.056req06 1.497 1.102 1.722 1.147 1.979 1.017req07 1.851 1.046 1.848 1.026 2.611 1.011req08 1.618 1.075 1.695 1.010 2.023 1.054req09 2.061 1.326 1.542 1.163 2.307 1.361req10 1.762 1.091 1.989 1.326 1.321 1.177req11 1.679 1.052 1.683 1.016 2.168 1.038req12 1.716 1.068 1.845 1.008 2.438 1.068req13 1.858 1.125 1.638 1.103 1.565 1.047req14 1.794 1.076 1.736 1.027 2.274 1.078Table 7.3: Speedups/DeviationsTCP. It is estimated that almost 40% of the total e�ort has been given to this issue. Lesstime, say 20% of the total, has been devoted to other issues, such as problem speci�cation,parallelization, performance debugging and optimization. The remaining 40% of the timehas been used for the design and development of the other agents and of the communicationframework for the support of the multi-agent systems.Finally, since sometimes portability is a desirable feature of a system, it should be men-tioned that porting MaTourA from one hardware platform to another (e.g. from Sun Sparcmachines under SunOS or Solaris to the ICL DRS 6000) has required absolutely no e�ort.Moreover, during the span of the APPLAUSE project, it has been required to port theapplication from ElipSys to ECLiPSe. This has been achieved with surprisingly minimume�ort.
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