Constraint Handling Rules*

Thom Fruhwirth

ECRC, Arabellastrasse 17, D-81925 Munich, Germany
email: thom@ecrc.de

Abstract. We are investigating the use of a class of logical formulas to de-
fine constraint theories and implement constraint solvers at the same time.
The representation of constraint evaluation in a declarative formalism greatly
facilitates the prototyping, extension, specialization and combination of con-
straint solvers. In our approach, constraint evaluation is specified using multi-
headed guarded clauses called constraint handling rules (CHRs). CHRs define
determinate conditional rewrite systems that express how conjunctions of
constraints propagate and simplify.

In this paper we concentrate on CHRs as an extension for constraint logic
programming languages. Into such languages, the CHRs can be tightly inte-
grated. They can make use of any hard-wired solvers already built into the
host language. Program clauses can be used to specify the non-deterministic
behavior of constraints, i.e. to introduce search by constraints. In this way
our approach merges the advantages of constraints (eager simplification by
CHRs) and predicates (lazy choices by clauses).

1 Introduction

The advent of constraints in logic programming is one of the rare cases where both
theoretical and practical aspects of a programming language have been improved.
Constraint logic programming [JaLa87, VH89, VHI1, F*92, JaMa94] combines the
advantages of logic programming and constraint handling. In logic programming,
problems are stated in a declarative way using rules to define relations (predicates).
Problems are solved by the built-in logic programming engine (LPE) using chrono-
logical backtrack search. In constraint solving, efficient special-purpose algorithms
are employed to solve sub-problems involving distinguished relations referred to as
constraints.

Constraint logic programming (CLP) can be characterized by the interaction of
a logic programming engine (LPE) with a constraint solver (CS). During program
execution, the LPE incrementally sends constraints to the CS. The CS tries to solve
the constraints. In the LPE the results from the CS cause a prior: pruning of branches
in the search tree spawned by the program. Unsatisfiability of the constraints means
failure of the current branch, and thus reduces the number of possible branches, i.e.
choices, to be explored via backtracking.

A practical problem remains: Constraint solving is usually ‘hard-wired’ in a built-
in constraint solver written in a low-level language. While efficient, this approach

* Part of this work is supported by ESPRIT Project 5291 CHIC. This paper is a revised
version of the technical report [Fru92].



makes it hard to modify a CS or build a CS over a new domain, let alone reason about
it. As the behavior of the CS can neither be inspected by the user nor explained by
the computer, debugging of real life constraint logic programs is hard. It has been
demanded for a long time that “constraint solvers must be completely changeable
by users” (p. 276 in [CAL8S]). The lack of declarativeness and flexibility becomes a
major obstacle if one wants to

— build a new CS,

extend the CS with new constraints,

— specialize the CS for a particular application,
— combine constraint solvers.

Our proposal to overcome this problem 1s a high-level language especially de-
signed for writing constraint solvers, called constraint handling rules (CHRs) [Fru92,
Fru93a, Fru93b, Fru94, B*94, FrHa95]. With CHRs, one can introduce user-defined
constraints into a given high-level host language. In this extended abstract the host
language is Prolog, a CLP language with equality over Herbrand terms as the only
built-in constraint. We claim that using our logic based language allows for reasoning
about, inspection and modification of a CS.

CHRs define stmplification of and propagation over user-defined constraints. Sim-
plification replaces constraints by simpler constraints while preserving logical equiv-
alence, e.g.

>Y,¥>X <=> false.

Propagation adds new constraints which are logically redundant but may cause
further simplification, e.g.

Y, Y>Z ==> X>Z.

When repeatedly applied by a constraint handling engine (CHE) the constraints are
incrementally solved as in a CS, e.g.

A>B,B>C,C>A results in false.

CHIP was the first CLP language to introduce constructs (demons, forward rules,
conditionals) [VH89] for user-defined constraint handling (like constraint solving,
simplification, propagation). These various constructs have been generalized into
CHRs. CHRs are based on guarded rules, as can be found in concurrent logic pro-
gramming languages [Sha89], in the Swedish branch of the Andorra family [HaJa90],
Saraswats cc-framework of concurrent constraint programming [Sar93], and in the
‘Guarded Rules’ of [Smo91]. However all these languages (except CHIP) lack features
essential to define non-trivial constraint handling, namely for handling conjunctions
of constraints and defining constraint propagation. CHRs provide these two features
using multi-headed rules and propagation rules.

In the next section, we introduce constraint handling rules by example. Then we
give the syntax, semantics and describe an implementation of CHRs. In section 4,
we give extensive examples of the use of CHRs for writing constraint solvers. Last
but not least we discuss related work in more detail.



2 CHRs by Example

We define a user-defined constraint for less-than-or-equal, =<. In Prolog, the built-in
predicate =< can only be evaluated if the arguments are known, while the user-defined
constraint =< will also handle variable arguments.

% Constraint Declaration
(1a) constraints =</2.
(1b) label with X=<Y if ground(X).
(1b) label with X=<Y if ground(Y).

% Constraint Labeling
(2a) X=<Y :- leq(X,Y).
(2b) leq(0,Y).
(2¢c) leq(s(X),s(Y)) :- leq(X,Y).

% Constraint Handling
(3a) X=<Y <=> X=Y | true. % reflexivity
(3b) X=<Y,Y¥=<X <=> X=Y. ¥% identity
(3c) X=<Y,Y=<Z ==> X=<Z. % transitivity

The CHRs of (3) specify how =< simplifies and propagates as a constraint. They
implement reflexivity, identity and transitivity in a straightforward way. CHR (3a)
states that X=<X is logically true. Hence, whenever we see the constraint X=<X we
can simplify it to true. Similarly, CHR (3b) means that if we find X=<Y as well as
X=<Y in the current constraint, we can replace it by the logically equivalent X=Y.
CHRs (3a) and (3b) are called simplification CHRs. CHR (3a) detects satisfiability of
a constraint, and CHR (3b) solves a conjunction of constraints returning an equality
constraint. CHR (3c) states that the conjunction X=<Y,Y¥=<Z implies X=<Z. Opera-
tionally, we add logical consequences as a redundant constraint. This kind of CHR
is called propagation CHR.

Redundancy produced by propagation CHRs is useful, as the following exam-
ple shows. Given the query A=<B,C=<A,B=<C. The first two constraints cause CHR
(3c) to fire and add C=<B to the constraint goal. This new constraint together with
B=<C matches the head of CHR (3b). So the two constraints are replaced by B=C.
The equality is applied to the rest of the constraint goal, A=<B,C=<A4, resulting in
A=<B,B=<4A where B=C. CHR (3b) applies, resulting in A=B. The constraint goal con-
tains no more inequalities, the simplification stops. The constraint solver we built
has solved A=<B,C=<A,B=<C and produced the answer A=B,B=C:

:— A=<B,C=<A,B=<C.

% C=<A,A=<B propagates C=<B by 3c.

% C=<B,B=<C simplifies to B=C by 3b.

% B=<A,A=<B simplifies to A=B by 3b.
A=B,B=C.

Note that CHRs (3b) and (3¢) have multiple head atoms, a feature that is essential



in solving conjunctions of constraints. With single-headed CHRs alone, unsatisfia-
bility of a conjunction of constraints (e.g. A<B,B<A) could never be detected and
global constraint satisfaction (e.g. A=<B,C=<4,C=<B reduces to 4=B,A=C) could not
be achieved.

If no simplification and propagation is possible anymore, a constraint is chosen
for automatic labeling. The labeling declaration (1b) and (1c) state that we may
label using X=<Y if either X or Y are ground. Labeling is performed by using the
CLP clauses of the constraint as labeling routine. In clause (2a), labeling using =<
relies on a predicate leq which is defined by the two CLP clauses (2b) and (2c).
For example, the query 4=<A,A=<3 propagates 4=<3 by CHR (3c). Then no more
simplification is possible. 4=<3 is a constraint available for labeling. Executing its
labeling routine produces a failure and so we know that 4=<A, A=<3 is unsatisfiable.
A similar example is:

:— s(s(0))=<4a,a=<s(s(s(0))).
% s(s(0))=<A,A=<s(s(s(0))) propagates s(s(0))=<s(s(s(0))).
% Labeling using s(s(0))=<s(s(s(0))) succeeds.
% Labeling using s(s(0))=<A succeeds with A=s(s(X)).
% Labeling using A=<s(s(s(0))) succeeds with X=0.
A=s(s(0)).
% On backtracking A=<s(s(s(0))) succeeds with X=s(0).
A=s(s(s(0))).
% On backtracking A=<s(s(s(0))) fails.
false.

When CHRs are integrated into a logic programming language, we can regard any
predicate as a labeling routine of a constraint and add some CHRs for it. Seen this
way, CHRs are lemmas that allow us to express the determinate information con-
tained in a predicate. As a result, predicates and constraints are just alternate views.
CHRs define “shortcuts” which allow us to arrive at an answer without backtrack-
ing and quicker than by executing the predicate. To see the power of such lemmas
consider

append(X, [1,L) <=> X=L,list(L).

A recursion on the list X in the usual definition of append is replaced by a simple
unification X=L and a type check 1ist(L).

3 Syntax, Semantics and Implementation

In this paper we assume that constraint handling rules extend a given constraint logic
programming language. The syntax and semantics given here reflect this choice. It
should be stressed, however, that the host language for CHRs need not be a CLP
language. Indeed, work has been done at DFKI in the context of LISP [Her93]. This
section follows [FrHa95].



3.1 Syntax

A CLP+CH program is a finite set of clauses from the CLP language and from
the language of CHRs. Clauses are built from atoms of the form p(t1,...t,) where
p is a predicate symbol of arity n (n > 0) and #;,...t, is a n-tuple of terms. A
term is a variable, e.g. X, or of the form f(t1,...t,) where f is a function symbol
of arity n (n > 0) applied to a n-tuple of terms. Function symbols of arity 0 are
also called constants. Predicate and function symbols start with lowercase letters
while variables start with uppercase letters. Infix notation may be used for specific
predicate symbols (e.g. X = V) and functions symbols (e.g. —X + Y). There are
two classes of distinguished atoms, built-in constraints and user-defined constraints.
In most CLP languages there is a built-in constraint for syntactic equality over
Herbrand terms, =, performing unification. The built-in constraint true, which is
always satisfied, can be seen as an abbreviation for 1=1. false (short for 1=2) is the
built-in constraint representing inconsistency.
A CLP clause 1s of the form

H:-By,...B,. (n>0)

where the head H is an atom but not a built-in constraint, the body Bi,...B, is a

conjunction of literals called goals. The empty body (n = 0) of a CLP clause may

be denoted by the built-in constraint true. A queryis a CLP clause without head.
There are two kinds of CHRs?. A simplification CHR is of the form

Hy,...H;<=>G4,...G; | By,...Bys.

A propagation CHR is of the form
Hy,...H;==>G1,...G; | B1,...Bys.

A labeling declaration for a user-defined constraint H is of the form
label_with H if G1,...Gj

where (¢ > 0,5 > 0,k > 0) and the multi-head Hy,...H; is a conjunction of user-
defined constraints and the guard G4, .. .G is a conjunction of literals which neither
are, nor depend on, user-defined constraints.

3.2 Declarative Semantics

Declaratively, CLP programs are interpreted as formulas in first order logic. Ex-

tending a CLP language with CHRs preserves its declarative semantics. A CLP+CH

program P 1s a conjunction of universally quantified clauses. A predicate definition

for p is the set of all clauses in a program with the same predicate p in the head.
A CLP clause is an implication

H« DB N...B),.

2 A third, hybrid kind as well as options and more declarations are described in [B*94].



Since we assume that a predicate definition defines a predicate completely, we
strengthen the above using Clark’s completion. Let Hi:- Bi1,...Bp1,..., Hs -
Bis,...Bns, (1 < s) be the clauses of the predicate definition for p. Then their
logical reading is:

HH(HIHl/\Bll/\Bnl)\/\/(HIHS/\Bls/\an)

H is of the form p(X1, ..., X,) where X;,..., X, are different variables.
A simplification CHR is a logical equivalence provided the guard is true in the
current context

(Gl/\...Gj)—> (Hl/\...HZ'HBl/\...Bk).
A propagation CHR is an implication provided the guard is true
(Gl/\...Gj)—> (Hl/\...HZ'—>Bl/\...Bk).

Procedurally, a CHR can fire if its guard allows it. A firing simplification CHR
replaces the head constraint by the body, a firing propagation CHR adds the body
to the head constraints.

3.3 Operational Semantics

The operational semantics of CLP+CH can be described by a transition system.
A computation state is a tuple

< Gs,Cy,Cp >,

where G's 1s a set of goals, Cy and Cp are constraint stores for user-defined and
built-in constraints respectively. A constraint store is a set of constraints. A set of
atoms represents a conjunction of atoms.

The wnitial state consists of a query G's and empty constraint stores,

< Gs, {4 {}>.

A final state is either failed (due to an inconsistent built-in constraint store repre-
sented by the unsatisfiable constraint false),

< Gs,Cy,{false} >,
or successful (no goals left to solve),
< {}, CU, Cp >.

The union of the constraint stores in a successful final state is called conditional
answer for the query Gs, written answer(G's).

The built-in constraint solver (CS) works on built-in constraints in Cp and Gs,
the user-defined CS on user-defined constraints in Cyy and G's using CHRs, and the
logic programming engine (LPE) on goals in GGs and Cy using CLP clauses. The
following computation steps are possible to get from one computation state to the
next.



Solve
< {C}UGS,CU,CB > — < GS,CU,CJ/B >
if (C'ACp) HCJ/B

The built-in CS updates the constraint store C'g if a new constraint C' was found in
('s. To update the constraint store means to produce a new constraint store C'’p that
is logically equivalent to the conjunction of the new constraint and the old constraint
store.

We will write H =;.+ H’ to denote equality between the sets H and H’, i.e.
H = {Ay,..., Ay} and there is a permutation of H', perm(H') = {By,..., Bp},
such that A; = B; forall 1 <i <n.

Introduce

<{H}UGs,Cy,Cp > — < Gs,{H}UCy,Cp >

if H 1s a user-defined constraint

Simplify

<Gs,HUCy,Cg > — <GsUB,Cy,Cp >

if (H<=>G|B)€&€PandCp — (H =set H') A answer(G)
Propagate

<Gs,HUCy,Cg > — <GsUB H UCy,Cp >

if (H==>G|B)€&€PandCp — (H =et H') A answer(G)

The constraint handling engine (CHE) applies CHRs to user-defined constraints in G's
and Cy whenever all user-defined constraints needed in the multi-head are present
and the guard is satisfied. A guard G is satisfied if its local execution does not involve
user-defined constraints and the result answer(G) is entailed (implied) by the built-
in constraint store C'g. Equality is entailed between two terms if they match. To
introduce a user-defined constraint means to take it from the goal literals G's and
put it into the user-defined constraint store Cyr. To semplify user-defined constraints
H'’ means to replace them by B if H’ matches the head H of a simplification CHR H
<=> (G | B and the guard G issatisfied. To propagate from user-defined constraints
H’ means to add B to Gs if H' matches the head H of a propagation CHR H ==>
G | B and G is satisfied.

Unfold
<{H'}UGs,Cy,Cp > — <GsUB,Cy,{H=H'} U Cp >
if (H :- B) € P.

The logic programming engine (LPE) unfolds goals in G's. To unfold an atomic goal
H' means to look for a clause H: — B and to replace the H' by (H = H') and B. As
there are usually several clauses for a goal, unfolding is nondeterministic and thus a
goal can be solved in different ways using different clauses. There can be CLP clauses
for user-defined constraints. Thus they can be unfolded as well. This unfolding is
called (built-in) labeling. Details can be found in [B*94].

Label
<Gs,{H'}UCy,Cp > — <GsUB,Cy,{H=H'} U Cp >
if (H := B) € P and (label_with " if G)¢ P and Cp — (H' = H") A

answer(()



Note that any constraint solver written with CHRs will be determinate, incremen-
tal and concurrent. By “determinate” we mean that the user-defined CS commits
to every constraint simplification it makes. Otherwise we would not gain anything,
as the CS would have to backtrack to undo choices like in a Prolog program. By
“incremental” we mean that constraints can be added to the constraint store one at
a time using the “introduce”-transition. Then CHRs may fire and simplify the user-
defined constraint store. The rules can be applied concurrently, even using chaotic
iteration (i.e. the same constraint can be simplified by different rules at the same
time), because logically correct CHRs can only replace constraints by equivalent ones
or add redundant constraints.

3.4 Implementation

The operational semantics are still far from the actual workings of an efficient imple-
mentation. At the moment, there exist two implementations, one prototype in LISP
[Her93], and one fully developed compiler in a Prolog extension.

The compiler for CHRs together with a manual is available as a library of ECLiPSe
[B*94], ECRC’s advanced constraint logic programming platform, utilizing its delay-
mechanism and built-in meta-predicates to create, inspect and manipulate delayed
goals. All ECLiPSe documentation is available by anonymous ftp from ftp.ecrc.de,
directory /pub/eclipse/doc. In such a sequential implementation, the transitions are
tried in the textual order given before. To reflect the complexity of a program in the
number of CHRs, at most two head constraints are allowed in a rule. A rule with
more head constraints can be rewritten into several two-headed rules. This restric-
tion also makes complexity for search of the head constraints of a CHR linear in the
number of constraints on average (quadratic in the worst case) by using partitioning
and indexing methods. Termination of a propagation CHR is achieved by never firing
it a second time with the same pair of head constraints.

The CHRs library includes a debugger and a visual tracing toolkit as well as
a full color demo using geometric constraints in a real-life application for wireless
telecommunication. About 20 constraint solvers currently come with the release - for
booleans, finite domains (similar to CHIP [VH89]), also over arbitrary ground terms,
reals and pairs, incremental path consistency, temporal reasoning (quantitative and
qualitative constraints over time points and intervals [Fru94]), for solving linear
polynomials over the reals (similar to CLP(R) [J*92]) and rationals, for lists, sets,
trees, terms and last but not least for terminological reasoning [FrHa95]. The average
number of rules in a constraint solver is as low as 24. Typically it took only a
few days to produce a reasonable prototype solver, since the usual formalisms to
describe a constraint theory, i.e. inference rules, rewrite rules, sequents, first-order
axioms, can be expressed as CHRs programs in a straightforward way. Thus one
can directly express how constraints simplify and propagate without worrying about
implementation details. Starting from this executable specification, the rules then
can be refined and adapted to the specifics of the application.

On a wide range of solvers and examples, the run-time penalty for our declar-
ative and high-level approach turned out to be a constant factor in comparison to
dedicated built-in solvers (if available). Moreover, the slow-down is often within an
order of magnitude. On some examples (e.g. those involving finite domains with the



element-constraint), our approach is faster, since we can exactly define the amount
of constraint simplification and propagation that is needed. This means that for
performance and simplicity the solver can be kept as incomplete as the application
allows it. Some solvers (e.g. disjunctive geometric constraints in the phone demo)
would be very hard to recast in existing CLP languages.

4 Examples

4.1 Booleans

This example is taken from [F*92]. In the domain of boolean constraints, the behavior
of an and-gate may be informally described by rules such as

— If one input is 0 then the output is 0,
— If the output is 1 then both inputs are 1.

We can define the and-gate with constraint handling rules as:

and(X,Y,Z) <=> X=0 | Z=0.
and(X,Y,Z) <=> Y=0 | Z=0.
and(X,Y,2) <=> X=1 | Y=Z.
and(X,Y,Z) <=> Y=1 | X=Z.
and(X,Y,2) <=> Z=1 | X=1,Y=1.
and(X,Y,Z1),and(X,Y,Z2) ==> Z1=72.

The first rule says that the constraint goal and(X,Y,Z), when it is known that
the first input argument X is 0, can be reduced to asserting that the output Z must
be 0. Hence the query and(X,Y,Z),X=0 will result in X=0, Z=0. The last rule says
that if a goal contains both and(X,Y,Z1) and and(X,Y,Z2) then a consequence is
that Z1 and Z2 must be the same.

Consider the following predicate from the well-known full-adder circuit:

add(I1,12,13,01,02):-
xor(I1,I2,X1),
and(I1,I2,A1),
xor(X1,I3,01),
and(I3,X1,A2),
or(A1,A2,02).

The query add(I1,I12,0,01,1) will produce I1=1,I2=1,01=0. The computation
proceeds as follows: Because I3=0, the output A2 of the and-gate with input I3 must
be 0. As 02=1 and A2=0, the other input A1l of the or-gate must be 1. Because A1
is also the output of an and-gate, its inputs I1 and I2 must be both 1. Hence the
output X1 of the first xor-gate must be 0, and therefore also the output 01 of the
second xor-gate must be 0.



4.2 Maximum

We extend our solver for the inequality =< with a user-defined constraint over num-
bers, max(X,Y,Z), which holds if Z is the maximum of X and Y.

label with max(X,Y,Z) if ground(X),ground(Y).
max(X,Y,Y):- X=<Y.
max(X,Y,X):- Y=<X.

max(X,X,Z) <=> X=Z.

max(X,Y,X) <=> Y=<X.

max(X,Y,Y) <=> X=<Y.

max(X,Y,Z),X=<Y <=> Y=Z,6X=<Y.

max(X,Y,Z),Y=<X <=> X=Z,Y=<X.

max(X,Y,Z) ==> X=<Z,Y=<Z. % invariant and approximation
max(X,Y,Z1) ,max(X,Y,Z2) ==> Z1=Z2. % functional dependency

In the query max(A,B,C), max(A,C,D), the first constraint propagates A=<C,
B=<C. The constraints A=<C, max(A,C,D) are simplified into C=D, A=<C. The new
constraint goal is max(A,B,C), B=<C, C=D, A=<C. At this point, no more applica-
tion of CHRs is possible. There is also no constraint that could be labeled. There-
fore the conditional answer to our query max(A,B,C), max(A,C,D) ismax(4A,B,C),
B=<C, C=D, A=<C.

Let < be a built-in constraint, i.e. there is a built-in CS for inequalities (the
user-defined constraint =< is no longer needed). Then we can replace the CHR

max(X,Y,Z),X=<Y <=> Y=Z,X=<Y
by
max(X,Y,Z) <=> X<Y | Y=Z.

As a consequence, the first CHR becomes obsolete, as the built-in constraint X<Y
in the guard naturally covers the case when X=Y. Contrast this with the user-defined
constraint =< in the head of the original CHR that clearly cannot match =. Now max

can be defined by CHRs as follows.

max(X,Y,Z) <=> X<Y | Y=Z.
max(X,Y,Z) <=> Y<X | X=Z.
max(X,Y,X) <=> Y<X.

max(X,Y,Y) <=> X<Y.

max(X,Y,Z2) ==> X<Z,Y<Z.
max(X,Y,Z1) ,max(X,Y,Z2) ==> Z1=Z2.

However, the CS for max is not complete, i.e. there are satisfiable or (worse) un-
satisfiable constraint goals which are neither simplifiable nor available for labeling.



For example, the query max(X,7,9) results in max(X,7,9),X<9, but it is not re-
duced to X=9. In practice, a CS is often not complete for efficiency reasons [JaMa94].
If the application requires it, we can always add CHRs to cover the incomplete cases
or modify the labeling declaration, while built-in constraint solvers cannot be as
easily adopted. In our example, new CHRs of the form

max(X,Y,Z) <=> Y<Z | X=Z.
or an extended labeling declaration

label with max(X,Y,Z) if ground(X),ground(Y).
label with max(X,Y,Z) if ground(X),ground(Z).
label with max(X,Y,Z) if ground(Y),ground(Z).

will help.

4.3 Temporal Time Point Constraints

In order to define a constraint solver for temporal constraints over time points we
exploit the natural relationship of these constraints with ordering constraints in
general. Therefore, we can start from the constraint solver for the less-than-or-equal
constraint =<. We extend the inequality to the form X+N=<Y, where N is a given
positive number, meaning that the distance in time of the two time points X and Y
is at least N.

label with XN =< Y if ground(XN),ground(Y).
XN=<Y :- XN < Y.

X+N=<X <=> N=0.

X+N=<Y,X+M=<Y <=> NM is max(N,M) | X+NM=<Y.
X+N=<Y,Y+M=<X <=> N = 0, M = 0, X = Y.
X+N=<Y,Y+M=<Z ==> NM is N+M | X+NM=<Z.

In the labeling declaration the extension in syntax is reflected by requiring the
first argument to be ground, such that X+N can be evaluated. The four CHRs are
straightforward extensions of the ones for the simple inequality. Some auxiliary arith-
metic computations with is are added to compute the distances for the resulting
inequalities in the body. It 1s assumed that is delays if its right-hand side is not
ground.

If we allow for negative N we can express maximal distances as well. The set of
CHRs however will be non-terminating. There is no termination order, because there
is no bound anymore on the minimal or maximal distances that could be computed.
The termination problem is solved by introducing a new constraint =<* which stands
for derived inequalities (resulting from simplification and propagation) as opposed
to the initial ones written with =<.

label with XN =< Y if ground(XN),ground(Y).



XN=<Y :- XN < Y.

label with XN =<* Y if ground(XN),ground(Y).
XN=<*Y :- XN < Y.

X+N=<Y ==> X+N=<*Y.

X+N=<*X <=> N=<O0.

X+N=<#Y, X+M=<*Y <=> NM is max(N,M) | X+NM=<#*Y.
X+N=<*Y,Y+M=<*X <=> N=0,M=0 | X = Y.
X+N=<#Y,Y+M=< Z ==> NM is N+M | X+NM=<*Z.

The derived inequality constraint of course has the same labeling declaration
and predicate specification as the original inequality. The original CHRs are turned
into CHRs for the derived inequality. However, there is one exception, which is the
crucial detail causing termination. In the last CHR performing transitive closure,
one constraint must be not a derived but an original constraint. This also eliminates
redundant inequalities that have been produced by the transitive closure before.
To get the simplifications started, we have to give some initial derived constraints.
This is done by the first CHR, which produces a derived inequality for each initial
inequality.

In temporal reasoning applications, usually both minimal and maximal distance
of two time points are given. Hence it is a good 1dea to merge the two constraints
X+N=<Y,Y+M=<X (N positive and M negative) into a single constraint N=<Y-X=<(-M)
(by abuse of the relational notation), where Y is the starting point and X is the end
point of the interval Y-X. This is exactly the notation and meaning used in [DMP91].

label with X =< Y =< Z if ground(X),ground(Y),ground(Y).
X=<Y¥=<2Z:-X<Y7Y,Y<2Z.

label with X =<* Y =<* Z if ground(X),ground(Y),ground(Y).
X =<+ Y =<+x2:-X <Y, Y< Z.

A=<¥X-Y=<B ==> A=<*X-Y=<%¥B.

A=<#X-X=<*B <=> A=<0=<B.
A=<*X-Y=<#B <=> A=0,B=0 | X = Y.
A=<*#X-Y=<*B,C=<*X-Y=<*D <=>

AC is max(A,C), BD is min(B,D) | AC=<*X-Y=<*BD.
A=<*X-Y=<*B,C=< Y-Z=< D ==> AC is A+C, BD is B+D | AC=<*X-Z=<*BD.
A=<*X-Y=<*B,C=< Z-Y=< D ==> AC is A-D, BD is B-C | AC=<*X-Z=<*BD.

Above, the CHRs have been extended correspondingly. The only interesting thing
to note is that the last CHR about transitivity had to be split into two cases. The
reason 1s that we rewrote X+N=<Y, Y+M=<X into N=<Y-X=<(-M) only, but not into



M=<X-Y=<(-N), as the second formulation would have caused redundant computa-
tions for all CHRs except the one for transitivity.

The above CHRs will produce derived inequality constraints for every pair of time
points (provided they are connected). Again this means redundant information and
hence redundant computation, as we can compute all relations when knowing the
distances from one given reference point to all other time points. We will specify the
reference point X with a dummy constraint start (X). For this optimization only the
first CHR has to be restricted from

A=<X-Y=<B ==> A=<#*X-Y=<x%B.
to
A=<X-Y=<B,start(X) ==> A=<*X-Y=<*B.

The resulting set of CHRs defines and implements a specialized constraint solver
for temporal constraints on time points. Its behaviour has been tailored to temporal
constraints starting from inequality constraints. Further optimizations are possible,
for example using a dynamic shortest-path algorithm. If further speed-up 1s needed,
once the prototype has been established and “tuned” as required, it can be reworked
in a low-level language. For more on temporal reasoning with constraints, see [Fru94].

5 Reasoning

When seen as logical formulae, the logical correctness of CHRs with respect to a
constraint theory can be established by using techniques from automated theorem
proving. It is also useful to view CHRs as conditional rewrite systems. In this way
we can establish that they are canonical, i.e. terminating and confluent by adopting
well-known techniques such as termination proofs and unfailing completion. If we
can prove a set of CHRs both canonical and correct we can be sure that the CHRs
indeed implement a “well-behaved” constraint solver.

Briefly, termination [Der87] is proved by giving an ordering on atoms showing
that the body of a rule is always smaller than the head of the rule. Such an ordering
in addition introduces an intuitive notion of a “simpler” constraint, so that we
also support the intuition that constraints get indeed simplified. When combining
constraint solvers that share constraints, nonterminating simplification steps may
arise even if each solver is terminating. E.g. one solver defines less-than in terms of
greater-than and the other defines greater-than in terms of less-than.

The notion of confluence [Kir89] is important for combining constraint solvers
as well as for concurrent applications of CHRs. Concurrent CHRs are not applied in
a fixed order. As correct CHRs are logical consequences of the program, any result
of a simplification or propagation step will have the same meaning, however it is
not guaranteed anymore that the result is syntactically the same. In particular, a
solver may be complete with one order of applications but incomplete with another
one. Syntactically different constraint evaluations may also arise if combined solvers
share constraints, depending on which solver comes first.



A set of CHRs is confluent, if each possible order of applications starting from any
constraint goal leads to the same resulting constraint goal. A set of CHRs is locally
confluent if any two constraint goals resulting from one application of a CHR to
the initial constraint goal can be simplified into the same constraint goal. It is well-
known from rewrite systems that local confluence and termination imply confluence.
Furthermore, in a confluent set of CHRs, any constraint goal has a unique normal
form, provided it exists. This means that the answer to a query will always be the

most simple one?.

6 Related Work

6.1 Constraint Logic Programming Languages

In the constraint logic programming CHIP [VH89], the general technique of prop-
agation is employed over finite domains. The idea is to prune large search trees by
enforcing local consistency of built-in and user-defined constraints. These techniques
are orthogonal to our approach and thus can be integrated. Demons are essentially
single-headed simplification CHRs without guards. However, labeling routines for a
constraint are not possible. One version of CHIP also included forward rules [Gr89],
which correspond to CHRs without guards. In practice, demons and forward rules
have been proven useful in CHIP applications in the boolean domain for circuit
design and verification. Their potential to define constraint solvers in general was
not realised, maybe because of their limitations. [Gr89] also gives a detailed account
of the semantics of forward rules and therefore CHRs without guards. In this sense,
CHRs can be seen as an extension of the work on demons and forward rules in CHIP.

6.2 Combined and Extended Languages

In the following we relate our approach to other work on combining deterministic
and nondeterministic computations into one logic programming language.

Amalgamating pure Prolog with single headed simplification CHRs results in
a language of the family cc(}, —,=)?* of the cc framework proposed by Saraswat
[Sar89, Sar93]. A close study of [Sar89] reveals that he proposes a special Tell oper-
ation called “inform” that could be used to simulate propagation CHRs. CHRs nat-
urally fit the ask-and-tell interpretation of constraint logic programming introduced
by Saraswat and applied by [VH91]. The constraint goal is viewed as constraint store
for user-defined constraints. They are matched by the heads of CHRs and the guards
ask if certain constraints hold in the built-in constraint store.

Guarded Rules [Smo91] correspond to single headed simplification CHRs. How-
ever, they are only used as “shortcuts” (lemmas) for predicates, not as definitions for
user-written constraints. There are only built-in constraints. Interestingly, Smolka
defines the built-in constraint system as a terminating and determinate reduction
system. Hence it could be implemented by simplification CHRs.

% It can, however, contain redundant constraints and introduce new variables.

* | means Ask in addition Tell is supported, — is the commit operator for don’t care
nondeterminism used and = is the commit operator for don’t know nondeterminism
able to describe pure Prolog.



The Andorra Model of D.H.D. Warren for parallel computation has inspired a
rapid development of numerous languages and language schemes. The Andorra Ker-
nel Language (AKL) [JaHa91] is a guarded language with built-in constraints based
on an instance of the Kernel Andorra Prolog control framework. AKL combines don’t
care nondeterminism and don’t know nondeterministism with the help of different
guard operators. There are three kinds of guard operators, namely cut, commit and
wait. In our approach, a logic programming language amalgamated with CHRs in-
herits the the commit operator of the CHRs as well as the guard operators of the host
language (e.g. cut in the case of Prolog). Like most logic programming languages,
AKL itself does not support two of the essential features for defining simplification
of user-defined constraints: propagation rules and multiple head atoms.

6.3 Multiple Head Atoms

According to [Coh88] at the very beginning of the development of Prolog in the early
70’s by Colmerauer and Kowalski, experiments were performed with clauses having
multiple head atoms. More recently, clauses with multiple head atoms were proposed
to model parallelism and distributed processing as well as objects, e.g. [AnPa90].
The similarity with CHRs is merely syntactical. Rules about distribution or objects
cannot be regarded as specifying constraint handling. These rules are supposed to
model the distribution and change of objects, while CHRs model equivalence and
implication of constraints.

In committed choice languages, multiple head atoms have been considered only
rarely. In his thesis, Saraswat remarks on multiple head atoms that “the notion seems
to be very powerful” and that “extensive further investigations seems warranted”
([Sar89], p. 314). He motivates so-called joint reductions of multiple atoms as analo-
gous to production rules of expert system languages like OPS5. The examples given
suggest the use of joint reductions to model objects in a spirit similar to what is
worked out in [AnPa90].

Multi-headed simplification CHRs are sufficient to simulate the parallel machine
for multiset transformation proposed in [BCL88]. This machine is based on the chem-
ical reaction metaphor as means to describe highly parallel computations for a wide
spectrum of applications. Following [BCL88], we can implement the sieve of Eratos-
thenes to compute primes simply as:

primes(1l) <=> true.

primes(N) <=> N>1 | M is N-1, prime(N),primes(ll).

prime(I),prime(J) <=> 0 is J mod I | prime(I). % J is multiple of I
The answer to the query primes(n) will be a conjunction of prime(p;) where each
pi is a prime (2 < p; < n).

7 Conclusions

Constraint handling rules (CHRs) are a language extension for writing user-defined
constraints. Basically, CHRs are multi-headed guarded clauses. CHRs support rapid



prototyping of built-in constraint solvers by providing executable specifications and
implementations. They support specialization, modification and combination of con-
straint solvers.

By amalgamating a logic programming language with CHRs, a flexible, exten-
sible constraint logic programming language results. It merges the advantages of
constraints (simplification via CHRs) and predicates (choices via definite clauses).
The result 1s a tight integration of the logic programming component and user-
defined constraint solvers. In this way, a logical reconstruction for constraint solving
in logic programming is achieved.

CHRs have been implemented as a library of ECLiPSe, ECRC’s constraint logic
programming platform and as a prototype in LISP at DFKI, Germany. CHRs have
been used to encode a wide range of constraint solvers, including new domains
such as terminological and temporal reasoning. Although intended as a language for
constraint simplification, CHRs could also serve as a powerful programming language
on their own.

We believe that our approach has the potential to provide a comprehensive frame-
work for constraints, because CHRs make it possible

— to add constraint solvers for any required domain of computation.
to build and costumize constraint solvers for particular applications.

to generate constraint solvers semi-automatically from constraint theories.
to debug constraint systems.

Acknowledgements

Pascal Brisset implemented the CHRs library of ECliPSe. Thanks to Alex, Jesper,
Mark, Thierry and Volker, my colleagues at ECRC, who discussed these ideas with
me. Thanks to Francesca Rossi and Gert Smolka as well as anonymous referees; who
commented in detail on this paper in its various technical report versions.

References

[AnPa90] Andreoli J.-M. and Pareschi R., Linear Objects: Logical Processes with Built-In
Inheritance, Seventh Intl Conf on Logic Programming MIT Press 1990, pp. 495-510.

[B*94] P. Brisset et al., ECLiPSe 3.4 Extensions User Manual, ECRC Munich, Germany,
July 1994.

[BCL88] Banatre J.-P., Coutant A. and Le Metayer D.; A Parallel Machine for Multiset
Transformation and its Programming Style, Future Generation Computer Systems
4:133-144, 1988.

[CALS8] Aiba A. et al, Constraint Logic Programming Language CAL, Int Conf on Fifth
Generation Computer Systems, 1988, Ohmsha Publishers, Tokyo, pp. 263-276.

[Coh88] J. Cohen, A View of the Origins and Development of Prolog, CACM 31(1):26-36,
Jan. 1988.

[DMP91] R. Dechter, I. Meiri and J. Pearl, Temporal Constraint Networks, Journal of
Artificial Intelligence 49:61-95, 1991.

[Der87] N. Dershowitz, Termination of Rewriting, Journal of Symbolic Computation,
3(142):69-116, 1987.



[Fru92] T. Friuhwirth, Constraint Simplification Rules, Technical Report ECRC-92-18,
ECRC Munich, Germany, July 1992 (revised version of Internal Report ECRC-
LP-63, October 1991), available by anonymous ftp from ftp.ecrc.de, directory
pub/ECRC_tech_reports/reports, file ECRC-92-18.ps.Z,

[F*92] T. Fruhwirth, A. Herold, V. Kiichenhoff, T. Le Provost, P. Lim, E. Monfroy and
M. Wallace. Constraint Logic Programming - An Informal Introduction, Chapter in
Logic Programming in Action, Springer LNCS 636, September 1992. Also Technical
Report ECRC-93-05, ECRC Munich, Germany, February 1993.

[Fru93a] T. Fruhwirth, Entailment Simplification and Constraint Constructors for User-
Defined Constraints, Workshop on Constraint Logic Programming, Marseille, France,
March 1993.

[Fru93b] T. Fruhwirth, User-Defined Constraint Handling, Abstract, ICLP 93, Budapest,
Hungary, MIT Press, June 1993.

[Fru94] T. Frihwirth, Temporal Reasoning with Constraint Handling Rules, Technical
Report ECRC-94-05, ECRC Munich, Germany, February 1994 (first published as
CORE-93-08, January 1993), available by anonymous ftp from ftp.ecrc.de, directory
pub/ECRC_tech_reports/reports, file ECRC-94-05.ps.Z.

[FrHa95] T. Frithwirth and P. Hanschke, Terminological Reasoning with Constraint Han-
dling Rules, Chapter in Principles and Practice of Constraint Programming (P. Van
Hentenryck and V.J. Saraswat, Eds.), MIT Press, to appear. Revised version of
Technical Report ECRC-94-06, ECRC Munich, Germany, February 1994, available
by anonymous ftp from ftp.ecrc.de, directory pub/ECRC_tech reports/reports, file
ECRC-94-06.ps. 7.

[Gr89] T. Graf, Raisonnement sur les contraintes en programmation en logique, Ph.D.
Thesis, Version of June 1989 Universite de Nice, France, September 1989 (in French).

[HaJa90] S. Haridi and S. Janson, Kernel Andorra Prolog and its Computation Model,
Seventh International Conference on Logic Programming, MIT Press, 1990, pp. 31-
46.

[Her93] Eine homogene Implementierungsebene fuer einen hybriden Wissensrepraesenta-
tionsformalismus, Master Thesis, in German, University of Kaiserslautern, Germany,
April 1993.

[J*92] J. Jaffar et al., The CLP(R) Language and System, ACM Transactions on Program-
ming Languages and Systems, Vol.14:3, July 1992, pp. 339-395.

[JaHa91] S. Janson and S. Haradi, Programming Paradigms of the Andorra Kernel Lan-
guage, Draft of March 13, 1991, accepted at ILPS 91 in San Diego, Swedish Institute
of Computer Science, Kista, Sweden.

[JaLa87] J. Jaffar and J.-L. Lassez, Constraint Logic Programming, ACM 14th POPL 87,
Munich, Germany, January 1987, pp. 111-119.

[JaMa94] J. Jaffar and M. J. Maher, Constraint Logic Programming: A Survey, Journal of
Logic Programming, 1994:19,20:503-581.

[Kir89] C. Kirchner and H. Kirchner, Rewriting: Theory and Applications, Working paper
for a D.E.A. lecture at the University of Nancy I, France, 1989.

[Sar89] V. A. Saraswat, Concurrent Constraint Programming Languages, Ph.D. Disserta-
tion, Carnegie Mellon Univ., Draft of Jan. 1989.

[Sar93] V. A. Saraswat, Concurrent Constraint Programming, MIT Press, Cambridge,
1993.

[Shal9] E. Shapiro, The Family of Concurrent Logic Programming Languages, ACM Com-
puting Surveys, 21(3):413-510, September 1989.

[Smo91] G. Smolka, Residuation and Guarded Rules for Constraint Logic Programming,
Digital Equipment Paris Research Laboratory Research Report, France, June 1991.



[VH89] P. Van Hentenryck, Constraint satisfaction in Logic Programming, MIT Press,
Cambridge, 1989.

[VHO1] P. van Hentenryck, Constraint Logic Programming, The Knowledge Engineering
Review, Vol 6:3, 1991, pp 151-194.

This article was processed using the INTpX macro package with LLNCS style



