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ABSTRACT. The industrial and commercial worlds are increasingly competi-
tive, requiring companies to be more productive and more responsive to market
changes (e.g. globalisation and privatisation). As a consequence, there is a
strong need for solutions to large scale optimization problems, in domains
such as production scheduling, transport, finance and network management.
This means that more experts in constraint programming and optimization
technology are required to develop adequate software. Given the computa-
tional complexity of Large Scale Combinatorial Optimization problems, a key
question is how to help/guide in the tackling of LSCO problems in indus-
try. Optimization technology is certainly reaching a level of maturity. Having
emerged in the 50s within the Operational Research community, it has evolved
and comprises new paradigms such as constraint programming and stochastic
search techniques. There is a practical need, i.e. efficiency, scalability and
tractability, to integrate techniques from the different paradigms. This adds
complexity to the design of LSCO models and solutions.

Various forms of guidance are available in the literature in terms of 1) case
studies that map powerful algorithms to problem instances, and 2) visualiza-
tion and programming tools that ease the modelling and solving of LSCOs.
However, there is little guidance to address the process of building applica-
tions for new LSCO problems (independently of any language). This article
gives an overview of the CHIC-2 methodology which aims at filling a gap in
this direction. In particular, we describe some management issues specific to
LSCOs such as risk management and team structures, and focus on the tech-
nical development guidance for scoping, designing and implementing LSCO
applications. The design part in particular views the modelling of LSCOs
from a multi-paradigm perspective.

1. Background and motivation

1.1. Introduction. The original work on methodology has been motivated by
the growing use of the constraint programming technology to develop applications
software for real world combinatorial problems like car sequencing, timetabling,
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VLSI design. We focus on complex problems so-called Large Scale Combinato-
rial Optimization problems (LSCOs). Even though the maturity in optimization
techniques has prompted the development of powerful modelling and programming
languages, a high level of experience and expertise is still required to tackle LSCOs.
The reason lies in the nature of LSCOs:

e Real world problems which do not fit into well-defined problem categories.
There is no efficient solution models publicized in the research literature
which would apply to them and take into account their unique features (e.g.
multiple decision criteria, user-defined constraints)

e Large scale problems, characterized by large sets of data, variables and con-
straints. Existing algorithms do not always scale up, some decomposition
aspects must be considered (e.g. problem structure, hybrid models, co-
operation between solvers)

e Computationally difficult problems, i.e. NP-hard problems whose solving
requires anyhow a lot of knowledge and experience.

From a technological point of view, three main paradigms have shown to con-
tribute to the construction of powerful optimization algorithms: Operational Re-
search (OR), Constraint Programming (CP), and stochastic search methods. Each
paradigm provides its own forms of support to ease the formulation and tackling of
combinatorial optimization problems. In many cases, the application can be solved
efficiently thanks to the availability of increasingly powerful modelling and opti-
mization tools and to the progress in research, particularly in results that exploit
the hybridization of solvers. Hybridization is the process of integrating multiple
solvers from different paradigms to co-operate and build a single algorithm. In-
tuitively, hybridization of solvers tends to solve large scale and complex problems
efficiently by better exploiting LSCO structural features (i.e. using each solver
when it is most appropriate). Some modelling/programming CP languages provide
some support for hybrid modelling and solving (e.g. global constraints!, integration
of hybrid algorithms). However, upstream from the programming activity, a lot of
design work 1s required in order to identify the structural features of an LSCO,
investigate technical or efficiency needs for a problem decomposition, etc. There
is little guidance in the literature on how to design hybrid models and algorithms
efficiently. The proposed methodology addresses the design of LSCO models from
a multi-paradigm perspective.

From a software development point of view, LSCO projects resemble any IT
project and their lifecycle is quite similar. As F. P. Brooks says in [Bro95]:

The challenge and the mission are to find real solutions to real
problems on actual schedules with available resources.

However, due to the computational complexity of LSCO problems and the
expertise required to tackle them, the success of an I'T project with an LSCO com-
ponent comprises specific issues. A main component of the work presented in this
paper consisted of identifying these issues and providing methodological guidance
(methods, processes, do’s and don’ts) to tackle them in the best possible way. Little
research has been pursued on this topic. One main reason is that the development
of LSCO applications software is fairly recent (80s). So the research discipline on

1built-in relations which allow for concise statements and global solving of a collection of
constraints. One way to achieve such a global reasoning is to use OR techniques in a CP setting.
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software development methodology for LSCO problems is an area still in its forma-
tive stages. In [CFGG95], Chamard et al. summarize the lessons learnt during
the CHIC project on building a Constraint Logic Programming (CLP) methodol-
ogy.? This pioneering work focused on issues rather specific to CLP and provides
practical guidelines for modelling and solving constraint optimization problems in
CLP. In the CHIC-2 project, our objectives were to pursue the work further in
particular by extending its scope and agenda to include 1) latest research progress
in optimization technology (i.e. the multi-paradigm perspective) and 2) to consider
the software engineering aspects as well. We are not aware of any other previous
work in this new discipline.

1.2. A practical approach. The methodology evolved over three years and
was designed by a consortium of industrial and academic partners with expertise
in: Operational Research (Euro-Decision), constraint programming (Bouygues, IC-
Parc), stochastic search (NTUA, Renault), and project management (ICL, Re-
nault). The industrial experience and technical expertise of the partners in the
different optimization paradigms brought a rich and diverse knowledge to the con-
sortium, which allowed us to approach the development and management of LSCO
projects from complementary angles. In addition, we incrementally refined and
evaluated the methodology document by tackling four industrial applications (con-
struction scheduling, flow shop, generalized car sequencing, energy trading). The
application work was organized so that each problem was undertaken by three dif-
ferent partners along the project life. The objective was to experiment with different
methods whereby each partner would apply his expertise (in a given paradigm) and
seek for the best results (e.g. optimality, efficiency) often based on co-operation
of solvers. This distributed approach had a tremendous input to the methodology
work, and its evaluation. It allowed us in particular to:

e Step back from the academic exercise of solving benchmark problems

e Identify and address management issues specific to LSCO applications

o Assess the complexity of scoping and specifying LSCO problems, and provide
means to capture and validate user requirements

e Test the soundness of a model and improve the quality of solutions by de-
veloping different approaches (models and algorithms) in parallel.

All the difficulties we encountered and the experience we gained in this collabo-
rative application work, have clearly driven the building of the CHIC-2 methodology
and later on its testing. In this document we give an overview of the methodol-
ogy. More specifically, we address the issues which we have identified as specific
to LSCOs, and present guidance to tackle them adequately. The methodology is
publicly available on the following website:

http://www.icparc.ic.ac.uk/chic2/chic2_methodology/

1.3. Content. The paper is structured as follows. Section 2 will summarize
the different optimization paradigms and their current forms of guidance to tackle
LSCOs. Section 3 introduces the concept of software methodologies and the specific
LSCO issues we will consider. Sections 4 to 6 present the core elements of the CHIC-
2 methodology that include specific management issues, and a detailed description
of our approach to the development of LSCO solutions from a multi-paradigm
perspective. Finally a conclusion is presented in section 7.

2Constraint Handling in Industry and Commerce, Esprit Project.
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2. Optimization technologies

2.1. The Constraint Programming paradigm. The Constraint Program-
ming (CP) paradigm emerged from the Artificial Intelligence field to extend logic-
based programming languages to deal with combinatorial search problems mod-
elled as Constraint Satisfaction Problems (CSPs) [Mac77]. Typical examples
are scheduling, warehouse location, disjunctive scheduling and cutting stock prob-
lems. This was initially achieved by embedding and integrating the CSP model
and consistency techniques [Mon74, MF85] into the logic programming paradigm
[Kow74, CKC83] (cf. the CHIP system [vH87, DSea88]).> Today, the logic
component of such languages is understood in the wide sense of allowing declarative
statements of nondeterministic programs, whereby the modelling of the problem is
meant to be independent of its solution method. To deal with combinatorial opti-
mization problems, search procedures have been introduced in CP languages and
hybridized with propagation techniques (e.g. the branch and bound algorithm and
its variants [GM84]).

The success of CHIP in the late 80s prompted the development of new CP
languages, but also raised the question of its limitations. When addressing LSCOs,
scaling and efficiency became crucial issues that limited the potential of CP tech-
nology. It appeared clearly that constraint propagation coupled with variants of
the branch and bound search was not the “magic” answer to large scale prob-
lems. Components of LSCOs could be solved very efficiently and to optimality by
special-purpose algorithms. Also, local search methods were often found to reach
sub-optimal but good quality solutions more quickly. Thus, there was a practi-
cal necessity to hybridize constraint propagation methods with other constraint
handling and search algorithms. Usually seen as a competitor, the OR field has
become a source of inspiration for specialized algorithms. Today, the requirements
to enhance the CP framework are being fulfilled at the level of CP languages which
provide new facilities like:

e High level languages (e.g. ECLIPS¢[IC-00], CLAIRE, CHIP)
Debugging features (e.g. PROLOG IV[BT95])

Global constraints (e.g. CHIP[BC94], ILOG SCHEDULE [ILO97])
Search heuristics (e.g. CLAIRE)

Support for solver hybridization (e.g. ECL!PS®).

Research progress on solver hybridization® has proved to improve the tackling of
complex applications, in terms of efficiency, scalability and even tractability. Intu-
itively, it tends to solve large and complex problems efficiently by better exploiting
LSCO structural features (i.e. using each solver when it is most appropriate).

The number of hybrid solutions that can be found in the literature is growing
(see [CL95, CL97, RW98, RWH99, ESWO00] to name but a few). Hybridization
has allowed us to tackle new applications with improved quality of results. However,
the extended set of modelling facilities and the availability of new solvers increase
the expertise level required to tackle LSCO applications. We need to go through
large user manuals, learn about related paradigms, and most importantly open our
minds to new forms of models for LSCO problems. Some research work is being
carried out to better understand the role of problem formulation with respect to

3Constraint Handling In Prolog.
4Hybridization is the process of integrating multiple solvers from different paradigms to build
a single algorithm.
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solution methods, however it still focuses on CSP models (e.g. binary CSP, discrete
CSP, SAT) solved by constraint satisfaction techniques, and does not yet consider
hybrid models and algorithms from other paradigms (e.g. [BvB98]).

2.2. The Operational Research paradigm. The Operational Research (OR)
paradigm is more mature and already provides a lot of guidance for modelling com-
binatorial optimization problems and map them to powerful algorithms. Of partic-
ular interest to us is the framework of integer or mixed integer combinatorial opti-
mization (for core knowledge [GNT2, NW88]). OR techniques used to solve Mixed
Integer Programming (MIP) problems make use of special purpose algorithms and
search methods. Special purpose algorithms like network flow algorithms, can be of
great importance in handling LSCOs since network flow problems frequently arise
as subproblems. They can also be more efficient than generic algorithms.

Search algorithms such as branch and bound consist of iterating two steps: 1)
solving a relaxation of an MIP problem using linear programming methods (e.g.
the Simplex method [Dan63)]), 2) splitting the problem into subproblems where
a constraint 1s added. Very efficient implementations of the Simplex algorithm
are available in the market (e.g CPLEX [CPL94]), and can handle thousands of
variables and constraints. Branch and bound algorithms have been very successful
in solving large instances of a variety of MIP problem classes such as set partitioning
and set covering. However, the efficiency of such algorithms can vary according to
problem instances since they do not exploit the problem structure. Research focuses
on improving search algorithms and studying the structure of the solution set to
derive new constraints that would approximate this set as close as possible. Such
constraints are called cutting planes (e.g. [Gom63]) and polyhedral cuts. The
latter ones are usually more powerful since they exploit the problem structure, but
they are more difficult to compute (for core knowledge [NW88]).

Thus the modelling of a discrete combinatorial optimization problem is an es-
sential component to its efficient solving. Some guidance is provided to design
the right mathematical programming model by means of case studies (see sur-
veys in [Gr693, Wil94]). Also there is a growing number of algebraic modelling
languages to ease the formulation of LSCO models fed to LP/MIP solvers (e.g.
GAMS [BM82], AMPL [FGK93], XPRESS-MP [Das97]). The weak point is the
scarcity of work that exists to integrate mathematical programming models with
other paradigms like constraint programming, even though they should be seen as
complementary.

2.3. The stochastic search paradigm. A third paradigm found to be use-
ful in solving LSCOs is based on stochastic search methods, including Simulated
Annealing (SA), Tabu Search (TS) [KGV83, Glo89, GL97], and Genetic Algo-
rithms (GA) [Gol89]. This paradigm differs from the previous two in the sense
that the methods require few restrictions on the nature of the problem. Stochastic
search methods are iterative improvement techniques which explore a space of com-
plete solutions. The first two techniques work on a unique solution. Neighbours
of the current solution are obtained by modifying one or a few of the correspond-
ing assignments. At each step of the optimization process, the current solution is
replaced by one of its neighbours. GAs work on a population of solutions. Tun-
ing plays an important role, and the selection of appropriate parameters is very
much case-study oriented (e.g. temperature and cooling function for SA, list of
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tabu moves and neighbourhood function for TS, selection, crossover and mutation
operators for GA).

The main drawback of iterative improvement techniques is that they cannot
guarantee that an optimal solution be found if it exists, although in some cases it can
be shown that the optimization algorithm will asymptotically converge to a global
optimum. On the other hand, they can provide good trade-off results (i.e. good
solutions in little CPU time) for very large LSCOs where other methods would
fail. A lot of research and experimental work is focusing on stochastic methods
where the main technical issues are the choice of neighborhood functions, acceptable
configurations and data structures to store each state. To ease the modelling and
lighten the work of handling complex data structures, some recent work has focused
on designing a modelling language for local search techniques (see [MvH9T]).

2.4. Summary. The existing forms of guidance to tackle LSCOs remain mostly
technical, and driven by the paradigm at hand. They consist of:

1. Case studies: Designing efficient algorithms for specific problem categories;
e.g. heuristics techniques for CSPs, Polyhedral cuts for MIP, tuning param-
eters for stochastic techniques

2. Modelling guidelines: Mapping models to algorithms; e.g. adequate problem
formulation in CSPs; MIP models and matrices property in MIP

3. Implementation support: Easing the tackling of LSCOs by embedding pow-
erful algorithms into programming languages, and providing modelling fa-
cilities in CP languages (high level modeling, global constraints, support for
hybridization), algebraic modeling languages, modeling languages for local
search.

Given the level of maturity of the three paradigms we have presented, and con-
sidering the important role they play in LSCO applications, a logical step forward
is to offer similar forms of technical guidance for a multi-paradigm technology.
Support for hybrid modelling and solving is provided by some CP programming
languages. However, upstream from the programming activity more guidance is
needed as new issues arise at the design level: problem decomposition, algorithm
characterization, integration of hybrid models, co-operation between solvers. Ad-
dressing the design of LSCOs from a multi-paradigm perspective is a core element
of the CHIC-2 methodology. Another key element 1s to provide forms of guidance
for the development and management aspects of optimization projects.

3. An engineering perspective

As mentioned in the introduction, our goal is not only to consider the devel-
opment of LSCO solutions from a multi-paradigm perspective, but also to consider
the software engineering aspect of LSCO projects. In this respect, we have investi-
gated several software engineering methodologies and have identified some features
of LSCO problems which cannot be dealt with efficiently by such approaches. Our
objective is to provide guidance for a dedicated approach that treats these issues.

First, let us recall general aspects of software engineering methodologies, their
purpose and the different trends that are evident today.

3.1. Software engineering methodologies. A software engineering method-
ology provides a framework of engineering methods and processes to develop soft-
ware. Most existing methodologies are scoped either for specific roles (project
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manager, application developer), or specific application domains and development
technologies such as Knowledge-base Systems, Object Oriented Modelling. In our
case, the scope i1s on how to use the optimization technology to tackle Large Scale
Combinatorial Optimization applications. We are concerned both with the man-
agement and development of projects based on LSCO problems. Such a scope has
not been considered yet but general software engineering methodologies already
provide guidance.

We studied various software engineering methodologies focusing on different
themes such as project management (LBMS [LBM], DSDM [DSD]) object ori-
ented modelling (UML [BRJ96]), and knowledge-base systems (CommonKADS
[dHMW194]). We undertook a survey to evaluate the applicability of such method-
ologies to our needs. The evaluation was essentially based on the diverse industrial
experience of the consortium. Our conclusion was that many engineering features
can be used directly to deal with projects with LSCO components. These include
to some extent the project lifecycle (we will see which revisions are needed), most
features of project management such as planning and resourcing, progress and
change control, and the integration of LSCO components into full software systems
(database connections, GUIs).

3.2. LSCO specific features. However, some aspects are strongly related
to the technology at hand and the intrinsic computational complexity of LSCO
problems, because both require expert knowledge and experience, and make such
projects very risky. Our analytical survey revealed that the following aspects require
a dedicated approach to execute LSCO projects successfully:

1. Project management
e LSCO team structure (size, skills, working structure)
e Development model (lifecycle)
e Risk management
2. Development activities
e Problem definition
e Solution design
e Programming

The CHIC-2 methodology document and browser contain both the general
software development features, and the specific management and development guid-
ance. However, in this overview article we focus on the above issues. These are
of interest both to researchers and application developers. The objective of the
methodology is to help those who are not experts either in LSCO technology or in
the development of LSCO applications. We hope to allow them to:

e Reduce the time required to tackle LSCOs, by providing generic processes
for project management and development

e Lower the expertise level needed, by providing guidance to define, design
and program LSCOs

e FEnhance the quality of solutions, by measuring different criteria (correct-
ness/time/cost) and considering real-world issues often left aside in an aca-
demic environment such as development time, generic and reusable code.
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4. Project management

Project management is essentially about people and processes. Due to the
computational complexity of LSCO projects, there are often two levels of project
management: 1) one for the sole LSCO component, 2) and one for the global
software development (including the engineering of the database and GUT work).
The second one which comprises standard software engineering issues is not specific
to our concerns and will not be addressed here. The management issues we address
in this article are: LSCO team structure; development model and risk management.

4.1. LSCO team structure. The LSCO team is responsible for the devel-
opment of the LSCO component. Its size depends obviously on the dimensions of
the project. However, since the building of the LSCO component does not require
many parallel tasks or heterogeneous skills, the LSCO team is preferably small.
Experience has shown that there are some key structural factors to the construc-
tion of a good LSCO team. Figure 1 recalls the main ones [Ger98]. Others can be
found in [Bro95], where Brooks discusses the building of teams for I'T projects.

l. Theteam issmall (3-4 people) There are not so many different tasks to do in developing
LSCOs, and most of them are not independent, thus a small
team is ideal

1 A chief designer handlesthe The chief designer is the main architect who is an expert in

development LSCO algorithms and models, but who most of all is the glue

among the different developers. He listens to his colleagues
and involves them in his decisions.
He often contributes to the development

in the problem at hand.

FIGURE 1. LSCO Team Structure

Note that when there is not much need for parallel actions, the smaller the
team, the less likely are the risks of misunderstandings and bad communication.
For the same reasons, it is important to minimize the number of interfaces between
the LSCO team and the customer team (including the end-users), since they would
already tend to use different “working languages” making comprehension more
difficult (application domain language versus technical language).

4.2. Development model. A development model or lifecycle structures the
life of a project in terms of high level stages. Fach stage is built towards the com-
pletion of well-defined objectives that measure the degree of advancement in terms
of milestones (contractual agreements with the problem owner), and deliverables
(e.g. written documents, prototypes, software). General IT project lifecycles can
broadly follow two models: the waterfall or the spiral model [Boe88]. The waterfall

11 A manager istheinterface between The manager also knows about the technology but essentially
the development team and the he has the business knowledge to tackle projects and deal with .
the customer (contracts, deadlines, ....)
customer
IV Oneor two developerswho work The developers need to have a good degree of knowledge ig the
very closely with the chief designer optimization paradigms and preferably some domain knowlefdge
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model tends to show the evolution of a project from a contractual point of view
by a sequence of stages, while the spiral model is more driven by iterative devel-
opment processes usually used for complex and ill-defined decision problems. Each
has its strengths and weaknesses [PL90]. The waterfall approach is a rather for-
mal method broadly used among business developers while the the spiral approach
is more popular among ADE specialists (Aerospace, Defense and Engineering).
Whatever a company development model is, our experience shows that it is crucial
to introduce iterative development processes to control risks related to ill-defined
LSCO problems, technical complexity, etc. A spiral model does not require much
revisions to tackle LSCO applications. However, if one uses the common waterfall
approach it should be adapted as follows. The idea is to use a two-phase approach
which can be structured around 7 stages as shown in Figure 2: an exploration phase
(stages 1/2/3/4), and an integration phase (stages 5/6/7).

L SCO Project Stages Deliverables Objectives

[, || 1dentification of
IT/I'S Opportunity
P « Identify business pradices

2 :_dggtg' Coatl an tOf atn which may beimproved bythe

|| pportunity Informal Definition use of optimization techniques
U -

] - ) \éqe‘ 5 « Scope project

3 || Exploration of the W e  Determine overall feasibility
|| L SCO Opportunity « Risk andlysis
T Full Requirements ’ Peﬁ‘ffpér?’éfsmym'
|| Study « Complete businesscase

Prolplem Definition Document
®

O « Indugtrialization d the
|E| Implementation d:, LSCO solution
] o _ o Problem Solution Document + Fully documented
it « LSCO solution
EH Delivery / Integration | Application operational onsite

O « Train end-users

L]
- Application Documentation | . Mmoritor the user of the
[ 7][ Maintenance | application
« Maintain its technical
functionalities

Ficure 2. LSCO Project Lifecycle

The exploration phase aims at ensuring technical feasibility by focusing on
prospective and prototyping work (getting the objectives, the problem definition
and the algorithms right). Once the technical feasibility of the LSCO problem is
guaranteed the integration phase can be carried out. The circles illustrate iterative
development processes, denoted risk driven processes, we have introduced to tackle
complex LSCO applications using a waterfall lifecycle.
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Note that depending on the type of LSCO project the time spent in each stage
can differ tremendously. There are broadly two types of LSCO projects: i) comput-
erization projects, and ii) prospective projects. A computerization project considers
an existing well-defined problem. The role of the LSCO application is to automate
an existing decision making process previously done by hand or using spreadsheets.
Such projects can usually follow a standard waterfall approach. On the other hand,
a prospective project is about ill-defined problems whereby the objectives are not
clear and the technical feasibility unknown. Basically, the problem owner wants to
improve his company working policies and requires the LSCO application to provide
new solutions to a new problem. The role of the application is to help the problem
owner 1dentify the “right” problem, and work on solutions that would improve his
existing best practices. Prospective projects can require a very large amount of
time spent in the first four stages of the life cycle (mainly identification and explo-
ration of LSCO opportunity, and full requirement study). In such cases, the risk
driven processes are essential. In particular the exploration stage can consist of a
large amount of incremental iterations over the problem definition, the design of
the solution and the programming activities.

4.3. The DSDM/RAD development model. The development model we
have presented is structured around a 7-stage project lifecycle that includes risk
driven processes, and three generic technical activities carried out during such pro-
cesses (to be presented in the next sections). Such a vertical structure might not be
the one in place in some companies where a lot of application work i1s prospective.
Their software development methodologies can rather be oriented towards Rapid
Application Development (RAD) methods (also called Dynamic Systems Develop-
ment Methods- DSDM [DSD]). An RAD model considers broadly a two-phase
lifecycle where the first phase is the incremental and iterative development of a
solution, and the second one is the integration of the LSCO component into a full
software system.

The cornerstone of an RAD development process consists of:

e Timeboxes that set deadlines for the completion of a subset of the business
objectives. The objectives selected are quantifiable such that progress to-
wards goals can be measured. They can also be prioritized according to the
customer’s needs and the assessment of the technical difficulties

e lterative prototyping and incremental development process. Solutions are
built and evaluated incrementally as the objectives evolve. The problem
definition evolves with the computerized solutions.

The question is: can the CHIC-2 methodology be applied when the customer
company has a different culture towards the project development lifecycle 7 We
believe it can for the following reasons.

First, the technical activities used in RAD methods are similar to the ones we
present in section 6. The incremental process monitored by timebox objectives aims
at iterating over the problem definition, design and programming activities. At the
beginning of each timebox a new set of objectives is defined (new iteration through
the problem definition activity), followed by a development process that iterates
between the design and programming activities. The computerized solution 1s the
output of the current timebox.

Second, the incremental definition and resolution of an LSCO problem can be
viewed as taking place essentially during the “exploration of an LSCO opportunity”
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stage in the CHIC-2 lifecycle (c¢f. Figure 1). This would mean that most of the
incremental development phase takes place in stage 3. The integration phase of
RAD methods follows that of the CHIC-2 lifecycle.

Thus the CHIC-2 development model we have presented defines a backbone
for an LSCO project, while remaining flexible in the sense that the time spent
in each stage depends on the LSCO application and the customer’s culture. An
RAD method would concentrate on stage 3 for the incremental development, as an
alternative to the risk driven processes we consider.

5. Risk management

LSCO projects are risky in nature because they are computationally difficult
to solve and they are not always well-defined (e.g. complex objective functions,
hard and soft constraints, ill-defined data). Thus risk management plays a key
role to minimize dangers of project delays and failure.®> The objective is to reduce
uncertainties by pro-actively analyzing the various risks and identifying counter-
measures to control them. There are three main categories of risks handled in
project management methodologies:

e Organizational (project planning, relations with the customer, political fac-
tors)

e Financial (project cost and resource plan)

e Technical (ill-defined problems, computational complexity, maturity of the
technology).

In this article we focus on the assessment and control of LSCO related risks
which are essentially technical. Technical risks depend on two main factors: 1)
the type of problem we are dealing with (e.g. well-defined versus ill-defined), and
2) the complexity of the solution methods one intends to use. Depending on the
degree of innovation of the project and the technology used, the level of risk will
vary considerably. As an LSCO becomes increasingly complex (more innovative, less
well-scoped) and the solution methods needed are less mature (e.g. new algorithms,
hybrid methods), the level of risk grows.

5.1. Risk driven processes. Each of the seven stages of the waterfall model
described is commonly characterized by its objectives, inputs, outputs, internal
processes and development activities. For complex stages like 3/4/5 where the risk
exposure can be high (e.g. ill-defined problems, technical decomposition required,
efficiency requirements), we propose risk driven processes. We define a risk driven
process as a means of controlling the technical risks associated with the complex
stages of ill-defined LSCO problems. It comprises a set of technical activities (prob-
lem definition, design and programming), followed by a risk analysis and a decision
making process. The analysis work evaluates the remaining risks associated with
the project. To help in the risk analysis, we propose a set of risk scenarios against
which risks can be assessed and decisions be made. A set of such scenarios is
presented in the following section.

The decision process can be either to go forward (risks resolved or minimized),
to refine the work done (reduce further the technical risks) or even to drop out of
the project (too many unresolvable risks). One can drop out of an LSCO project

5A risk can be defined by 1) a degree of uncertainty regarding the occurrence of an event, 2)
a negative effect if the event takes place [HK96].
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for various reasons like: the client has changed his mind and is reorganizing his
company, or the problem cannot be solved in the given time schedule. Risk driven
processes are usually iterative because if the assessment of risks does not lead to
conclusive results some more design, prototyping, etc, is required.

The CHIC-2 risk driven process with respect to the exploration stage is illus-
trated in Figure 3.°

Informal definition

Problem LSCO Feasibility study
definition

refinement

Problem Peﬁnltlon Design activity <---> Programming activity
activity

Problem Solution Prototype
Deliverable

/

Risk Analysis
and
Management

Problem Definition
Deliverable

Decision

|

Drop  End of
Out Stage 3

FI1GURE 3. Risk Driven Process for the Exploration Stage

During the exploration stage the problem definition is refined and a technical
feasibility study is performed. The feasibility study will attempt to reduce the
technical risks. For example, this may include the development of one or several
prototypes but can be limited to the design of a solution. Also, if the project
corresponds to a prospective LSCO application, the problem definition activity can
be very complex and iterated many times to clarify the objectives. The risk driven
process will ensure that the risks are controlled and monitored.

5.2. Risk scenarios. While risk driven processes aim at monitoring the re-
duction of risks, the CHIC-2 methodology also proposes some guidance to assess/
foresee some technical risks which are most likely to occur during the complex
stages. For example, situations like the ones sketched below can increase risks of
project delays or failure:

e Reluctance to spend enough time and effort on the feasibility study during
the exploration and full requirement study stages (cf. Figure 2), will increase
the risks of failure.

6Risk driven processes for stages 4 and 5 can be found on the website.
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e Bad communication between the LSCO team and the problem owner: the
problem owner does not understand the technical complexity of his applica-
tion and is not willing to cooperate with the LSCO team (e.g. importance
of providing real data sets). Or, the LSCO team does not understand the
problem from the problem owner perspective, and tends to approximate its
formulation such that it fits some well-defined models. Such problems can
make difficult the success of exploration and full requirement study stages.

e Inappropriate level of expertise of the LSCO team: restricted ability to
produce a “good” solution within the required timescales. This category
of risks 1s most relevant to exploration and implementation stages of the
project lifecycle.

A very effective approach to manage technical risks consists of identifying po-
tential risk scenarios, assessing their probability of occurrences at a given stage,
their impact on the project, and deriving countermeasures. We propose a set of
risk scenarios specific to the development of LSCO projects. For each scenario we
have identified their potential impact (in case of occurrence at a given stage) and
derived guidelines in terms of countermeasures to prevent and possibly avoid them.
An illustrative table of risk scenarios and guidance is given in Appendix A.7

In the next section we proceed with the description of the different develop-
ment activities mentioned earlier. While the project management guidelines are
concerned with the people and processes (lifecycle, risk management, teams), the
development guidelines presented in the next section deal with the actual definition
and construction of the LSCO solution. They are primarily meant for the LSCO
designer and developers.

6. Art and craft

This section presents each development activity with its LSCO specificity.
There are three generic activities in software development:

e Problem Definition
e Solution Design
e Programming

We are not concerned here about “when” to undertake each activity but rather
about “how”. The “when” is monitored by the development model and risk driven
processes (e.g. see Figure 3 illustrating stage four).

Even though the activities are common to most IT projects, each of them has
an LSCO specificity. The core questions are:

1. What are the specific LSCO issues to be addressed 7
2. How shall we tackle them with a multi-paradigm perspective 7

The CHIC-2 user guide wishes to answer these questions by presenting LSCO
issues relative to each activity and proposing guidance to tackle them successfully.
The guidance acts at two levels: a local process for each activity composed of
different tasks (“what” to do), and a set of best practice guidelines to fulfill the
tasks successfully (“how” to doit). Each process is visually represented by a triangle
connecting three tasks. A key point is that we want to ensure that each activity
outcome is validated locally. Thus in each tripartite process one task plays the local

TA complete list of the scenarios we have identified is available from the website.
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role of validation, allowing the LSCO team to evaluate the technical work within
each activity.

We present the iterative process of each activity and illustrate some of the
CHIC-2 guidelines on one specific task per activity. The remaining ones can be
found in the complete guide.

6.1. Problem definition activity. Problem definition is about scoping the
problem, capturing all the user requirements, and validating the requirements with
the problem owner. It can take place in all the stages of the exploration phase
(1/2/3/4). Natural language can be very ambiguous, and problem owners often
use specialized terms to describe their problem, so it 1s crucial to remove potential
ambiguities during this activity. In order to minimize risks of misunderstanding,
and guarantee (as much as possible) a complete and correct problem definition,
we propose an iterative process in three steps, illustrated in Figure 4, and a set of
guidelines that consist of:

1. Capturing the user requirements. Guidance: follow a checklist of key ques-
tions for capturing “all” the relevant requirements

2. Building a conceptual model. Guidance: write a structured form of the user
requirements from a technical perspective

3. Validation. Guidance: Evaluate the conceptual model against the user re-
quirements ensuring the mathematical understanding of the user require-
ments.

User requirements

»

Validation [[] Conceptual
model

Ficure 4. LSCO Problem Definition Activity

The goal of building a conceptual model in the problem definition activity is to
extract the LSCO specificity from the user requirements before attempting to design
a model. It is important to identify from a technical point of view the different
components of the user requirements, their relationships and the dimensions of the
problem. The core 1dea is to check that all relevant requirements are captured, and
will not be simplified or approximated when viewed from a technical perspective.

CHIC? guidance for the conceptual model. A conceptual model is a formulation
of a problem by means of concepts. For an LSCO problem there are four basic
concepts that constitute the kernel of any problem formulation independently of
the model to be used: Inputs, Outputs, Constraints and Decision Criteria. They
are illustrated in Figure 5, together with their relationships and dependencies.
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Input

+ Entities
/ « Data properties \

Constraints Criteria
* Hard « List of criteria
* Soft « Preferences

\ Output /

« Solution

Ficure 5. LSCO Conceptual Model Structure

Each of the four concepts is common to any optimization paradigm: Inputs
consist of the different entities and data required for the problem (resources, con-
tract profiles, warehouses,..) with their specificities and arities. Outputs are the
solution elements the problem owner is looking for. At this stage they are indepen-
dent of the decision variables that will be used to model the problem. Constraints
are all the company policies that state the problem whether they must be fully
satisfied (hard) or must preferably be satisfied (soft). Finally, the decision criteria
are all the functions that contribute to defining the ideal solution. At this stage
they need not be combined into a single objective function.

By extracting these basic technical components during the problem definition
activity, we wish the LSCO team to make sure that:

e They fully understand the customer’s problem from an LSCO perspective.
This will avoid misunderstandings from occurring during the design and
programming activities.

e They have identified most potential ambiguities in the user requirements
(e.g. fuzzy statements like “in most cases”, “maybe”). In such situations,
the LSCO team can come back to the user and ask for refinements of terms
before going ahead with the design and programming activities.

e They are not influenced or biased by any form of design model. The con-
ceptual model should remain independent of any modelling framework and
solution methods. One of its roles is to prevent the LSCO team from ap-
proximating the user requirements and simplifying them such that they “fit”
the modelling language at hand.

Another advantage of the conceptual model, is that it can help the customer
to better understand the way the LSCO team views and addresses their LSCO
problem.

Documentation. The information captured during the problem definition activ-
ity 1s written in a document to be validated by both the LSCO and customer team.
A layout of the problem definition document we propose, which will be maintained
and updated all throughout the project life is depicted in Appendix B.
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6.2. Design activity. The design activity concerns the extraction of problem
structural features and the building of one or multiple model(s) of the problem (sub-
problems). The features will help characterize the algorithm to build. As opposed
to the conceptual model, the design model is dependent on the technology. Just
as the conceptual model is an intermediate step between the user requirements
and the modelling, the design work acts as a preliminary step to the programming
activity. It clearly depends on the LSCO team’s knowledge about the different
optimization paradigms, and their experience in problem modelling and matching
algorithm characteristics.

Furthermore, in the context of a multi-paradigm framework, the design activity
is particularly necessary since we do not assume any specific modelling framework
nor optimization technology. New issues arise and need to be considered like tech-
nical decomposition of the problem, choice of a formulation, characterization of the
(hybrid) algorithm to build. Indeed, if we would consider mainly the constraint
programming paradigm, the focus would be on the design of a CSP model. The
issues would deal with the selection of the decision variables, the constraint for-
mulation, the choice of powerful heuristics and search methods. Similarly, if we
would consider mainly the MIP framework, the focus would be on the design of the
matrix model, i.e. finding the right formulation of the constraints that would lead
to a matrix that best exploits the integrality constraints, etc. But, we are opening
our technological environment to a multi-paradigm framework. Thus, there are no
restrictions relative to the choice of model and algorithms apart from the ones set
by the problem itself. This is very important for tackling LSCOs applications, since
it allows us to focus on formulating the real world problem, instead of simplifying
it so that it suits our modelling language/framework /experience.

Thus one of the main roles of the methodology for this activity, is to provide
guidance for the LSCO team to study the problem structure and properties from
different perspectives. This will allow the LSCO team to select the paradigm or
hybridization of paradigms which will make the best use of problem features (in
terms of pruning and search power). For this purpose, we propose the following
iterative process for the design activity that focuses on three main tasks:

e Finding the algorithmic flavors
e Designing model(s) of the LSCO problem
e Ensuring that the the model and algorithm form a good couple

The last item illustrates the strong dependency which exists between a design
model and the algorithm. A full evaluation of the mapping might only be possible
after doing some programming. This would then require some tuning and adjusting
of both the model and the algorithm (this is the local validation task). The process
is presented Figure 6.

Once the tuning/adjusting is completed (for the current state), a Problem
Solution Document is written that describes the design model of the problem and
a characterization of the algorithm. One could argue that we do not need a design
activity, and that we could proceed directly from the problem definition to the
programming activity. This might hold for paradigms which are supported by very
expressive modelling languages (e.g. CHIP), and this will certainly be true the
day our languages are purely declarative.® However, from a software engineering

8 A declarative language, ideally allows one to declare or state ” what” the problem is, without
specifying “how” it should be solved.
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characteristics Q

] Tune/adjust

FIGURE 6. LSCO Design Activity

point of view, 1t 1s essential to have a permanent access to the latest description of
the model(s) and algorithms implemented. Thus besides being a pre-programming
activity, LSCO design acts as a communication tool for software maintenance.
CHIC-2 guidelines for algorithm characterization. The objective of this task is
to extract from the problem definition the LSCO features with an open view to
hybrid algorithms. The main concern is not to focus on one problem feature but
rather to consider different perspectives. Whether one is in research or industry,
we usually seek answers to some technical questions at this stage, like the following
ones posted to both the CP and the OR newsgroup with respect to a specific LSCO:

Does my problem fall into a well-defined category ?

Are there any tools suitable for this class of problems ?
What types of heuristics apply to this class of problems 7
Are there any pointers to research on this class of problems ?

Clearly, an algorithm cannot be defined if the problem is not well understood.
We propose a list of more specific questions for the LSCO team to analyze the
user requirements from a mathematical and logical perspective. The questions are
structured into three main groups as follows:

1. Problem structure; Can you classify the application domain of the problem:
scheduling, resource allocation, transportation, time-tabling, etc 7 What
are the semantics and mathematical properties of your constraints 7

2. Quantitative aspects; Problem size. How big is a data set 7 How many
decision variables do you foresee, what would be their domain size 7 How
many hard constraints 7

3. Qualitative aspects; Solution type. Are you looking for an optimal solution
or not 7 How many criteria are you considering 7 Is the objective function
well-defined 7 What is the level of user interaction required in the decision
making process 7 Are there requirements for solution quality (robustness,
hard constraints on the execution time, ...) 7

The guidelines we propose to characterize the algorithm consist of three comple-
mentary views to extract the LSCO features from the problem definition:

¢ Constraints and variables properties. We propose checklists to identify
the nature of the LSCO problem (unconstrained, constrained), the type of con-
straints and objective function (linear, quadratic, symbolic, and others), the type(s)
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of variables (boolean, continuous, discrete, mixed or non-numerical), the nature of
the available data (deterministic, probabilistic). This approach is intended to help
the LSCO team find out which methods to try out first before attempting more
complex ones (e.g. based on hybridization and problem decomposition).

¢ Problem decompositions (problem categories, constraint seman-
tics). If the LSCO problem appears to be intractable when solved as a whole,
problem decomposition is necessary. The problem decomposition guidelines aim at
helping the LSCO team identify the most adequate way to decompose their LSCO
problem. They focus on two complementary aspects: 1) identify well-defined sub-
problems (among existing problem categories) of the LSCO that can be efficiently
handled by a single method; 2) structure the constraint set in different ways accord-
ing to the constraints’ semantics or their mathematical structure. The first aspect
corresponds rather to an OR perspective. The guideline table, depicted Figure 7,
presents different sub-problems of a set of application classes.

Field Application Problem category
Airline industry Crew scheduling Set covering

Fleet scheduling Set partitioning

Shift planning Network flow

Assignment

Production Cutting stock Knapsack
manufacturing Bin packing
Production Car sequencing job-shop,
scheduling Resource allocation flow-shop

Task scheduling resource constrained

project scheduling

Transportation Facility location Set covering
industry Vehicle routing

Tour problems TSP
Telecommunication  Network flow Matching

and network industry Network optimization

Wireless Frequency allocation ~ Coloration
telecommunication Maximum
independent
set
Personnel scheduling Time-tabling Assignment
Work force Matching flow
scheduling

F1Gurg 7. LSCO Sub-problem Categories

For such categories there is an efficient solver available in the literature or in
optimization software packages (it might be dependent on the problem size). The
main downfall of focusing on problem categories is that the actual LSCO problem
may not be adequately tackled; some so-called side constraints may not fit in the
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problem category selected. The second approach corresponds rather to a Constraint
Programming viewpoint and deals with such constraints.

Given the whole spectrum of LSCO problems, there exist classes of constraints
which can constitute the basis of a problem decomposition: resource constraints,
temporal constraints, spatial constraints. Methods to handle each class of con-
straints are suggested in the user guide and browser, together with some examples.

e “Do’s and Don’ts” for algorithm selection. This guideline emerged
from the academic and industrial experience of the CHIC-2 consortium in tackling
LSCO problems. A table of do’s and don’ts is depicted Figure 8.

Application Do’s Don’ts
Set covering Mixed Integer Programming

Set partitioning Column generation for very combinatorial

including possibly problems, allows an efficient technical
additional knapsack decomposition

constraints

Set selection LP, CP with partial search (LDS) local Pure CP

optimisation

Scheduling
Disjunctive scheduling
(single tasks)

B&B, constraint  propagation
literature shaving tabu heuristics

using

LP, genetic algorithms,
simulated annealing

Production scheduling

small size : CP + heuristics.

big size (multi-product, multi-machines),
linear processes MIP can bring
satisfactory solutions, combined sometimes
with heuristics for post-processing. May
need to decompose the problem

Use of “pure”
approaches

Time-tabling

Fixed set of activities

Global constraints, flow algorithms.

LP model, local optimisation

Pure CP (local
propagation for hard
problems)

Routing problems

Travelling Salesman
Problem

CP for small complex problems only

Local optimisation by default, Branch and
Cut is an option

LP without expertise

Vehicle routing problems

Local optimisation

CP only

Tour problems

Column generation MIP  approaches
(proved to solve such problems optimally)

If max duration
constraints, don’t use
network flow approach
with LP

Flow problems

LP models, flows, global analysis

Pure CP, pure LP
genetic algorithms

FIGURE 8. Do’s and Don’ts Table
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The idea consists of presenting some choices of algorithms for a set of well
known LSCO applications. The choices describe what the consortium considers to
this date to be most efficient and successful. The guideline can be used as a form
of advice when choosing initial methods to experiment with.

6.3. Programming activity. The programming activity corresponds to the
actual encoding and evaluation of the design work. It can take place during any
risk driven process of the exploration phase; and the final implementation stage.

Independently of any programming or modelling language, we propose some
generic guidance relative to the following tasks:

1. Coding LSCO models and solution methods
2. Testing computerized solutions
3. Debugging programs

Those three tasks are core to any IT programming activity but do have an LSCO
specificity in terms of “how” to complete the tasks. The iterative process built
upon those activities is shown in Figure 9. The testing task plays the role of local
validation and might require the design model to be refined and the algorithm to
be tuned (if the results produced are not satisfactory). This goes with updating
the design work.

Debug ] Program

[] Test cases

FI1GurgE 9. LSCO Programming Activity

CHIC-2 guidelines for program encoding: Overview. The guidelines we propose
for coding the model and algorithm concern prototyping issues (e.g algorithm tun-
ing, model adjusting, obtaining initial solutions, iterative process, reuse of code),
handling of data flows between models, quality of code (generality, simplicity), and
most specifically encoding hybrid algorithms. Currently, the guidance for hybrid
encoding is illustrated using ECL‘PS® programs, since the language is specially
designed to allow for complex hybridization of solvers [IC-00]. We address various
aspects such as which solver controls the search, and which degree of integration
shall be considered:

e Loose; each solver works on its own and sends data to the other one
e Tight; a solver is called from another one when some constraint state or
conditions are reached.

An example of tight integration of hybrid solvers is thoroughly described in [ESW00].
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CHIC-2 guidelines for program testing. The main concerns when testing LSCO
programs are correctness, robustness and efficiency of the program. However, from
an application point of view, we also need to evaluate the program significance with
respect to the client requirements. We propose a set of testing guidelines, which
essentially consist of:

o Two forms of test (well-defined versus prospective projects). For well-defined
projects, use real input data and compare the produced results with the cus-
tomer’s outputs. For prospective projects, provide solutions to the customer
to be evaluated on the user site.

e Two approaches for one LSCO. In practice it has been shown extremely
useful to consider two different implementations for an LSCO. The two
approaches can differ in their models and in the techniques used to build
the algorithms. We strongly encourage the use of techniques from different
paradigms. This allows the LSCO team to test the correctness of the design
model with respect to the problem definition, and possibly identify errors
that lie in the formulation of the problem (which have not been identified
in the design activity). Even though this can be time consuming (in the
short term), in the end it ensures that the problem definition and the design
models are coherent with each other; and at the same time that good quality
solutions are produced. Two members of the LSCO team can carry parallel
implementations.

e An evaluation of solution quality. The degree of optimality may not be the
main concern in some LSCO applications. The customer is also interested
in the CPU time, and the memory usage. So it is important to measure
the average performance considering all criteria and check the customer’s
preferences.

Examples of multiple approaches for one LSCO such as the inventory management
and the energy trading applications can be found respectively in [ RKCP97, CK98]
and [Ger97, GCM99], as well as in the user guide.

CHIC-2 guidelines for program debugging: Overview. If the testing procedure
fails, the program needs to be debugged requiring some revisions of the model
and algorithm. Of course, many iterations between test and debug can occur and
one should be ready to change the code significantly. We provide a set of “tools
and tricks” to debug LSCO programs independently of the programming/modelling
language at hand. Examples of tricks are:

e The importance of using a graphical visualization of the searching process
and the outputs. This can facilitate the reading of the results;, help in
understanding what went wrong, and also help discussing with the customer
and identify core errors. Many CP languages such as OZ Explorer, provide
means to visualize the search space.

e To use scaled down examples, in order to analyze by hand the results in the
middle of the search

e To instrument the program to trace the key points.

More detailed guidance on each aspect can be found on the browser.
7. Conclusion and future work

In this article we have presented an overview of the CHIC-2 methodology. The
work focused on identifying and tackling the specific aspects of LSCO projects from
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a multi-paradigm and engineering approach. We have proposed dedicated means
to deal with the computational difficulty, complex technology and risky nature of
LSCO projects. These include in particular:

1. Risk driven processes as part of the development model to develop LSCO
solutions in a real world environment.

2. A tripartite structure for each development activity which includes a local
validation of the outcomes (documents, programs)

3. A conceptual model as part of the problem definition activity

4. A multi-paradigm approach in the design and programming activities

Any work on methodology is an ongoing work. However, we believe this con-
stitutes a first step towards a generic approach for tackling LSCO applications that
reduces the risks encountered in such projects, and the level of expertise required.
The methodology is used by all the partners of the CHIC-2 consortium. The user
guide is publicly available at http://www.icparc.ic.ac.uk/chic2/.
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Appendix A. Risk scenarios in LSCO project development

The following table presents a sample of the risk scenarios, consequences and
countermeasures we have identified. It is mainly addressed to the LSCO team but
can bring useful information to the customer as well.

Risk Scenario

Consequences

Countermeasure

1. Customer organisation have no
previous experience of LSCO projects or
other IT projects of similar size and
complexity.

The customer abandons the
project during or after Stage 3 of
the project lifecycle.

At Stage 2, the LSCO expert must ensure that the sponsor fully
understands the future stages of the LSCO project lifecycle, the working
methods to be employed and the commitment required. [llustrate this by
examples of similar projects which have been successfully completed.
Identify an "expert" within the customer organisation for the project.

2. The first prototype built highlights
major problems with the problem
solution and the customer believes that
the project is not progressing
satisfactorily.

The customer abandons the
project during Stage 3 or 4 of the
lifecycle.

In risk analyses carried out in Stages 3 & 4 of the lifecycle, ensure that
failure of the initial prototypes is considered and contingency plans are
made.

3. Users continuously change their needs
- functionality is changed or added.

A satisfactory  prototype or
solution cannot be quickly
achieved.

User requirements must be specifically documented and agreed to
before commencing any design or prototyping activities. Functionalities
which do not change the problem nature can be ignored at Stage 3.

4. The data is not available or not usable
for the optimisation tool.

No test can be performed with
real data and the project is
cancelled.

Validate as early as during Stage 2 that real data will be available and
that the customer is able to provide some initial data sets during Stage 3.

5. The customer expects / was promised a
high optimisation percentage (say 20%)
but the actual result is much worse (say 1
-2%)

User is disappointed - no further
business. The application is not
used.

Do not raise the customer / customer’s expectations too high during
Stage 3 of the lifecvcle - be realistic about anticipated gains. Gains
should be measured against what is done in practice, taking into account
the dynamics of the problem, not against a theoretical, static estimation.

6. The LSCO team is specialised in one
optimisation technique, tool or type of
problem.

The solution design may not be
the most efficient one.

Ensure that an LSCO team with a wide experience of different types of
problem and optimisation techniques is used. Sub-contract part of the
project to an external supplier.

7. The proposed design is a fully
automated optimisation system (black-
box).

The solution may not be robust
when faced with changes in the
user  requirements,  thereby
leading to lack of commitment
from the customer.

Optimisation systems based on Decision Support Systems (DSS) should
be used at least during the exploration phase in preference to black-box
systems.

8. Requirements are vague, or customer is
hesitating between several alternatives.

No efficient design of a solution
can be prepared.

Use prototypes and graphical visualisation to help the customer in its
choices.

9. The proposed results are very different
from conventional or manual ones.

The customer does not trust the
application or does not want to
apply the results due to the
important changes it requires.

Introduce in the model optional constraints that allow to control the
distance between the proposed solution and the conventional ones. The
customer will then progressively appropriate the system.
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Appendix B. Problem definition document layout

| Business Case
XltdisaY million £ company,...
The coming market deregulation requires X to optimize their...
Xislooking for aDSSthat ...

11" Problem organisational decomposition

X currently operates by solving the problem with the following organisational modules,...

Input Output
Input Output
Input Output

Reconsidering this structure is possible if good operational or quality reasons

111 LSCO requirements

Given a set of tasks and jobs to schedule
Find the optimal plan such that the following constraints are satisfied

Refine and structure the LSCO requirements by building the conceptual model

Input data: ...
Ouput data...
Constraints....
Decision criteria:...

1V Other requirements
Fuctional requirements  (level of user interaction with the system)
Execution time between 30sec and 1 min, optimal solutionsrequired,...
GUI: | want to be ableto interrupt the optimisation and make decisions
All outcomes should be displayed as graphs and matrices
The menus should look as follows,...

Technical requirements (includes all hardware and software specifications if any)

Information System (IS) environment

Software components (programming language,...)
Hardware components

Operating Systems, Data base connexions

Business requirements

Project cost, and budget
Congtraints on delivery dates,...
Documents to be produced (user guide, training material, maintenance documentation,...)
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