
Large Scale Combinatorial Optimization:A Methodological ViewpointCarmen GERVETIn this article, the author describes the results of a collaborative European project work withpartners from Bouygues, Euro-Decision, ICL, IC-Parc, NTUA, and Renault.Abstract. The industrial and commercial worlds are increasingly competi-tive, requiring companies to bemore productiveand more responsive to marketchanges (e.g. globalisation and privatisation). As a consequence, there is astrong need for solutions to large scale optimization problems, in domainssuch as production scheduling, transport, �nance and network management.This means that more experts in constraint programming and optimizationtechnology are required to develop adequate software. Given the computa-tional complexity of Large Scale Combinatorial Optimization problems, a keyquestion is how to help/guide in the tackling of LSCO problems in indus-try. Optimization technology is certainly reaching a level of maturity. Havingemerged in the 50s within the Operational Research community, it has evolvedand comprises new paradigms such as constraint programming and stochasticsearch techniques. There is a practical need, i.e. e�ciency, scalability andtractability, to integrate techniques from the di�erent paradigms. This addscomplexity to the design of LSCO models and solutions.Various forms of guidance are available in the literature in terms of 1) casestudies that map powerful algorithms to problem instances, and 2) visualiza-tion and programming tools that ease the modelling and solving of LSCOs.However, there is little guidance to address the process of building applica-tions for new LSCO problems (independently of any language). This articlegives an overview of the CHIC-2 methodology which aims at �lling a gap inthis direction. In particular, we describe some management issues speci�c toLSCOs such as risk management and team structures, and focus on the tech-nical development guidance for scoping, designing and implementing LSCOapplications. The design part in particular views the modelling of LSCOsfrom a multi-paradigm perspective.1. Background and motivation1.1. Introduction. The original work on methodology has been motivated bythe growing use of the constraint programming technology to develop applicationssoftware for real world combinatorial problems like car sequencing, timetabling,1991 Mathematics Subject Classi�cation. Primary 90C27 65K10; Secondary 68T20.This work has been supported by the CEC in the ESPRIT project 22165, Creating Hybridsolution in Industry and Commerce (CHIC-2). The author wishes to thank the anonymous refereesfor their helpful reviews, and Richard Wallace for his detailed and most valuable comments.1

2 CARMEN GERVETVLSI design. We focus on complex problems so-called Large Scale Combinato-rial Optimization problems (LSCOs). Even though the maturity in optimizationtechniques has prompted the development of powerful modelling and programminglanguages, a high level of experience and expertise is still required to tackle LSCOs.The reason lies in the nature of LSCOs:� Real world problems which do not �t into well-de�ned problem categories.There is no e�cient solution models publicized in the research literaturewhich would apply to them and take into account their unique features (e.g.multiple decision criteria, user-de�ned constraints)� Large scale problems, characterized by large sets of data, variables and con-straints. Existing algorithms do not always scale up, some decompositionaspects must be considered (e.g. problem structure, hybrid models, co-operation between solvers)� Computationally di�cult problems, i.e. NP-hard problems whose solvingrequires anyhow a lot of knowledge and experience.From a technological point of view, three main paradigms have shown to con-tribute to the construction of powerful optimization algorithms: Operational Re-search (OR), Constraint Programming (CP), and stochastic search methods. Eachparadigm provides its own forms of support to ease the formulation and tackling ofcombinatorial optimization problems. In many cases, the application can be solvede�ciently thanks to the availability of increasingly powerful modelling and opti-mization tools and to the progress in research, particularly in results that exploitthe hybridization of solvers. Hybridization is the process of integrating multiplesolvers from di�erent paradigms to co-operate and build a single algorithm. In-tuitively, hybridization of solvers tends to solve large scale and complex problemse�ciently by better exploiting LSCO structural features (i.e. using each solverwhen it is most appropriate). Some modelling/programming CP languages providesome support for hybrid modelling and solving (e.g. global constraints1, integrationof hybrid algorithms). However, upstream from the programming activity, a lot ofdesign work is required in order to identify the structural features of an LSCO,investigate technical or e�ciency needs for a problem decomposition, etc. Thereis little guidance in the literature on how to design hybrid models and algorithmse�ciently. The proposed methodology addresses the design of LSCO models froma multi-paradigm perspective.From a software development point of view, LSCO projects resemble any ITproject and their lifecycle is quite similar. As F. P. Brooks says in [Bro95]:The challenge and the mission are to �nd real solutions to realproblems on actual schedules with available resources.However, due to the computational complexity of LSCO problems and theexpertise required to tackle them, the success of an IT project with an LSCO com-ponent comprises speci�c issues. A main component of the work presented in thispaper consisted of identifying these issues and providing methodological guidance(methods, processes, do's and don'ts) to tackle them in the best possible way. Littleresearch has been pursued on this topic. One main reason is that the developmentof LSCO applications software is fairly recent (80s). So the research discipline on1built-in relations which allow for concise statements and global solving of a collection ofconstraints. One way to achieve such a global reasoning is to use OR techniques in a CP setting.

LARGE SCALE COMBINATORIAL OPTIMIZATION: A METHODOLOGICAL VIEWPOINT 3software development methodology for LSCO problems is an area still in its forma-tive stages. In [CFGG95], Chamard et al. summarize the lessons learnt duringthe CHIC project on building a Constraint Logic Programming (CLP) methodol-ogy.2 This pioneering work focused on issues rather speci�c to CLP and providespractical guidelines for modelling and solving constraint optimization problems inCLP. In the CHIC-2 project, our objectives were to pursue the work further inparticular by extending its scope and agenda to include 1) latest research progressin optimization technology (i.e. the multi-paradigm perspective) and 2) to considerthe software engineering aspects as well. We are not aware of any other previouswork in this new discipline.1.2. A practical approach. The methodology evolved over three years andwas designed by a consortium of industrial and academic partners with expertisein: Operational Research (Euro-Decision), constraint programming (Bouygues, IC-Parc), stochastic search (NTUA, Renault), and project management (ICL, Re-nault). The industrial experience and technical expertise of the partners in thedi�erent optimization paradigms brought a rich and diverse knowledge to the con-sortium, which allowed us to approach the development and management of LSCOprojects from complementary angles. In addition, we incrementally re�ned andevaluated the methodology document by tackling four industrial applications (con-struction scheduling,
ow shop, generalized car sequencing, energy trading). Theapplication work was organized so that each problem was undertaken by three dif-ferent partners along the project life. The objective was to experiment with di�erentmethods whereby each partner would apply his expertise (in a given paradigm) andseek for the best results (e.g. optimality, e�ciency) often based on co-operationof solvers. This distributed approach had a tremendous input to the methodologywork, and its evaluation. It allowed us in particular to:� Step back from the academic exercise of solving benchmark problems� Identify and address management issues speci�c to LSCO applications� Assess the complexity of scoping and specifying LSCO problems, and providemeans to capture and validate user requirements� Test the soundness of a model and improve the quality of solutions by de-veloping di�erent approaches (models and algorithms) in parallel.All the di�culties we encountered and the experience we gained in this collabo-rative application work, have clearly driven the building of the CHIC-2methodologyand later on its testing. In this document we give an overview of the methodol-ogy. More speci�cally, we address the issues which we have identi�ed as speci�cto LSCOs, and present guidance to tackle them adequately. The methodology ispublicly available on the following website:http://www.icparc.ic.ac.uk/chic2/chic2_methodology/1.3. Content. The paper is structured as follows. Section 2 will summarizethe di�erent optimization paradigms and their current forms of guidance to tackleLSCOs. Section 3 introduces the concept of software methodologies and the speci�cLSCO issues we will consider. Sections 4 to 6 present the core elements of the CHIC-2 methodology that include speci�c management issues, and a detailed descriptionof our approach to the development of LSCO solutions from a multi-paradigmperspective. Finally a conclusion is presented in section 7.2Constraint Handling in Industry and Commerce, Esprit Project.

4 CARMEN GERVET2. Optimization technologies2.1. The Constraint Programming paradigm. The Constraint Program-ming (CP) paradigm emerged from the Arti�cial Intelligence �eld to extend logic-based programming languages to deal with combinatorial search problems mod-elled as Constraint Satisfaction Problems (CSPs) [Mac77]. Typical examplesare scheduling, warehouse location, disjunctive scheduling and cutting stock prob-lems. This was initially achieved by embedding and integrating the CSP modeland consistency techniques [Mon74, MF85] into the logic programming paradigm[Kow74, CKC83] (cf. the CHIP system [vH87, DSea88]).3 Today, the logiccomponent of such languages is understood in the wide sense of allowing declarativestatements of nondeterministic programs, whereby the modelling of the problem ismeant to be independent of its solution method. To deal with combinatorial opti-mization problems, search procedures have been introduced in CP languages andhybridized with propagation techniques (e.g. the branch and bound algorithm andits variants [GM84]).The success of CHIP in the late 80s prompted the development of new CPlanguages, but also raised the question of its limitations. When addressing LSCOs,scaling and e�ciency became crucial issues that limited the potential of CP tech-nology. It appeared clearly that constraint propagation coupled with variants ofthe branch and bound search was not the \magic" answer to large scale prob-lems. Components of LSCOs could be solved very e�ciently and to optimality byspecial-purpose algorithms. Also, local search methods were often found to reachsub-optimal but good quality solutions more quickly. Thus, there was a practi-cal necessity to hybridize constraint propagation methods with other constrainthandling and search algorithms. Usually seen as a competitor, the OR �eld hasbecome a source of inspiration for specialized algorithms. Today, the requirementsto enhance the CP framework are being ful�lled at the level of CP languages whichprovide new facilities like:� High level languages (e.g. ECLiPSe[IC-00], CLAIRE, CHIP)� Debugging features (e.g. PROLOG IV[BT95])� Global constraints (e.g. CHIP[BC94], ILOG SCHEDULE [ILO97])� Search heuristics (e.g. CLAIRE)� Support for solver hybridization (e.g. ECLiPSe).Research progress on solver hybridization4 has proved to improve the tackling ofcomplex applications, in terms of e�ciency, scalability and even tractability. Intu-itively, it tends to solve large and complex problems e�ciently by better exploitingLSCO structural features (i.e. using each solver when it is most appropriate).The number of hybrid solutions that can be found in the literature is growing(see [CL95, CL97, RW98, RWH99, ESW00] to name but a few). Hybridizationhas allowed us to tackle new applications with improved quality of results. However,the extended set of modelling facilities and the availability of new solvers increasethe expertise level required to tackle LSCO applications. We need to go throughlarge user manuals, learn about related paradigms, and most importantly open ourminds to new forms of models for LSCO problems. Some research work is beingcarried out to better understand the role of problem formulation with respect to3Constraint Handling In Prolog.4Hybridization is the process of integratingmultiple solvers from di�erent paradigms to builda single algorithm.

LARGE SCALE COMBINATORIAL OPTIMIZATION: A METHODOLOGICAL VIEWPOINT 5solution methods, however it still focuses on CSP models (e.g. binary CSP, discreteCSP, SAT) solved by constraint satisfaction techniques, and does not yet considerhybrid models and algorithms from other paradigms (e.g. [BvB98]).2.2. The OperationalResearch paradigm. The Operational Research (OR)paradigm is more mature and already provides a lot of guidance for modelling com-binatorial optimization problems and map them to powerful algorithms. Of partic-ular interest to us is the framework of integer or mixed integer combinatorial opti-mization (for core knowledge [GN72, NW88]). OR techniques used to solve MixedInteger Programming (MIP) problems make use of special purpose algorithms andsearch methods. Special purpose algorithms like network
ow algorithms, can be ofgreat importance in handling LSCOs since network
ow problems frequently ariseas subproblems. They can also be more e�cient than generic algorithms.Search algorithms such as branch and bound consist of iterating two steps: 1)solving a relaxation of an MIP problem using linear programming methods (e.g.the Simplex method [Dan63]), 2) splitting the problem into subproblems wherea constraint is added. Very e�cient implementations of the Simplex algorithmare available in the market (e.g CPLEX [CPL94]), and can handle thousands ofvariables and constraints. Branch and bound algorithms have been very successfulin solving large instances of a variety of MIP problem classes such as set partitioningand set covering. However, the e�ciency of such algorithms can vary according toproblem instances since they do not exploit the problem structure. Research focuseson improving search algorithms and studying the structure of the solution set toderive new constraints that would approximate this set as close as possible. Suchconstraints are called cutting planes (e.g. [Gom63]) and polyhedral cuts. Thelatter ones are usually more powerful since they exploit the problem structure, butthey are more di�cult to compute (for core knowledge [NW88]).Thus the modelling of a discrete combinatorial optimization problem is an es-sential component to its e�cient solving. Some guidance is provided to designthe right mathematical programming model by means of case studies (see sur-veys in [Gr�o93, Wil94]). Also there is a growing number of algebraic modellinglanguages to ease the formulation of LSCO models fed to LP/MIP solvers (e.g.GAMS [BM82], AMPL [FGK93], XPRESS-MP [Das97]). The weak point is thescarcity of work that exists to integrate mathematical programming models withother paradigms like constraint programming, even though they should be seen ascomplementary.2.3. The stochastic search paradigm. A third paradigm found to be use-ful in solving LSCOs is based on stochastic search methods, including SimulatedAnnealing (SA), Tabu Search (TS) [KGV83, Glo89, GL97], and Genetic Algo-rithms (GA) [Gol89]. This paradigm di�ers from the previous two in the sensethat the methods require few restrictions on the nature of the problem. Stochasticsearch methods are iterative improvement techniques which explore a space of com-plete solutions. The �rst two techniques work on a unique solution. Neighboursof the current solution are obtained by modifying one or a few of the correspond-ing assignments. At each step of the optimization process, the current solution isreplaced by one of its neighbours. GAs work on a population of solutions. Tun-ing plays an important role, and the selection of appropriate parameters is verymuch case-study oriented (e.g. temperature and cooling function for SA, list of

6 CARMEN GERVETtabu moves and neighbourhood function for TS, selection, crossover and mutationoperators for GA).The main drawback of iterative improvement techniques is that they cannotguarantee that an optimal solution be found if it exists, although in some cases it canbe shown that the optimization algorithm will asymptotically converge to a globaloptimum. On the other hand, they can provide good trade-o� results (i.e. goodsolutions in little CPU time) for very large LSCOs where other methods wouldfail. A lot of research and experimental work is focusing on stochastic methodswhere the main technical issues are the choice of neighborhood functions, acceptablecon�gurations and data structures to store each state. To ease the modelling andlighten the work of handling complex data structures, some recent work has focusedon designing a modelling language for local search techniques (see [MvH97]).2.4. Summary. The existing forms of guidance to tackle LSCOs remainmostlytechnical, and driven by the paradigm at hand. They consist of:1. Case studies: Designing e�cient algorithms for speci�c problem categories;e.g. heuristics techniques for CSPs, Polyhedral cuts for MIP, tuning param-eters for stochastic techniques2. Modelling guidelines: Mapping models to algorithms; e.g. adequate problemformulation in CSPs, MIP models and matrices property in MIP3. Implementation support: Easing the tackling of LSCOs by embedding pow-erful algorithms into programming languages, and providing modelling fa-cilities in CP languages (high level modeling, global constraints, support forhybridization), algebraic modeling languages, modeling languages for localsearch.Given the level of maturity of the three paradigms we have presented, and con-sidering the important role they play in LSCO applications, a logical step forwardis to o�er similar forms of technical guidance for a multi-paradigm technology.Support for hybrid modelling and solving is provided by some CP programminglanguages. However, upstream from the programming activity more guidance isneeded as new issues arise at the design level: problem decomposition, algorithmcharacterization, integration of hybrid models, co-operation between solvers. Ad-dressing the design of LSCOs from a multi-paradigm perspective is a core elementof the CHIC-2 methodology. Another key element is to provide forms of guidancefor the development and management aspects of optimization projects.3. An engineering perspectiveAs mentioned in the introduction, our goal is not only to consider the devel-opment of LSCO solutions from a multi-paradigm perspective, but also to considerthe software engineering aspect of LSCO projects. In this respect, we have investi-gated several software engineering methodologies and have identi�ed some featuresof LSCO problems which cannot be dealt with e�ciently by such approaches. Ourobjective is to provide guidance for a dedicated approach that treats these issues.First, let us recall general aspects of software engineering methodologies, theirpurpose and the di�erent trends that are evident today.3.1. Software engineeringmethodologies. A software engineering method-ology provides a framework of engineering methods and processes to develop soft-ware. Most existing methodologies are scoped either for speci�c roles (project

LARGE SCALE COMBINATORIAL OPTIMIZATION: A METHODOLOGICAL VIEWPOINT 7manager, application developer), or speci�c application domains and developmenttechnologies such as Knowledge-base Systems, Object Oriented Modelling. In ourcase, the scope is on how to use the optimization technology to tackle Large ScaleCombinatorial Optimization applications. We are concerned both with the man-agement and development of projects based on LSCO problems. Such a scope hasnot been considered yet but general software engineering methodologies alreadyprovide guidance.We studied various software engineering methodologies focusing on di�erentthemes such as project management (LBMS [LBM], DSDM [DSD]) object ori-ented modelling (UML [BRJ96]), and knowledge-base systems (CommonKADS[dHMW+94]). We undertook a survey to evaluate the applicability of such method-ologies to our needs. The evaluation was essentially based on the diverse industrialexperience of the consortium. Our conclusion was that many engineering featurescan be used directly to deal with projects with LSCO components. These includeto some extent the project lifecycle (we will see which revisions are needed), mostfeatures of project management such as planning and resourcing, progress andchange control, and the integration of LSCO components into full software systems(database connections, GUIs).3.2. LSCO speci�c features. However, some aspects are strongly relatedto the technology at hand and the intrinsic computational complexity of LSCOproblems, because both require expert knowledge and experience, and make suchprojects very risky. Our analytical survey revealed that the following aspects requirea dedicated approach to execute LSCO projects successfully:1. Project management� LSCO team structure (size, skills, working structure)� Development model (lifecycle)� Risk management2. Development activities� Problem de�nition� Solution design� ProgrammingThe CHIC-2 methodology document and browser contain both the generalsoftware development features, and the speci�c management and development guid-ance. However, in this overview article we focus on the above issues. These areof interest both to researchers and application developers. The objective of themethodology is to help those who are not experts either in LSCO technology or inthe development of LSCO applications. We hope to allow them to:� Reduce the time required to tackle LSCOs, by providing generic processesfor project management and development� Lower the expertise level needed, by providing guidance to de�ne, designand program LSCOs� Enhance the quality of solutions, by measuring di�erent criteria (correct-ness/time/cost) and considering real-world issues often left aside in an aca-demic environment such as development time, generic and reusable code.

8 CARMEN GERVET4. Project managementProject management is essentially about people and processes. Due to thecomputational complexity of LSCO projects, there are often two levels of projectmanagement: 1) one for the sole LSCO component, 2) and one for the globalsoftware development (including the engineering of the database and GUI work).The second one which comprises standard software engineering issues is not speci�cto our concerns and will not be addressed here. The management issues we addressin this article are: LSCO team structure; development model and risk management.4.1. LSCO team structure. The LSCO team is responsible for the devel-opment of the LSCO component. Its size depends obviously on the dimensions ofthe project. However, since the building of the LSCO component does not requiremany parallel tasks or heterogeneous skills, the LSCO team is preferably small.Experience has shown that there are some key structural factors to the construc-tion of a good LSCO team. Figure 1 recalls the main ones [Ger98]. Others can befound in [Bro95], where Brooks discusses the building of teams for IT projects.
III

the customer (contracts, deadlines, ...)

he has the business knowledge to tackle projects and deal with .

The manager also knows about the technology but essentiallyA manager is the interface between

the development team and the

customer
.

very closely with the chief designer

One or two developers who work IV The developers need to have a good degree of knowledge is the

optimization paradigms and preferably some domain knowledge

in the problem at hand.

I. There are not so many different tasks to do in developing

team is ideal

LSCOs, and most of them are not independent, thus a small

The team is small (3-4 people)

II

development

The chief designer is the main architect who is an expert in A chief designer handles the

and involves them in his decisions.

among the different developers. He listens to his colleagues

LSCO algorithms and models, but who most of all is the glue

 He often contributes to the development

Figure 1. LSCO Team StructureNote that when there is not much need for parallel actions, the smaller theteam, the less likely are the risks of misunderstandings and bad communication.For the same reasons, it is important to minimize the number of interfaces betweenthe LSCO team and the customer team (including the end-users), since they wouldalready tend to use di�erent \working languages" making comprehension moredi�cult (application domain language versus technical language).4.2. Development model. A development model or lifecycle structures thelife of a project in terms of high level stages. Each stage is built towards the com-pletion of well-de�ned objectives that measure the degree of advancement in termsof milestones (contractual agreements with the problem owner), and deliverables(e.g. written documents, prototypes, software). General IT project lifecycles canbroadly follow two models: the waterfall or the spiral model [Boe88]. The waterfall

LARGE SCALE COMBINATORIAL OPTIMIZATION: A METHODOLOGICAL VIEWPOINT 9model tends to show the evolution of a project from a contractual point of viewby a sequence of stages, while the spiral model is more driven by iterative devel-opment processes usually used for complex and ill-de�ned decision problems. Eachhas its strengths and weaknesses [PL90]. The waterfall approach is a rather for-mal method broadly used among business developers while the the spiral approachis more popular among ADE specialists (Aerospace, Defense and Engineering).Whatever a company development model is, our experience shows that it is crucialto introduce iterative development processes to control risks related to ill-de�nedLSCO problems, technical complexity, etc. A spiral model does not require muchrevisions to tackle LSCO applications. However, if one uses the common waterfallapproach it should be adapted as follows. The idea is to use a two-phase approachwhich can be structured around 7 stages as shown in Figure 2: an exploration phase(stages 1/2/3/4), and an integration phase (stages 5/6/7).
DeliverablesLSCO Project Stages

� Identification of
IT/IS Opportunity

� Identification of an
LSCO Opportunity

� Exploration of the
LSCO Opportunity

� Full Requirements
Study

� Implementation

� Delivery / Integration

� Maintenance

Informal Definition

Problem Definition Document

Problem Solution Document

Application

Application Documentation

initia
l versi

on

initia
l versi

on

Objectives

• Identify business practices
which may be improved by the
use of optimization techniques

• Scope project
• Determine overall feasibility
• Risk analysis

• Document & analyse all
requirements

• Complete business case

• Industrialization of the
LSCO solution

• Fully documented

• LSCO solution
operational on site

• Train end-users

• Monitor the user of the
application

• Maintain its technical
functionalitiesFigure 2. LSCO Project LifecycleThe exploration phase aims at ensuring technical feasibility by focusing onprospective and prototyping work (getting the objectives, the problem de�nitionand the algorithms right). Once the technical feasibility of the LSCO problem isguaranteed the integration phase can be carried out. The circles illustrate iterativedevelopment processes, denoted risk driven processes, we have introduced to tacklecomplex LSCO applications using a waterfall lifecycle.

10 CARMEN GERVETNote that depending on the type of LSCO project the time spent in each stagecan di�er tremendously. There are broadly two types of LSCO projects: i) comput-erization projects, and ii) prospective projects. A computerization project considersan existing well-de�ned problem. The role of the LSCO application is to automatean existing decision making process previously done by hand or using spreadsheets.Such projects can usually follow a standard waterfall approach. On the other hand,a prospective project is about ill-de�ned problems whereby the objectives are notclear and the technical feasibility unknown. Basically, the problem owner wants toimprove his company working policies and requires the LSCO application to providenew solutions to a new problem. The role of the application is to help the problemowner identify the \right" problem, and work on solutions that would improve hisexisting best practices. Prospective projects can require a very large amount oftime spent in the �rst four stages of the life cycle (mainly identi�cation and explo-ration of LSCO opportunity, and full requirement study). In such cases, the riskdriven processes are essential. In particular the exploration stage can consist of alarge amount of incremental iterations over the problem de�nition, the design ofthe solution and the programming activities.4.3. The DSDM/RAD development model. The development model wehave presented is structured around a 7-stage project lifecycle that includes riskdriven processes, and three generic technical activities carried out during such pro-cesses (to be presented in the next sections). Such a vertical structure might not bethe one in place in some companies where a lot of application work is prospective.Their software development methodologies can rather be oriented towards RapidApplication Development (RAD) methods (also called Dynamic Systems Develop-ment Methods- DSDM [DSD]). An RAD model considers broadly a two-phaselifecycle where the �rst phase is the incremental and iterative development of asolution, and the second one is the integration of the LSCO component into a fullsoftware system.The cornerstone of an RAD development process consists of:� Timeboxes that set deadlines for the completion of a subset of the businessobjectives. The objectives selected are quanti�able such that progress to-wards goals can be measured. They can also be prioritized according to thecustomer's needs and the assessment of the technical di�culties� Iterative prototyping and incremental development process. Solutions arebuilt and evaluated incrementally as the objectives evolve. The problemde�nition evolves with the computerized solutions.The question is: can the CHIC-2 methodology be applied when the customercompany has a di�erent culture towards the project development lifecycle ? Webelieve it can for the following reasons.First, the technical activities used in RAD methods are similar to the ones wepresent in section 6. The incremental process monitored by timebox objectives aimsat iterating over the problem de�nition, design and programming activities. At thebeginning of each timebox a new set of objectives is de�ned (new iteration throughthe problem de�nition activity), followed by a development process that iteratesbetween the design and programming activities. The computerized solution is theoutput of the current timebox.Second, the incremental de�nition and resolution of an LSCO problem can beviewed as taking place essentially during the \exploration of an LSCO opportunity"

LARGE SCALE COMBINATORIAL OPTIMIZATION: A METHODOLOGICAL VIEWPOINT11stage in the CHIC-2 lifecycle (cf. Figure 1). This would mean that most of theincremental development phase takes place in stage 3. The integration phase ofRAD methods follows that of the CHIC-2 lifecycle.Thus the CHIC-2 development model we have presented de�nes a backbonefor an LSCO project, while remaining
exible in the sense that the time spentin each stage depends on the LSCO application and the customer's culture. AnRAD method would concentrate on stage 3 for the incremental development, as analternative to the risk driven processes we consider.5. Risk managementLSCO projects are risky in nature because they are computationally di�cultto solve and they are not always well-de�ned (e.g. complex objective functions,hard and soft constraints, ill-de�ned data). Thus risk management plays a keyrole to minimize dangers of project delays and failure.5 The objective is to reduceuncertainties by pro-actively analyzing the various risks and identifying counter-measures to control them. There are three main categories of risks handled inproject management methodologies:� Organizational (project planning, relations with the customer, political fac-tors)� Financial (project cost and resource plan)� Technical (ill-de�ned problems, computational complexity, maturity of thetechnology).In this article we focus on the assessment and control of LSCO related riskswhich are essentially technical. Technical risks depend on two main factors: 1)the type of problem we are dealing with (e.g. well-de�ned versus ill-de�ned), and2) the complexity of the solution methods one intends to use. Depending on thedegree of innovation of the project and the technology used, the level of risk willvary considerably. As an LSCO becomes increasingly complex (more innovative, lesswell-scoped) and the solution methods needed are less mature (e.g. new algorithms,hybrid methods), the level of risk grows.5.1. Risk driven processes. Each of the seven stages of the waterfall modeldescribed is commonly characterized by its objectives, inputs, outputs, internalprocesses and development activities. For complex stages like 3/4/5 where the riskexposure can be high (e.g. ill-de�ned problems, technical decomposition required,e�ciency requirements), we propose risk driven processes. We de�ne a risk drivenprocess as a means of controlling the technical risks associated with the complexstages of ill-de�ned LSCO problems. It comprises a set of technical activities (prob-lem de�nition, design and programming), followed by a risk analysis and a decisionmaking process. The analysis work evaluates the remaining risks associated withthe project. To help in the risk analysis, we propose a set of risk scenarios againstwhich risks can be assessed and decisions be made. A set of such scenarios ispresented in the following section.The decision process can be either to go forward (risks resolved or minimized),to re�ne the work done (reduce further the technical risks) or even to drop out ofthe project (too many unresolvable risks). One can drop out of an LSCO project5A risk can be de�ned by 1) a degree of uncertainty regarding the occurrence of an event, 2)a negative e�ect if the event takes place [HK96].

12 CARMEN GERVETfor various reasons like: the client has changed his mind and is reorganizing hiscompany, or the problem cannot be solved in the given time schedule. Risk drivenprocesses are usually iterative because if the assessment of risks does not lead toconclusive results some more design, prototyping, etc, is required.The CHIC-2 risk driven process with respect to the exploration stage is illus-trated in Figure 3.6
3UREOHP�'HILQLWLRQ

DFWLYLW\

(QG�RI
6WDJH��

'URS
�2XW

3UREOHP
GHILQLWLRQ
UHILQHPHQW

5LVN�$QDO\VLV
DQG

0DQDJHPHQW
'HFLVLRQ

'HVLJQ�DFWLYLW\

/6&2�)HDVLELOLW\�VWXG\

3URJUDPPLQJ�DFWLYLW\

,QIRUPDO�GHILQLWLRQ

3UREOHP�'HILQLWLRQ
'HOLYHUDEOH

3UREOHP�6ROXWLRQ
'HOLYHUDEOH

3URWRW\SH

Figure 3. Risk Driven Process for the Exploration StageDuring the exploration stage the problem de�nition is re�ned and a technicalfeasibility study is performed. The feasibility study will attempt to reduce thetechnical risks. For example, this may include the development of one or severalprototypes but can be limited to the design of a solution. Also, if the projectcorresponds to a prospective LSCO application, the problem de�nition activity canbe very complex and iterated many times to clarify the objectives. The risk drivenprocess will ensure that the risks are controlled and monitored.5.2. Risk scenarios. While risk driven processes aim at monitoring the re-duction of risks, the CHIC-2 methodology also proposes some guidance to assess=foresee some technical risks which are most likely to occur during the complexstages. For example, situations like the ones sketched below can increase risks ofproject delays or failure:� Reluctance to spend enough time and e�ort on the feasibility study duringthe exploration and full requirement study stages (cf. Figure 2), will increasethe risks of failure.6Risk driven processes for stages 4 and 5 can be found on the website.

LARGE SCALE COMBINATORIAL OPTIMIZATION: A METHODOLOGICAL VIEWPOINT13� Bad communication between the LSCO team and the problem owner: theproblem owner does not understand the technical complexity of his applica-tion and is not willing to cooperate with the LSCO team (e.g. importanceof providing real data sets). Or, the LSCO team does not understand theproblem from the problem owner perspective, and tends to approximate itsformulation such that it �ts some well-de�ned models. Such problems canmake di�cult the success of exploration and full requirement study stages.� Inappropriate level of expertise of the LSCO team: restricted ability toproduce a \good" solution within the required timescales. This categoryof risks is most relevant to exploration and implementation stages of theproject lifecycle.A very e�ective approach to manage technical risks consists of identifying po-tential risk scenarios, assessing their probability of occurrences at a given stage,their impact on the project, and deriving countermeasures. We propose a set ofrisk scenarios speci�c to the development of LSCO projects. For each scenario wehave identi�ed their potential impact (in case of occurrence at a given stage) andderived guidelines in terms of countermeasures to prevent and possibly avoid them.An illustrative table of risk scenarios and guidance is given in Appendix A.7In the next section we proceed with the description of the di�erent develop-ment activities mentioned earlier. While the project management guidelines areconcerned with the people and processes (lifecycle, risk management, teams), thedevelopment guidelines presented in the next section deal with the actual de�nitionand construction of the LSCO solution. They are primarily meant for the LSCOdesigner and developers. 6. Art and craftThis section presents each development activity with its LSCO speci�city.There are three generic activities in software development:� Problem De�nition� Solution Design� ProgrammingWe are not concerned here about \when" to undertake each activity but ratherabout \how". The \when" is monitored by the development model and risk drivenprocesses (e.g. see Figure 3 illustrating stage four).Even though the activities are common to most IT projects, each of them hasan LSCO speci�city. The core questions are:1. What are the speci�c LSCO issues to be addressed ?2. How shall we tackle them with a multi-paradigm perspective ?The CHIC-2 user guide wishes to answer these questions by presenting LSCOissues relative to each activity and proposing guidance to tackle them successfully.The guidance acts at two levels: a local process for each activity composed ofdi�erent tasks (\what" to do), and a set of best practice guidelines to ful�ll thetasks successfully (\how" to do it). Each process is visually represented by a triangleconnecting three tasks. A key point is that we want to ensure that each activityoutcome is validated locally. Thus in each tripartite process one task plays the local7A complete list of the scenarios we have identi�ed is available from the website.

14 CARMEN GERVETrole of validation, allowing the LSCO team to evaluate the technical work withineach activity.We present the iterative process of each activity and illustrate some of theCHIC-2 guidelines on one speci�c task per activity. The remaining ones can befound in the complete guide.6.1. Problem de�nition activity. Problem de�nition is about scoping theproblem, capturing all the user requirements, and validating the requirements withthe problem owner. It can take place in all the stages of the exploration phase(1/2/3/4). Natural language can be very ambiguous, and problem owners oftenuse specialized terms to describe their problem, so it is crucial to remove potentialambiguities during this activity. In order to minimize risks of misunderstanding,and guarantee (as much as possible) a complete and correct problem de�nition,we propose an iterative process in three steps, illustrated in Figure 4, and a set ofguidelines that consist of:1. Capturing the user requirements. Guidance: follow a checklist of key ques-tions for capturing \all" the relevant requirements2. Building a conceptual model. Guidance: write a structured form of the userrequirements from a technical perspective3. Validation. Guidance: Evaluate the conceptual model against the user re-quirements ensuring the mathematical understanding of the user require-ments.
Conceptual
 model

User requirements

ValidationFigure 4. LSCO Problem De�nition ActivityThe goal of building a conceptual model in the problem de�nition activity is toextract the LSCO speci�city from the user requirements before attempting to designa model. It is important to identify from a technical point of view the di�erentcomponents of the user requirements, their relationships and the dimensions of theproblem. The core idea is to check that all relevant requirements are captured, andwill not be simpli�ed or approximated when viewed from a technical perspective.CHIC2 guidance for the conceptual model. A conceptual model is a formulationof a problem by means of concepts. For an LSCO problem there are four basicconcepts that constitute the kernel of any problem formulation independently ofthe model to be used: Inputs, Outputs, Constraints and Decision Criteria. Theyare illustrated in Figure 5, together with their relationships and dependencies.

LARGE SCALE COMBINATORIAL OPTIMIZATION: A METHODOLOGICAL VIEWPOINT15
Inpu t

• Entities
• Data properties

• Hard
• Soft

Constraints

• List of criteria
• Preferences

Criteria

• Solution

OutputFigure 5. LSCO Conceptual Model StructureEach of the four concepts is common to any optimization paradigm: Inputsconsist of the di�erent entities and data required for the problem (resources, con-tract pro�les, warehouses,..) with their speci�cities and arities. Outputs are thesolution elements the problem owner is looking for. At this stage they are indepen-dent of the decision variables that will be used to model the problem. Constraintsare all the company policies that state the problem whether they must be fullysatis�ed (hard) or must preferably be satis�ed (soft). Finally, the decision criteriaare all the functions that contribute to de�ning the ideal solution. At this stagethey need not be combined into a single objective function.By extracting these basic technical components during the problem de�nitionactivity, we wish the LSCO team to make sure that:� They fully understand the customer's problem from an LSCO perspective.This will avoid misunderstandings from occurring during the design andprogramming activities.� They have identi�ed most potential ambiguities in the user requirements(e.g. fuzzy statements like \in most cases", \maybe"). In such situations,the LSCO team can come back to the user and ask for re�nements of termsbefore going ahead with the design and programming activities.� They are not in
uenced or biased by any form of design model. The con-ceptual model should remain independent of any modelling framework andsolution methods. One of its roles is to prevent the LSCO team from ap-proximating the user requirements and simplifying them such that they \�t"the modelling language at hand.Another advantage of the conceptual model, is that it can help the customerto better understand the way the LSCO team views and addresses their LSCOproblem.Documentation. The information captured during the problem de�nition activ-ity is written in a document to be validated by both the LSCO and customer team.A layout of the problem de�nition document we propose, which will be maintainedand updated all throughout the project life is depicted in Appendix B.

16 CARMEN GERVET6.2. Design activity. The design activity concerns the extraction of problemstructural features and the building of one or multiplemodel(s) of the problem (sub-problems). The features will help characterize the algorithm to build. As opposedto the conceptual model, the design model is dependent on the technology. Justas the conceptual model is an intermediate step between the user requirementsand the modelling, the design work acts as a preliminary step to the programmingactivity. It clearly depends on the LSCO team's knowledge about the di�erentoptimization paradigms, and their experience in problem modelling and matchingalgorithm characteristics.Furthermore, in the context of a multi-paradigm framework, the design activityis particularly necessary since we do not assume any speci�c modelling frameworknor optimization technology. New issues arise and need to be considered like tech-nical decomposition of the problem, choice of a formulation, characterization of the(hybrid) algorithm to build. Indeed, if we would consider mainly the constraintprogramming paradigm, the focus would be on the design of a CSP model. Theissues would deal with the selection of the decision variables, the constraint for-mulation, the choice of powerful heuristics and search methods. Similarly, if wewould consider mainly the MIP framework, the focus would be on the design of thematrix model, i.e. �nding the right formulation of the constraints that would leadto a matrix that best exploits the integrality constraints, etc. But, we are openingour technological environment to a multi-paradigm framework. Thus, there are norestrictions relative to the choice of model and algorithms apart from the ones setby the problem itself. This is very important for tackling LSCOs applications, sinceit allows us to focus on formulating the real world problem, instead of simplifyingit so that it suits our modelling language/framework/experience.Thus one of the main roles of the methodology for this activity, is to provideguidance for the LSCO team to study the problem structure and properties fromdi�erent perspectives. This will allow the LSCO team to select the paradigm orhybridization of paradigms which will make the best use of problem features (interms of pruning and search power). For this purpose, we propose the followingiterative process for the design activity that focuses on three main tasks:� Finding the algorithmic
avors� Designing model(s) of the LSCO problem� Ensuring that the the model and algorithm form a good coupleThe last item illustrates the strong dependency which exists between a designmodel and the algorithm. A full evaluation of the mapping might only be possibleafter doing some programming. This would then require some tuning and adjustingof both the model and the algorithm (this is the local validation task). The processis presented Figure 6.Once the tuning/adjusting is completed (for the current state), a ProblemSolution Document is written that describes the design model of the problem anda characterization of the algorithm. One could argue that we do not need a designactivity, and that we could proceed directly from the problem de�nition to theprogramming activity. This might hold for paradigms which are supported by veryexpressive modelling languages (e.g. CHIP), and this will certainly be true theday our languages are purely declarative.8 However, from a software engineering8A declarative language, ideally allows one to declare or state "what" the problem is, withoutspecifying \how" it should be solved.

LARGE SCALE COMBINATORIAL OPTIMIZATION: A METHODOLOGICAL VIEWPOINT17
Algorithm
characteristics

Tune/adjust

Design
 modelFigure 6. LSCO Design Activitypoint of view, it is essential to have a permanent access to the latest description ofthe model(s) and algorithms implemented. Thus besides being a pre-programmingactivity, LSCO design acts as a communication tool for software maintenance.CHIC-2 guidelines for algorithm characterization. The objective of this task isto extract from the problem de�nition the LSCO features with an open view tohybrid algorithms. The main concern is not to focus on one problem feature butrather to consider di�erent perspectives. Whether one is in research or industry,we usually seek answers to some technical questions at this stage, like the followingones posted to both the CP and the OR newsgroup with respect to a speci�c LSCO:Does my problem fall into a well-defined category ?Are there any tools suitable for this class of problems ?What types of heuristics apply to this class of problems ?Are there any pointers to research on this class of problems ?Clearly, an algorithm cannot be de�ned if the problem is not well understood.We propose a list of more speci�c questions for the LSCO team to analyze theuser requirements from a mathematical and logical perspective. The questions arestructured into three main groups as follows:1. Problem structure; Can you classify the application domain of the problem:scheduling, resource allocation, transportation, time-tabling, etc ? Whatare the semantics and mathematical properties of your constraints ?2. Quantitative aspects; Problem size. How big is a data set ? How manydecision variables do you foresee, what would be their domain size ? Howmany hard constraints ?3. Qualitative aspects; Solution type. Are you looking for an optimal solutionor not ? How many criteria are you considering ? Is the objective functionwell-de�ned ? What is the level of user interaction required in the decisionmaking process ? Are there requirements for solution quality (robustness,hard constraints on the execution time, ...) ?The guidelines we propose to characterize the algorithm consist of three comple-mentary views to extract the LSCO features from the problem de�nition:� Constraints and variables properties. We propose checklists to identifythe nature of the LSCO problem (unconstrained, constrained), the type of con-straints and objective function (linear, quadratic, symbolic, and others), the type(s)

18 CARMEN GERVETof variables (boolean, continuous, discrete, mixed or non-numerical), the nature ofthe available data (deterministic, probabilistic). This approach is intended to helpthe LSCO team �nd out which methods to try out �rst before attempting morecomplex ones (e.g. based on hybridization and problem decomposition).� Problem decompositions (problem categories, constraint seman-tics). If the LSCO problem appears to be intractable when solved as a whole,problem decomposition is necessary. The problem decomposition guidelines aim athelping the LSCO team identify the most adequate way to decompose their LSCOproblem. They focus on two complementary aspects: 1) identify well-de�ned sub-problems (among existing problem categories) of the LSCO that can be e�cientlyhandled by a single method; 2) structure the constraint set in di�erent ways accord-ing to the constraints' semantics or their mathematical structure. The �rst aspectcorresponds rather to an OR perspective. The guideline table, depicted Figure 7,presents di�erent sub-problems of a set of application classes.
)LHOG $SSOLFDWLRQ 3UREOHP�FDWHJRU\

$LUOLQH�LQGXVWU\ &UHZ�VFKHGXOLQJ
)OHHW�VFKHGXOLQJ
6KLIW�SODQQLQJ

6HW�FRYHULQJ
6HW�SDUWLWLRQLQJ
1HWZRUN�IORZ
$VVLJQPHQW

3URGXFWLRQ
PDQXIDFWXULQJ

&XWWLQJ�VWRFN .QDSVDFN
%LQ�SDFNLQJ

3URGXFWLRQ
VFKHGXOLQJ

&DU�VHTXHQFLQJ
5HVRXUFH�DOORFDWLRQ
7DVN�VFKHGXOLQJ

MRE�VKRS�
IORZ�VKRS
UHVRXUFH� FRQVWUDLQHG
SURMHFW�VFKHGXOLQJ

7UDQVSRUWDWLRQ
LQGXVWU\

)DFLOLW\�ORFDWLRQ
9HKLFOH�URXWLQJ
7RXU�SUREOHPV

6HW�FRYHULQJ

763

7HOHFRPPXQLFDWLRQ
DQG�QHWZRUN�LQGXVWU\

1HWZRUN�IORZ
1HWZRUN�RSWLPL]DWLRQ

0DWFKLQJ

:LUHOHVV
WHOHFRPPXQLFDWLRQ

)UHTXHQF\�DOORFDWLRQ &RORUDWLRQ
0D[LPXP
LQGHSHQGHQW
VHW

3HUVRQQHO�VFKHGXOLQJ 7LPH�WDEOLQJ
:RUN� IRUFH
VFKHGXOLQJ

$VVLJQPHQW
0DWFKLQJ�IORZ

« « «Figure 7. LSCO Sub-problem CategoriesFor such categories there is an e�cient solver available in the literature or inoptimization software packages (it might be dependent on the problem size). Themain downfall of focusing on problem categories is that the actual LSCO problemmay not be adequately tackled; some so-called side constraints may not �t in the

LARGE SCALE COMBINATORIAL OPTIMIZATION: A METHODOLOGICAL VIEWPOINT19problem category selected. The second approach corresponds rather to a ConstraintProgramming viewpoint and deals with such constraints.Given the whole spectrum of LSCO problems, there exist classes of constraintswhich can constitute the basis of a problem decomposition: resource constraints,temporal constraints, spatial constraints. Methods to handle each class of con-straints are suggested in the user guide and browser, together with some examples.� \Do's and Don'ts" for algorithm selection. This guideline emergedfrom the academic and industrial experience of the CHIC-2 consortium in tacklingLSCO problems. A table of do's and don'ts is depicted Figure 8.
$SSOLFDWLRQ 'R¶V 'RQ¶WV

6HW�FRYHULQJ

6HW�SDUWLWLRQLQJ
LQFOXGLQJ�SRVVLEO\
DGGLWLRQDO�NQDSVDFN
FRQVWUDLQWV

0L[HG�,QWHJHU�3URJUDPPLQJ

&ROXPQ�JHQHUDWLRQ� IRU� YHU\� FRPELQDWRULDO
SUREOHPV�� DOORZV� DQ� HIILFLHQW� WHFKQLFDO
GHFRPSRVLWLRQ

6HW�VHOHFWLRQ /3�� &3� ZLWK� SDUWLDO� VHDUFK� �/'6�� ORFDO
RSWLPLVDWLRQ

3XUH�&3

6FKHGXOLQJ
'LVMXQFWLYH�VFKHGXOLQJ
�VLQJOH�WDVNV�

%	%�� FRQVWUDLQW� SURSDJDWLRQ� XVLQJ
OLWHUDWXUH�VKDYLQJ�WDEX�KHXULVWLFV

/3��JHQHWLF�DOJRULWKPV�
VLPXODWHG�DQQHDOLQJ

3URGXFWLRQ�VFKHGXOLQJ VPDOO�VL]H���&3���KHXULVWLFV�

ELJ� VL]H� �PXOWL�SURGXFW�� PXOWL�PDFKLQHV��
OLQHDU� SURFHVVHV� �� 0,3� FDQ� EULQJ
VDWLVIDFWRU\�VROXWLRQV��FRPELQHG�VRPHWLPHV
ZLWK� KHXULVWLFV� IRU� SRVW�SURFHVVLQJ�� 0D\
QHHG�WR�GHFRPSRVH�WKH�SUREOHP

8VH�RI�³SXUH´
DSSURDFKHV

7LPH�WDEOLQJ

)L[HG�VHW�RI�DFWLYLWLHV

*OREDO�FRQVWUDLQWV��IORZ�DOJRULWKPV�

/3�PRGHO��ORFDO�RSWLPLVDWLRQ

3XUH�&3��ORFDO
SURSDJDWLRQ�IRU�KDUG
SUREOHPV�

5RXWLQJ�SUREOHPV

7UDYHOOLQJ�6DOHVPDQ
3UREOHP

&3�IRU�VPDOO�FRPSOH[�SUREOHPV�RQO\

/RFDO�RSWLPLVDWLRQ�E\�GHIDXOW��%UDQFK�DQG
&XW�LV�DQ�RSWLRQ

/3�ZLWKRXW�H[SHUWLVH

9HKLFOH�URXWLQJ�SUREOHPV /RFDO�RSWLPLVDWLRQ &3�RQO\

7RXU�SUREOHPV &ROXPQ� JHQHUDWLRQ� 0,3� DSSURDFKHV
�SURYHG�WR�VROYH�VXFK�SUREOHPV�RSWLPDOO\�

,I�PD[�GXUDWLRQ
FRQVWUDLQWV��GRQ¶W�XVH
QHWZRUN�IORZ�DSSURDFK
ZLWK�/3

)ORZ�SUREOHPV /3�PRGHOV��IORZV��JOREDO�DQDO\VLV 3XUH�&3��SXUH�/3
JHQHWLF�DOJRULWKPV

« « «Figure 8. Do's and Don'ts Table

20 CARMEN GERVETThe idea consists of presenting some choices of algorithms for a set of wellknown LSCO applications. The choices describe what the consortium considers tothis date to be most e�cient and successful. The guideline can be used as a formof advice when choosing initial methods to experiment with.6.3. Programming activity. The programming activity corresponds to theactual encoding and evaluation of the design work. It can take place during anyrisk driven process of the exploration phase, and the �nal implementation stage.Independently of any programming or modelling language, we propose somegeneric guidance relative to the following tasks:1. Coding LSCO models and solution methods2. Testing computerized solutions3. Debugging programsThose three tasks are core to any IT programming activity but do have an LSCOspeci�city in terms of \how" to complete the tasks. The iterative process builtupon those activities is shown in Figure 9. The testing task plays the role of localvalidation and might require the design model to be re�ned and the algorithm tobe tuned (if the results produced are not satisfactory). This goes with updatingthe design work.
Debug

Test cases

ProgramFigure 9. LSCO Programming ActivityCHIC-2 guidelines for program encoding: Overview. The guidelines we proposefor coding the model and algorithm concern prototyping issues (e.g algorithm tun-ing, model adjusting, obtaining initial solutions, iterative process, reuse of code),handling of data
ows between models, quality of code (generality, simplicity), andmost speci�cally encoding hybrid algorithms. Currently, the guidance for hybridencoding is illustrated using ECLiPSe programs, since the language is speciallydesigned to allow for complex hybridization of solvers [IC-00]. We address variousaspects such as which solver controls the search, and which degree of integrationshall be considered:� Loose; each solver works on its own and sends data to the other one� Tight; a solver is called from another one when some constraint state orconditions are reached.An example of tight integration of hybrid solvers is thoroughly described in [ESW00].

LARGE SCALE COMBINATORIAL OPTIMIZATION: A METHODOLOGICAL VIEWPOINT21CHIC-2 guidelines for program testing. The main concerns when testing LSCOprograms are correctness, robustness and e�ciency of the program. However, froman application point of view, we also need to evaluate the program signi�cance withrespect to the client requirements. We propose a set of testing guidelines, whichessentially consist of:� Two forms of test (well-de�ned versus prospective projects). For well-de�nedprojects, use real input data and compare the produced results with the cus-tomer's outputs. For prospective projects, provide solutions to the customerto be evaluated on the user site.� Two approaches for one LSCO. In practice it has been shown extremelyuseful to consider two di�erent implementations for an LSCO. The twoapproaches can di�er in their models and in the techniques used to buildthe algorithms. We strongly encourage the use of techniques from di�erentparadigms. This allows the LSCO team to test the correctness of the designmodel with respect to the problem de�nition, and possibly identify errorsthat lie in the formulation of the problem (which have not been identi�edin the design activity). Even though this can be time consuming (in theshort term), in the end it ensures that the problem de�nition and the designmodels are coherent with each other; and at the same time that good qualitysolutions are produced. Two members of the LSCO team can carry parallelimplementations.� An evaluation of solution quality. The degree of optimality may not be themain concern in some LSCO applications. The customer is also interestedin the CPU time, and the memory usage. So it is important to measurethe average performance considering all criteria and check the customer'spreferences.Examples of multiple approaches for one LSCO such as the inventory managementand the energy trading applications can be found respectively in [RKCP97, CK98]and [Ger97, GCM99], as well as in the user guide.CHIC-2 guidelines for program debugging: Overview. If the testing procedurefails, the program needs to be debugged requiring some revisions of the modeland algorithm. Of course, many iterations between test and debug can occur andone should be ready to change the code signi�cantly. We provide a set of \toolsand tricks" to debug LSCO programs independently of the programming/modellinglanguage at hand. Examples of tricks are:� The importance of using a graphical visualization of the searching processand the outputs. This can facilitate the reading of the results, help inunderstanding what went wrong, and also help discussing with the customerand identify core errors. Many CP languages such as OZ Explorer, providemeans to visualize the search space.� To use scaled down examples, in order to analyze by hand the results in themiddle of the search� To instrument the program to trace the key points.More detailed guidance on each aspect can be found on the browser.7. Conclusion and future workIn this article we have presented an overview of the CHIC-2 methodology. Thework focused on identifying and tackling the speci�c aspects of LSCO projects from

22 CARMEN GERVETa multi-paradigm and engineering approach. We have proposed dedicated meansto deal with the computational di�culty, complex technology and risky nature ofLSCO projects. These include in particular:1. Risk driven processes as part of the development model to develop LSCOsolutions in a real world environment.2. A tripartite structure for each development activity which includes a localvalidation of the outcomes (documents, programs)3. A conceptual model as part of the problem de�nition activity4. A multi-paradigm approach in the design and programming activitiesAny work on methodology is an ongoing work. However, we believe this con-stitutes a �rst step towards a generic approach for tackling LSCO applications thatreduces the risks encountered in such projects, and the level of expertise required.The methodology is used by all the partners of the CHIC-2 consortium. The userguide is publicly available at http://www.icparc.ic.ac.uk/chic2/.References[BC94] N. Beldiceanu and E. Contejean, Introducing Global Constraints in CHIP, Mathe-matical ComputationModelling (Elsevier Science, ed.), vol. 20(12), Pergamon, 1994,pp. 97{123.[BM82] J.J. Bisschop and A. Meeraus,On the Development of a General Algebraic ModelingSystem in a Strategic Planning Environment, Mathematical Programming Study,vol. 20, 1982, pp. 1{29.[Boe88] B. W. Boehm, A Spiral Model of Software Development and Enhancement, Com-puter, 1988.[BRJ96] G. Booch, J. Rumbauch, and I. Jacobson,The Uni�ed Modeling Language for ObjectOriented Development (v0.8 with v0.9 addendum), Rational Software Corporation,1996.[Bro95] F. P. Brooks, The Mythical Man-Month, Addison Wesley, 1995, New edition.[BT95] F. Benhamou and Touraivane, Prolog IV: langage et algorithmes, Journ�ees Franco-phones de la Programmation Logique, JFPL'95, 1995, in French, pp. 50{64.[BvB98] F. Bacchus and P. van Beek, On the conversion between non-binary and binaryconstraint satisfaction problems, 15th National Conference on Arti�cial Intelligence,1998.[CFGG95] A. Chamard, A. Fischler, B. Guinaudeau, and A. Guillaud, CHIC Lessons on CLPMethodology, Tech. report, Dassault Aviation and Bull, 1995.[CK98] Y. Caseau and T. Kokeny, An Inventory Management Problem, Constraints journal,vol. 3 (4), 1998.[CKC83] A. Colmerauer, H. Kanoui, and M. Van Caneghem, Prolog, bases th�eoriques etd�eveloppements actuels, T.S.I. (Techniques et Sciences Informatiques) 2 (1983),no. 4, 271{311.[CL95] Y. Caseau and F. Laburthe, Improving Branch and Bound for Jobshop Schedulingwith Constraint Propagation, CCS'95 (Springer Verlag, ed.), 1995.[CL97] Y. Caseau and F. Laburthe, Solving Various Weighted Matching Problems withConstraints, CP'97 (1997), 17{31.[CPL94] CPLEX Optimization Inc., Using the CPLEX Callable Library, version 3.0, 1994.[Dan63] G. B. Dantzig, Linear Programming and Extensions, Princeton university Press,1963.[Das97] Dash Associates, Xpress, user guide, 1984-1997.[dHMW+94] R. de Hoog, R. Martil, B. Wielinga, R. Taylor, C. Bright, and W. Van de Velde,The common KADS model set, Tech. report, ESPRIT project P5248, 1994.[DSD] DSDM homepage: http://www.dbs-group.co.uk.[DSea88] M. Dincbas, H. Simonis, and P. Van Hentenryck et al, The Constraint Logic Pro-gramming Language CHIP, FGCS (Japan), Aug. 1988.[ESW00] H. El-Sakkout and M. Wallace, A Probing Strategy for Minimal Temporal Pertur-bation in Dynamic Scheduling, Constraints Journal, vol. 5 (4), 2000, To appear.

LARGE SCALE COMBINATORIAL OPTIMIZATION: A METHODOLOGICAL VIEWPOINT23[FGK93] R. Fourer, D. Gay, and B.W. Kernighan, A modeling language for mathematicalprogramming, The Scienti�c Press, San Francisco, 1993.[GCM99] C. Gervet, Y. Caseau, andD. Montaut,On Re�ning Ill-de�ned Constraint Problems:A Case Study in Iterative Prototyping, PACLP'99 proceedings (1999), 255{275.[Ger97] C. Gervet, Ongoing research in CHIC-2: Decision making under uncertainty,CP'97, ERCIM and Compulog workshop on constraints, 1997.[Ger98] C. Gervet, IC-PARC methodology, 1998.[GL97] F. Glover and M. Laguna, Tabu Search, Kluwer Academic, 1997.[Glo89] F. Glover, Tabu Search, Orsa Journal of Computing, no. 1, 1989, pp. 190{206.[GM84] M. Gondran and M. Minoux, Graphs and algorithms, Series in Discrete Mathemat-ics, Wiley-interscience, Great Britain, 1984.[GN72] R. S. Gar�nkel and G. L. Nemhauser, Integer Programming, Wiley-interscience,1972.[Gol89] D.E. Goldberg, Genetic Algorithms in Search, Optimization, and Machine Learn-ing, Addison-Wesley, Reading, MA, 1989.[Gom63] R.E. Gomory, An Algorithm for Integer Solutions to Linear Programs, Recent Ad-vances in Mathematical Programming, 1963, pp. 269{302.[Gr�o93] M. Gr�otschel, Combinatorial Optimization: A Survey, Technical Report 93-29, DI-MACS, Princeton University, New Jersey 08544, May 1993.[HK96] F. J. Heemstra and R. J. Kusters, Dealing with risk: a practical approach, Journalof Information Technology, vol. 11-4, Chapman and Hall, 1996, pp. 333{346.[IC-00] IC-PARC, Imperial College, ECLIPSE version 5.0, user manual, 2000.[ILO97] ILOG Inc., Ilog solver, user manual, 1997.[KGV83] S. Kirkpatrick, C. Gelatt, and M. Vecchi, Optimization by Simulated Annealing,Science, no. 220, 1983, pp. 671{680.[Kow74] R.A. Kowalski, Predicate Logic as a Programming Language, IFIP (1974), 569{574.[LBM] LBMS homepage: http://www.platinum.com/products/appdev/ppcpr.htm.[Mac77] A. K. Mackworth, Consistency in networks of relations, Arti�cial Intelligence(1977).[MF85] A. K. Mackworth and E. C. Freuder, The complexity of some polynomial networkconsistency algorithms for constraint satisfaction problems, Arti�cial Intelligence25 (1985).[Mon74] U. Montanari, Networks of Constraints: Fundamental Properties and Applicationsto Picture Processing, Information Science, 1974, pp. 95{132.[MvH97] L. Michel and P. van Hentenryck,LOCALIZER a modeling language for local search,CP'97 (1997).[NW88] G.L. Nemhauser and L.A. Wolsey, Integer and Combinatorial Optimization, Wiley,1988.[PL90] DeGrace P. and Stahl L.H., Wicked Problems, Righteous Solutions: A Catalogue ofModern Software Engineering Paradigms, Prentice-Hall, 1990.[RKCP97] R. Rodosek, T. Kokeny, Y. Caseau, and C. Le Pape, Creating Hybrid Solutions forInventory Management Problems, ERCIM/Compulog Workshop on Constraints inconjonction with CP'97, 1997.[RW98] R. Rodosek and M. G. Wallace, A Generic Model and Hybrid Algorithm for HoistScheduling Problems, CP'98, 1998.[RWH99] R. Rodosek, M. Wallace, and M. Hajian, A New Approach to Integrating MixedInteger Programming with Constraint Logic Programming, Annals of OperationsResearch, 1999.[vH87] P. van Hentenryck, Consistency techniques in logic programming, Ph.D. thesis, Uni-versity of Namur, Belgium, July 1987.[Wil94] H.P. Williams, Model Building in Mathematical Programming, Wiley, 1994.

24 CARMEN GERVETAppendix A. Risk scenarios in LSCO project developmentThe following table presents a sample of the risk scenarios, consequences andcountermeasures we have identi�ed. It is mainly addressed to the LSCO team butcan bring useful information to the customer as well.
5LVN�6FHQDULR &RQVHTXHQFHV &RXQWHUPHDVXUH

��� &XVWRPHU� RUJDQLVDWLRQ� KDYH� QR
SUHYLRXV�H[SHULHQFH�RI�/6&2�SURMHFWV�RU
RWKHU� ,7� SURMHFWV� RI� VLPLODU� VL]H� DQG
FRPSOH[LW\�

7KH� FXVWRPHU� DEDQGRQV� WKH
SURMHFW�GXULQJ�RU�DIWHU�6WDJH���RI
WKH�SURMHFW�OLIHF\FOH�

$W� 6WDJH� ��� WKH� /6&2� H[SHUW� PXVW� HQVXUH� WKDW� WKH� VSRQVRU� IXOO\
XQGHUVWDQGV�WKH�IXWXUH�VWDJHV�RI�WKH�/6&2�SURMHFW�OLIHF\FOH��WKH�ZRUNLQJ
PHWKRGV�WR�EH�HPSOR\HG�DQG�WKH�FRPPLWPHQW�UHTXLUHG��,OOXVWUDWH�WKLV�E\
H[DPSOHV�RI�VLPLODU�SURMHFWV�ZKLFK�KDYH�EHHQ�VXFFHVVIXOO\�FRPSOHWHG�
,GHQWLI\�DQ��H[SHUW��ZLWKLQ�WKH�FXVWRPHU�RUJDQLVDWLRQ�IRU�WKH�SURMHFW�

����7KH� ILUVW� SURWRW\SH� EXLOW� KLJKOLJKWV
PDMRU� SUREOHPV� ZLWK� WKH� SUREOHP
VROXWLRQ�DQG�WKH�FXVWRPHU�EHOLHYHV�WKDW
WKH� SURMHFW� LV� QRW� SURJUHVVLQJ
VDWLVIDFWRULO\�

7KH� FXVWRPHU� DEDQGRQV� WKH
SURMHFW�GXULQJ�6WDJH���RU���RI�WKH
OLIHF\FOH�

,Q�ULVN�DQDO\VHV�FDUULHG�RXW�LQ�6WDJHV���	���RI�WKH�OLIHF\FOH��HQVXUH�WKDW
IDLOXUH�RI�WKH�LQLWLDO�SURWRW\SHV�LV�FRQVLGHUHG�DQG�FRQWLQJHQF\�SODQV�DUH
PDGH�

���8VHUV� FRQWLQXRXVO\�FKDQJH� WKHLU� QHHGV
��IXQFWLRQDOLW\�LV�FKDQJHG�RU�DGGHG�

$� VDWLVIDFWRU\� SURWRW\SH� RU
VROXWLRQ� FDQQRW� EH� TXLFNO\
DFKLHYHG�

8VHU� UHTXLUHPHQWV� PXVW� EH� VSHFLILFDOO\� GRFXPHQWHG� DQG� DJUHHG� WR
EHIRUH�FRPPHQFLQJ�DQ\�GHVLJQ�RU�SURWRW\SLQJ�DFWLYLWLHV��)XQFWLRQDOLWLHV
ZKLFK�GR�QRW�FKDQJH�WKH�SUREOHP�QDWXUH�FDQ�EH�LJQRUHG�DW�6WDJH���

���7KH�GDWD� LV�QRW�DYDLODEOH�RU�QRW�XVDEOH
IRU�WKH�RSWLPLVDWLRQ�WRRO�

1R� WHVW� FDQ� EH� SHUIRUPHG� ZLWK
UHDO� GDWD� DQG� WKH� SURMHFW� LV
FDQFHOOHG�

9DOLGDWH�DV� HDUO\�DV�GXULQJ�6WDJH��� WKDW� UHDO�GDWD�ZLOO� EH�DYDLODEOH� DQG
WKDW�WKH�FXVWRPHU�LV�DEOH�WR�SURYLGH�VRPH�LQLWLDO�GDWD�VHWV�GXULQJ�6WDJH���

���7KH�FXVWRPHU�H[SHFWV���ZDV�SURPLVHG�D
KLJK� RSWLPLVDWLRQ� SHUFHQWDJH� �VD\� ����
EXW�WKH�DFWXDO�UHVXOW�LV�PXFK�ZRUVH��VD\��
�����

8VHU� LV� GLVDSSRLQWHG� ��QR� IXUWKHU
EXVLQHVV�� 7KH� DSSOLFDWLRQ� LV� QRW
XVHG�

'R� QRW� UDLVH� WKH� FXVWRPHU� �� FXVWRPHU¶V� H[SHFWDWLRQV� WRR� KLJK� GXULQJ
6WDJH� �� RI� WKH� OLIHF\FOH� �� EH� UHDOLVWLF� DERXW� DQWLFLSDWHG� JDLQV�� *DLQV
VKRXOG�EH�PHDVXUHG�DJDLQVW�ZKDW�LV�GRQH�LQ�SUDFWLFH��WDNLQJ�LQWR�DFFRXQW
WKH�G\QDPLFV�RI�WKH�SUREOHP��QRW�DJDLQVW�D�WKHRUHWLFDO��VWDWLF�HVWLPDWLRQ�

��� 7KH� /6&2� WHDP� LV� VSHFLDOLVHG� LQ� RQH
RSWLPLVDWLRQ� WHFKQLTXH�� WRRO� RU� W\SH� RI
SUREOHP�

7KH� VROXWLRQ� GHVLJQ� PD\� QRW� EH
WKH�PRVW�HIILFLHQW�RQH�

(QVXUH�WKDW�DQ�/6&2�WHDP�ZLWK�D�ZLGH�H[SHULHQFH�RI�GLIIHUHQW�W\SHV�RI
SUREOHP� DQG� RSWLPLVDWLRQ� WHFKQLTXHV� LV� XVHG�� 6XE�FRQWUDFW� SDUW� RI� WKH
SURMHFW�WR�DQ�H[WHUQDO�VXSSOLHU�

��� 7KH� SURSRVHG� GHVLJQ� LV� D� IXOO\
DXWRPDWHG� RSWLPLVDWLRQ� V\VWHP� �EODFN�
ER[��

7KH� VROXWLRQ� PD\� QRW� EH� UREXVW
ZKHQ� IDFHG� ZLWK� FKDQJHV� LQ� WKH
XVHU� UHTXLUHPHQWV�� WKHUHE\
OHDGLQJ� WR� ODFN� RI� FRPPLWPHQW
IURP�WKH�FXVWRPHU�

2SWLPLVDWLRQ�V\VWHPV�EDVHG�RQ�'HFLVLRQ�6XSSRUW�6\VWHPV��'66��VKRXOG
EH�XVHG�DW�OHDVW�GXULQJ�WKH�H[SORUDWLRQ�SKDVH�LQ�SUHIHUHQFH�WR�EODFN�ER[
V\VWHPV�

���5HTXLUHPHQWV�DUH�YDJXH��RU�FXVWRPHU�LV
KHVLWDWLQJ�EHWZHHQ�VHYHUDO�DOWHUQDWLYHV�

1R� HIILFLHQW� GHVLJQ� RI� D� VROXWLRQ
FDQ�EH�SUHSDUHG�

8VH� SURWRW\SHV� DQG� JUDSKLFDO� YLVXDOLVDWLRQ� WR� KHOS� WKH� FXVWRPHU� LQ� LWV
FKRLFHV�

���7KH�SURSRVHG�UHVXOWV�DUH�YHU\�GLIIHUHQW
IURP�FRQYHQWLRQDO�RU�PDQXDO�RQHV�

7KH� FXVWRPHU� GRHV� QRW� WUXVW� WKH
DSSOLFDWLRQ� RU� GRHV� QRW� ZDQW� WR
DSSO\� WKH� UHVXOWV� GXH� WR� WKH
LPSRUWDQW�FKDQJHV�LW�UHTXLUHV�

,QWURGXFH� LQ� WKH� PRGHO� RSWLRQDO� FRQVWUDLQWV� WKDW� DOORZ� WR� FRQWURO� WKH
GLVWDQFH�EHWZHHQ�WKH�SURSRVHG�VROXWLRQ�DQG�WKH�FRQYHQWLRQDO�RQHV��7KH
FXVWRPHU�ZLOO�WKHQ�SURJUHVVLYHO\�DSSURSULDWH�WKH�V\VWHP�

LARGE SCALE COMBINATORIAL OPTIMIZATION: A METHODOLOGICAL VIEWPOINT25Appendix B. Problem de�nition document layout

Information System (IS) environment

Software components (programming language,...)

Hardware components

Operating Systems, Data base connexions

 Input M2 Output

 Input M3 Output

 Input M1 Output

X ltd is a Y million £ company,...
The coming market deregulation requires X to optimize their...
X is looking for a DSS that ...

Find the optimal plan such that the following constraints are satisfied

Given a set of tasks and jobs to schedule

Execution time between 30sec and 1 min, optimal solutions required,...

The menus should look as follows,...

GUI: I want to be able to interrupt the optimisation and make decisions

 All outcomes should be displayed as graphs and matrices

Fuctional requirements (level of user interaction with the system)

Project cost, and budget

Documents to be produced (user guide, training material, maintenance documentation,...)

Business requirements

Technical requirements (includes all hardware and software specifications if any)

I Business Case

II Problem organisational decomposition

III LSCO requirements

IV Other requirements

Reconsidering this structure is possible if good operational or quality reasons

X currently operates by solving the problem with the following organisational modules,...

Refine and structure the LSCO requirements by building the conceptual model

Input data: ...

Ouput data:...

Constraints:...

Decision criteria:...

Constraints on delivery dates,...IC-Parc, Imperial College, William Penney Laboratory, London SW7 2AZE-mail address: c.gervet@icparc.ic.ac.uk

