Integrating Propagation
and Built-in Constraints

Thierry Le Provost
Mark Wallace

January 1992

Abstract

Constraint logic programming is often described as logic programming with unification
replaced by constraint solving over a computation domain. There is another, very different,
CLP paradigm based on constraint satisfaction, where program-defined goals can be treated
as constraints and handled using propagation. This paper proposes a generalisation of prop-
agation, which enables it to be applied on arbitrary computation domains, thereby restoring
orthogonality and bridging the gap between two important constraint logic programming
paradigms. The main idea behind generalised propagation is to use whatever constraints are
available over the computation domain to express restrictions on problem variables. Gener-
alised propagation on a goal (G requires that the system extracts a constraint approximating
all the answers to (G. The paper introduces a generic algorithm for generalised propagation
called “topological branch and bound” which avoids enumerating all the answers to G. Gen-
eralised propagation over the Herbrand universe has been implemented in a system called
Propia, and we describe its behaviour on some applications.

1 Background and Motivation
1.1 Motivation

Although classical logic programming is a convenient vehicle for stating combinatorial prob-
lems, it can be grossly inefficient for solving these problems. The essential reason for this
inefficiency is the naivety of Prolog’s computation procedure, based solely on resolution.

To get an efficient solution with standard Prolog it is therefore often necessary explicitly
to program adequate algorithms for the problems at hand. One obvious drawback of such
an approach is that the explicit algorithm has little in common with the initial declarative
problem specification, and hence requires a major development effort from the programmer.
An even more severe drawback is that the resulting program may no longer correctly solve
the problem.

To avoid these drawbacks, it is therefore desirable to try and provide built-in control
mechanisms that would allow a declarative problem statement to be executed efficiently.

Historically, the first step in that direction was to introduce so-called dynamic computa-
tion rules into Prolog. The idea is to allow programmers to alter the standard left-to-right
goal selection mechanism of Prolog, so that goals with a beneficial effect on search space
size are selected for resolution first. Control declarations typically take the form of metalog-
ical conditions associated to goals (Prolog-II’s freeze) or to predicate definitions (SEPIA’s
delay, MU-Prolog’s wait, NU-Prolog’s when), which prescribe when goals may be selected
for resolution.

Unfortunately, dynamic computation rules are limited in scope, as they only affect the
order of goal selection; there are many hard search problems for which no good goal ordering
exists, as the search space will anyhow remain unacceptably large. Besides, control declara-
tions can become quite unwieldy to design, debug, and reason about. Small alterations of the
problem’s definition often require an extensive revision of dynamic declarations.

A more recent, orthogonal approach is to build certain goals (“constraints”) into the logic
programming language, so that the system knows about the satisfiability of such goals without
any effort by the programmer. Languages in the CLP Scheme [JL87] and CHIP’s finite domain
constraints are examples of this approach.

The shortcoming of such built-in approaches to search space reduction is precisely that
they are built in. One can of course define new predicates using such hardwired constraints,
but these predicates will be processed by the usual blind resolution mechanism. If a particular
application needs a particular constraint, then it must be compiled into the system.

CHIP therefore offers a facility to support program-defined constraints. It is termed
propagation and is provided via two special inference rules called forward checking and
lookahead. Propagation enables program-defined predicates to be used as constraints in a
very specific way: for reducing the domains associated with one or two variables.

“Generalised propagation” is a generalisation of CHIP’s propagation that overcomes its
limited expressive power. The idea is to reduce search space size while preserving the declar-
ativeness of problem statement. Generalised propagation provides a clean and simple means
of using declarative predicate definitions as deterministic reasoning agents.

1.2 Declaratively Specified Constraints

The main idea of generalised propagation is that declarative predicate definitions can be given
two complementary meanings.

The first meaning is the traditional one, that is, predicate definitions denote relations over
objects in some computation domain. In the case of Prolog, the computation domain is the
Herbrand Universe (finite trees), but other languages in the CLP Scheme work on less trivial
objects (rational trees, lists, integers, reals, Booleans, etc).

The second, new meaning attributed to predicate definitions is that they define determinis-
tic “refinement operators” over variable bindings. Informally, a predicate holds for a (possibly
infinite) set of values, and all these values might have some common properties. (For example
they might all be integers greater than 20, or they might all be compound terms of the form
book(_)). One can therefore validly extract these common properties and add them to the
current environment, without losing any potential solutions to the problem at hand.

Making common properties explicit helps reduce the search space, as they may preclude
some wrong guesses by the resolution procedure. Put another way, a system that features
a way of extracting properties common to all solutions to goals turns goals into active con-
straints.

In contrast to the other approaches to introducing constraints outlined above, generalised
propagation constraints are:

e program-defined, in that any predicate definition can be declared to be a constraint;

o declaratively specified, in that the programmer need not describe how constraints oper-
ate, but only what relation they enforce.

1.3 A few examples

Let us take a “standard” constraint satisfaction problem, which just consists of a conjunction
of goals whose predicate definitions are extensional collections of Prolog facts.

% Some problem to be solved:
- pX,£(Y)), q(N), rX,Y,2),

% The declarative definition for p/2:
pla,f(a)).

p(b,c).

p(b,f(b)).

pX,gh(X))).

% Other definitions for q/1, r/3,

To use p(X,£(Y)) and r(X,Y,Z) as constraints there is literally nothing to do, except
annotate the goal as follows:
?7- constraint p(X,£(Y)), q(Y), constraint r(X,Y,Z),

Generalised propagation will take any of the constraints (say, p(X,£(Y))), and deter-
ministically extract all common properties of the goal’s solutions that are expressible as a
substitution. Here, it will infer that X = ¥ must hold in any solution to the problem. Knowl-
edge that X = Y may in turn allow some further deterministic inferences, using the definition
for r/3, and so on. When this propagation process stops, control is given back to the Prolog
engine to perform a resolution step. The new query will often be more explicit, e.g. more
variables in it will have received a value, and some doomed resolution steps may therefore be
avoided.

Declaratively specified constraints are not restricted to extensional definitions, as for in-
stance:

member (X, [X|_1).
member (X, [_IT]) :-
member (X,T) .

is a perfectly acceptable constraint specification, which allows the system to infer X = a from
the goal member(a, [b,£(Y) ,X,c]).

Such constraints are not confined to reasoning on terms either, as the extracted common
properties are just whatever the language’s basic computation domain affords. (Hence the
name “generalised propagation”, as it generalises over some more restricted, similar notions
that are available in the Chip system.)

For instance, if the host language allows finite-domain variables, then common properties
include domain reductions in addition to bindings. If hardwired symbolic or arithmetic con-
straints are available in the language, then they can be combined with declaratively specified
constraints.

One demonstration of this is the possibility to employ disjunctively defined constraints.
Such constraints typically arise in scheduling problems; due to resource usage exclusion, two
given tasks may not be performed at the same time:

% Either Task 1 occurs before Task 2:

disj(Startl,Durationl, Start2,Duration2) :-
Start2 >= Startl + Durationl.

% Or Task 2 occurs before Task 1:

disj(Startl,Durationl, Start2,Duration2) :-
Startl >= Start2 + Duration2.

Chip does not allow a disj/4 goal to be used as a constraint, i.e. it must make a guess between
the two alternatives when a disj/4 goal is applied (leading to a potential combinatorial explo-
sion). Generalised propagation allows the programmer to demand that a disj/4 goal be used
as a constraint; and domain reductions for the four arguments then occur deterministically
without committing to either alternative.

1.4 Applications

Within the CHIC project a number of applications for generalised propagation have already
emerged. The first, and simplest, was stated by ICL at a CHIC user group meeting at ECRC.
ICL needs to test if a constraint is satisfiable, without adding it to the environment. This is a
direct application of generalised propagation using the consistency propagation language (as
described in section 5.1 below).

The second application was stated by OCT at the same CHIC user group meeting. For
propagating constraints on traffic flows it is necessary to use the flow predicate as a constraint,
whose definition is:

flow(1,Flow) :- 0<Flow, Flow<0.3
flow(2,Flow) :- 0.3<Flow, Flow<0.7

Thus given the goal 7= flow(D,F) and the constraint DD < 2, the system should deduce that
0 < F <0.7. On the other hand, given the constraint 0 < F' < 0.5 the system should be able
to deduce that) < 2. To obtain this behaviour using generalised propagation over inequalities
it suffices simply to annotate the goal as a constraint, viz: ?- constraint flow(D,F).

The third application is more than just a single application but a very general problem
in scheduling: how to deal with disjunctive constraints. The example of disj/4 above shows
how disjunctive constraints are treated in a quite natural way using generalised propagation.

The way these problems are currently solved is by using special built-in constraints (like
the extended element constraint recently added to CHARME), and by encoding the problem
using an algorithmic understanding of constraint propagation to obtain roughly the required
behaviour (as described by Dassault at the CHIC user group meeting in Valencia).

However each problem is naturally expressed in standard Prolog, and with generalised
propagation the required constraint behaviour can be obtained by simply annotating the
relevant goal as a constraint. No new built-in constraints need be compiled into the system.

The advocated programming methodology using generalised propagation is first to design a
declarative Prolog program stating the problem without any concern for efficiency. Then, this
probably very inefficient program can be refined by earmarking appropriate goals as declara-
tive constraints. Of course, determining which goals are appropriate for use as constraints is
the program designer’s responsibility!

Programming with declaratively specified constraints is therefore still more of an art than
an exact science ... but in opposition to other approaches to programming with constraints, the
required trial-and-error process of identifying beneficial constraints can be performed without
altering the program’s structure, designing complex metalogical declarations, or implementing
new language primitives.

2 Introduction

2.1 The CLP Scheme

Constraint logic programming is often described as logic programming with unification re-
placed by constraint solving over a computation domain. This is captured in a theoretical
framework called the CLP scheme [JL87]. A C'LP(X) program comprises rules of the form

h<—C1,...Cn,b1,...bm

where the ¢; are constraints over the domain X and the b; are (user—deﬁned or built—in)
logic programming goals. During computation clauses are unfolded, and the constraints in
their bodies are collected up and tested for consistency. In this paper we shall often refer
to constraints in the C'LP(X) framework as “basic constraints”. One point to note is that
the basic constraint predicates are built-into the system, and cannot be defined by program
clauses. A second point is that the consistency check covers all the basic constraints which
have been collected up during the computation (which distinguishes constraints from ordinary
built-in predicates [Mah87]). This check must, in theory, be effective.

2.2 CSP in Logic Programming

There is another, very different, CLP paradigm which is based on constraint satisfaction
techniques dating back to Golomb [GB65]. In the constraint satisfaction problem (CSP)
paradigm the constraints are problem-specific, and defined by sets of tuples. When CSP is
embedded into logic programming, the definition of a constraint can be defined in the program
as a set of facts, or even as a set of rules [Van89]. We shall often refer to constraints in the
CSP framework as “propagation constraints”.

One prerequisite for applying CSP techniques is that problem variables should have an
associated domain of possible values. Traditionally [Fik70, Mon74, Mac77, HE80] this is a
finite domain, though more recently continuous intervals have been studied [Dav87]. Up to
now, constraint logic programming systems based on the CSP paradigm (eg CHIP [DVS*88])
have therefore had to include domain declarations for the problem variables. This is one
restriction we will relax using generalised propagation.

It should be noted that constraint solving over a computation domain is replaced in this
paradigm by constraint propagation over value domains [Fik70, Mon74, Mac77, HE80]. In-
formally constraint propagation operates by looking ahead at yet unsolved goals to see what
locally consistent valuations there remain for individual problem variables. In the CSP frame-
work there is no guarantee that, after a complete propagation sequence, the propagation con-
straints are globally consistent, by contrast with constraint solving for basic constraints in
the CLP scheme. However such propagation techniques can have a dramatic effect in cut-
ting down the size of the search space. Evidence of the practical effectiveness of constraints
propagation in logic programming is given in [DSV90].

2.3 Propagation in Finite Domains

To date the technique of propagation in constraint logic programming has only been defined
for finite domain variables. Each such variable can only take a finite number of values, and
looking ahead is a way of deterministically ruling out certain locally inconsistent values and
thus reducing the domains. This restriction has prevented the application of propagation to
new computation domains introduced by the CLP scheme and related approaches. In addition
propagation as currently defined only exploits a fraction of the power of its native universe of
discourse. For instance it cannot reason on compound terms, thereby enforcing an unnatural
and potentially inefficient encoding of structured data as collections of constants.

This has meant that the two approaches to integrating constraints into logic programming,
as basic constraints and as propagation constraints, have had to remain quite separate. Even in
the CHIP system [DVS'88] which utilises both types of integration, propagation is excluded
from those parts of the programs involving new computation domains, such as Boolean algebra
or linear rational arithmetic.

2.4 Generalised Propagation

This paper proposes a generalisation of propagation, which enables it to be applied on arbi-
trary computation domains. Generalised propagation can be applied in C'LP(X) programs,
whatever the domain X. We shall call GP(X) the system applying generalised propagation
in CLP(X). Finite domain propagation in logic programming is just GP(F D).

The basic concepts, theoretical foundations, and abstract operational semantics of G P(X)
can be defined independently of the computation domain, X. This allows programmers to
reason about the efficiency of GP(X) in an intuitive and uniform way. This generality carries
over to the implementation, where algorithms for executing generalised propagation apply
across a large range of basic constraint theories. Last but not least, the declarative semantics
of CLP(X) programs is preserved in GP(X).

We briefly motivate generalised propagation with a simple example. Constraint logic
programming has been applied to the problem of crossword compilation [Van89]. A domain
variable was associated with each blank word in the crossword, whose domain was the set
of words in the lexicon that could fit there. The correct choice of words was enforced by
constraints on their intersections. The finite domains associated with the variables had around
30 possible words. A more natural representation of the problem, where variables denote
letters ranging over the alphabet, unfortunately fails to allow sufficient constraint propagation
to enable the problem to be solved in any reasonable time.

With generalised propagation this representation of the problem is possible. It is stated
as follows:

top :-
constraint word(A1,A2,B1,A4,C1),
constraint word(B1,B2,B3,B4),
constraint word(C1,€2,C3),

where the intersections are reflected as shared letters in distinct word goals. Instead of prop-
agating domain reductions, the system propagates equalities. Not only does this allow the
original problem, with a lexicon of 150 words, to be solved, it enables the problem to be scaled
up to realistic proportions. Using generalised propagation, this program compiles crosswords
from a lexicon of 25000 words. A more detailed discussion of this application follows in section

5.1. The main idea behind G P(X) is to use whatever constraints are available over the com-
putation domain X to express restrictions on problem variables. (Associating finite domains
with variables is one specific application of this concept.) Goals designated as propagation
constraints are repeatedly approximated as closely as possible using these constraints. When
no further refinement of the current resolvent’s approximation is feasible, a resolution step is
performed and propagation starts again.

The practical relevance of generalised propagation has been tested by implementing it in
the underlying constraint theory of first-order terms with syntactic equality [Cla79], which is
the computation domain of Prolog. This is GP(HU). Programs are just sets of Prolog rules
with annotations identifying the goals to be used for propagation. The language has enabled
us to write programs which are simple, yet efficient, without the need to resort to constructs
without a clear declarative semantics such as demons. The performance results have been
very encouraging.

In the next section we shall describe finite domain propagation in logic programming,
then in section 3 we shall specify generalised propagation, discussing its logical and opera-
tional semantics and introducing a generic algorithm for its implementation over arbitrary
computation domains. In section 4 we shall describe two implemented instances of gener-
alised propagation, based on a single system called Propia. In section 5 we shall compare
generalised propagation with some related approaches, and we shall conclude in section 6.

3 Constraint Propagation

In this section we briefly review the motivation of finite domain propagation in logic program-
ming and describe its behaviour with some examples.

3.1 Passive and Active Constraints

For solving CSP problems in logic programming, backtrack search is used. The aim is to
perform relevant “tests” as soon as possible after instantiating a variable. Sophisticated dy-
namic computation rules, such as freeze [Col85] and delay [Nai86, MACT89] can be used to
determine which goal to evaluate next. However even such dynamic rules can only postpone
evaluation until the constraints are partially or fully instantiated. Evaluating partially instan-
tiated constraints will generate values for variables, usually creating undesirable branches in
the search tree. Waiting till the constraint is ground before evaluating, is to use the constraint
as an a posteriori test. To summarise, logic programs can only use constraints passively.

Our motivation for constraints logic programming is to support the active use of constraints
[Gal85]. This is provided by techniques developed for solving constraint satisfaction problems
(CSP). The study of CSP has a long history, and we mention here just a few important
references. The concept of arc consistency was introduced in [Mac77, Fre78]; its combination
with backtrack search was described in [HES80]; the notion of value propagation is due to
[SS80]; the application of constraint methods to real arithmetic was surveyed in [Dav87];
finally [Van89] extensively motivates and describes in detail the integration of finite-domain
propagation methods into logic programming.

3.2 Propagation in Constraint Logic Programming

The idea behind local propagation methods for CSP’s is to work on each propagation con-
straint independently, and deterministically to extract information about locally consistent
assignments. This has lead to various consistency algorithms for networks of constraints, the
most widely applicable of these being arc-consistency [RHZ75, Mon74]. Consistency can be
applied as a preliminary to the search steps or interleaved with them [HE80]. The applica-
tion of these techniques in logic programming was accomplished through two complementary
extensions [VD8&6, Vang9]

o explicit finite domains of values to allow the expression of range restrictions, together
with the corresponding extension of unification (FD-resolution)

o new nference rules, based on looking ahead at “future” computations, to reduce finite
domains in a deterministic way

The effect of looking ahead on a goal is to reduce the domains associated with the vari-
ables in the goal, so that the resulting domains approximate as closely as possible the set of
remaining solutions. Application of these inference rules is repeated on all propagation con-
straint goals until no more domain reductions are possible, forming a propagation sequence.
Propagation constraint goals that are satisfied by any combination of values in the domains
of their arguments can now be dropped.

One algorithm for implementing lookahead is to enumerate all combinations of values for
the constraint’s arguments and check each combination by calling the goal instantiated with
these values. The reduced domains are then formed by projecting successful combinations onto
each argument. CHIP in addition implements a variety of predefined constraint predicates,
which efficiently perform domain reduction by specialised algorithms. (The drawback of such
dedicated algorithms is that they cannot be applied to program-defined predicates.) An
example problem encoded in a CHIP-like syntax follows:

csp(X1,X2,X3,X4) :-
[X1,X2,X3,X4] :: [a,b,c],

constraint p(X3,X1), /% 1 %/
constraint p(X2,X3), /% 2 %/
constraint p(X2,X4), /% 3 %/
constraint p(X3,X4). /* 4 */

pla,b). pa,c). p(b,c).

The constraint annotations identify goals that must be treated by the new inference rule.
Annotations can be ignored for a declarative reading.

For our example problem, the initial propagation sequence is sufficient to produce the only
solution. A possible computation sequence is as follows (though the ordering is immaterial
for the final result):

constraint p(X3,X1) [1] produces X3::{a,b}, X1::{b,c}
constraint p(X2,X3::{a,b}) [2] produces X2=a, X3=b
constraint p(a,X4) [3] produces X4::{b,c}

constraint p(b,X4::{b,c}) [4] produces X4=c
constraint p(b,X1::{b,c}) [1] produces Xli=c

constraint p(a,b) [2] succeeds
constraint p(a,c) [3] succeeds
constraint p(b,c) [4] succeeds

Note that the propagation constraint [1] takes part in two propagation steps before it is solved.
In general constraints may be involved in any number (> 0) of propagation steps.

This example is deliberately very simple. Normally an answer is not obtained by propaga-
tion alone. If a propagation sequence terminates without producing an answer, then variables
are instantiated non-deterministically to values in their domains: this can be achieved by an
explicit “labelling” routine (as in CHIP) or by an implicit labelling performed automatically
by the system.

3.3 Clauses Defining Propagation Constraints

A nice property of constraint logic programming is the fine level of control it offers over
problem solving. A propagation constraint goal can be defined by rules and therefore can
be arbitrarily complex. As an example consider a CSP problem comprising propagation
constraints C1,...,Cy. As a constraint logic program this could be expressed as

top —
/* domain declarations */
constraint C,

constraint C,

Assuming that the propagation constraints are defined by immediately accessible facts,
independent propagation on the sequence of constraints Ci, ..., can be relatively efficient.
CHIP for example uses the arc consistency algorithm of [MF85], which is o(r.d”) where d is

the size of the largest variable domain. In fact this complexity result holds for constraints on
two variables. When more variables are linked in a constraint, different algorithms may be
more efficient.

Another way to encode the same problem in CLP is as follows:

brgConstraint —
i,
Cn
top —
/* domain declarations */
constraint bigConstraint

In this case, by contrast, to find a single tuple for bigConstraint is to solve the whole CSP
problem. Its worst case complexity is therefore exponential in the size of the largest domain.

Clearly it brings nothing to define the whole problem as a single propagation constraint.
However the facility to combine clusters of constraints into a single larger constraint means
that propagation can be used to enforce consistency just as local or global as necessary for
the problem at hand. The only practical necessity is to treat efficiently constraints involving
a number of variables. Indeed there is no reason why a predicate cannot include constraints
in its definition, whilst itself appearing in a constraint goal in a larger program. Generalised
propagation provides a framework where local and global propagation are practical alterna-
tives.

4 A Specification of GP(X)
4.1 Definitions

The language syntax and semantics used in this paper are based on first order logic. Atomic
formulae are built from variables, predicate symbols, function symbols and constant symbols.
If ® is any open formula, then 3® and V® denote respectively the existential and universal
closure of ® as usual.

The predicate symbols are divided into interpreted predicates and user predicates (often
called “uninterpreted” predicates). The function and constant symbols are divided similarly.

For a given computation domain X, the interpreted symbols have a predefined interpreta-
tion, independent of the programs in which they appear. The = predicate symbol is always an
interpreted predicate, interpreted as equality in the underlying domain. Two further predi-
cates which are always interpreted are true and false. Typically interpreted function symbols
include + and — with their usual interpretation.

By contrast the interpretation of the user predicates is dictated by the program semantics.
User functions and constants have the free interpretation in the underlying domain.

An atom containing only interpreted predicates, functions and constants is termed an
interpreted constraint. An atom containing only user predicates, functions and constants is
termed a user atom. An atom cannot contain both interpreted and user symbols.?

We admit an additional syntax for atoms constraint A where A is a user atom. This
syntax yields another kind of constraints called propagation constraints. Unlike interpreted
constraints, propagation constraints have user predicates whose interpretation is dictated by
the program semantics.

We now further distinguish two classes of interpreted constraints. These are the basic con-
straints and approximation constraints. The conjunction of a set of basic or approximation
constraints is also termed an basic or approximation constraint respectively. Approximation
constraints “approximate” basic constraints in the sense that for any approximation constraint
AC there are basic constraints C' such that X | (C — AC). An example of an approximation
constraint is X :: {1,2,3} which states that either X =1 or X = 2 or X = 3. It approx-
imates each of the basic equality constraints X = 1, X = 2 and X = 3. Approximation
constraints are a generalisation of Davis’ labels [Dav87]. The approximation constraints and

1In practise one can admit such atoms (e.g. p(1 4 X)) and view them as abbreviations for a conjunction where
the equalities are made explicit (e.g. p(Y)AY = (1 + X)).

the basic constraints need not be disjoint: in other words basic constraints could approximate
themselves.

A GP(X) program is a set of clauses of the form Head «— Bodya,..., Body.. The head
Head is a user atom. The body is a set of atoms, which may include user atoms and con-
straints. A clause with an empty head — Body, ..., Body. is termed a goal.

An example clause is

profit(Company, P)—
constraint public(Company),
income(Company, I),
expenditure(Company, E),
P=I-F

4.2 Logical and Operational Semantics for GP(X)

A Framework for Evaluation in GP(X) The framework for evaluation in GP(X) is
based on that of Jaffar and Lassez [JL87], extended with the concept of a constraint store
and the tell operation by Saraswat [Sar89].

An evaluation in G P(X) involves at any time a current goal and a current constraint store.
The constraint store contains a conjunction of interpreted constraints.’

Declarative Semantics for GP(X) Logically a propagation constraint constraint 4 is
equivalent to the user atom A. A clause
Head — Body, ..., Bodys with free variables X7,... X; as usual denotes the formula
VXy,...X¢.(Head V =Body, V...V = Body.).
The meaning of a program is given by the conjunction of its clauses. The denotation of a goal
«— Bodyi, ..., Bodys, is the positive formula Body, V...V Bodys.

An answer 1s a basic constraint which, when added to the constraint store, implies the
truth of the goal:

Definition 1 For a given GP(X) program P, the evaluation of a goal G with current con-
straint store S is a basic constraint C such that X E3.(SAC) and X E P —V.((SAC) — G)

When it is clear from the context, instead of X |= P — ® we shall write = ®. Thus we can
write that every answer C to a goal G with store S satisfies |=V.((S A C) — G).

Operational Semantics for GP(X) A query Q is evaluated against a GP(X) program
by initialising the goal to — and starting with an empty constraint store. In general a goal
may contain both atomic constraints and user atoms.

Asin CLP(X), a goal is evaluated by reducing user atoms to constraints and adding the
constraints to the constraint store. Each atom in the goal is selected and processed in turn.
However a user atom can only be selected if there are no constraints left in the goal.

As in CLP(X), a user atom A is processed by non-determistically selecting a clause
H — By,... B, whose head matches A. The atom A is then replaced in the goal by the set
{H = A,By...By}. Each alternative clause selection defines an alternative branch in the
evaluation.

When a constraint is selected it is first removed from the goal. Then information is
extracted from it and “told” to the constraint store. The tell operation checks that the new
information is consistent with the store, and if so the information is added to the store. If
the new information is inconsistent with the store, the tell operation fails.

As in CLP(X), interpreted constraints are treated by “telling” them immediately to the
constraint store.

The special feature of GP(X) is the handling of propagation constraints using generalised
propagation. Generalised propagation can be seen as an example of the relazed tell operation
of [HD91] which is discussed in more detail in section 6.3, below. Approximation constraints
are extracted from the propagation constraint and they are “told” to the store. However

?In [SKL90] each store is viewed as a set. However this second view can only treat distinct tokens of information
which are logically independent.

propagation is a continuing process which goes on until an answer to the propagation con-
straint has been found. In general propagation will continue concurrently with the handling
of other constraints and user atoms in the goal.

We now define the computed answer returned by an evaluation:

Definition 2 For a given GP(X) program P, the evaluation of a goal G with current con-
straint store S terminates when the goal is finally empty and the propagations are all complete.
The conjunction of basic constraints added to the constraint store during the evaluation is
termed a “computed answer” to G with S.

An answer to a query is a special case of an answer to a goal with a constraint store:

Definition 3 An answer, or computed answer, to a query Q is an answer, or respectively a
computed answer, to — @ with the empty constraint store.

For soundness we require that all the computed answers are answers. For completeness
we cannot require that all answers are also computed answers, but rather we require the
computed answers to represent all the answers in the sense that they generate the same set
of solutions.

This requirement is expressed as follows (see [Smo91]):

Definition 4 Over the computation domain X, a set of computed answers R represents the
set of answers S if for every answer s € S, and every variable valuation o such that X =4 s,
there is a computed answer r € R such that X =a 7.

If there are no propagation constraints, then our framework reduces to CLP(X). In this
case, as long as the choice of goals is fair, i.e. in any infinite branch every goal is selected
sooner or later, then sound and complete sets of answers are returned. The only requirement
is that the test for satisfiability of basic constraints be effective (correct and terminating). The
special requirements on the domain of computation introduced in [J1.87] are not necessary
here since we are only interested in positive queries and programs. The proof of soundness
and completeness is easily adapted from [Llo84]. A related proof is in [Smo91].

In such an operational framework, computation can be avoided by adding extra constraints
to the constraint store so that unsatisfiability is detected earlier. This is the idea behind
propagation. For example in finite domain propagation a domain constraint like X = 1vX =2
when added to the constraint store can cut short the evaluation of the goal p(X,Y’) using the
clause p(3,Y) — body(Y'), since the constraint X = 3 is inconsistent with it.

4.3 Propagation on a Single Constraint

Some Conditions on Approximation Constraints The information extracted from
a single propagation constraint is informally the best approximation to all its answers. To
make this notion formal we first introduce a partial ordering on interpreted constraints by
logical implication; that is if A imples B we write A < B. Thus logically stronger formulae
are below logically weaker formulae in our ordering.

We shall also impose a few conditions on the approximation constraints.

e They should include true and false.

e The ordering on approximation constraints should be well-founded: i.e. any set of
approximation constraints should have a least element. If the set is consistent, the least
element should be different from false.

o Every consistent decreasing sequence of approximation constraints should be finite: i.e.
the ordering restricted to the approximation constraints is well-founded.

The first condition will merely ensure that every propagation constraint has an approxima-
tion. The second condition will ensure that every propagation constraint has a best approx-
imation, which is not false if the propagation constraint is satisfiable. The third condition
will ensure that successful propagation sequences terminate. The third condition, together
with the fact that approximation constraints are closed under finite conjunction, implies the
second condition.

10

Information Extracted by a Single Propagation Step We are now in a position
to specify precisely the result of a single propagation step on a constraint.

Definition 5 The result of a single propagation step on a propagation constraint PC with
constraint store S is the smallest approximation constraint AC which is an upper bound on
the set of answers to PC with S.

The intuition behind this definition is to extract as much information as possible from the
propagation constraint without excluding any answers. For example, the result of finite
domain propagation on the constraint p(X,Y’) defined by the facts
p(1,2)
p(2,1)
p(3,1)
with store X € {2, 3} is the smallest domain constraint which is implied by both X = 2AY =1
and X =3AY =1. This isindeed (X =1V X =2) AY =1 as expected.

We now introduce a function prop(S,C') which captures the effect of propagation on a
constraint C' with constraint store S. Specifically prop(S,C) is the new constraint store
which results from adding to .S the result of propagation on C with S.

Definition 6 If the result of propagation on constraint C with store S is AC, then prop(S, C)
18 defined to be S N AC.

4.4 Propagation Sequences

After propagation on a number of constraints, the constraint store contains new basic con-
straints. Since the new store is an argument to the propagation function, yet more information
can often be extracted by propagating again on the same constraints:

S1 = prop(So, C1)

Sn = prop(Sn—1,Chr)
Snt1 = prop(Sn, C1)

San = prop(San—1,Con)

In order to extract as much information as possible, propagation is attempted repeatedly on
all constraints until there is no more information to be extracted. Such a complete sequence
of propagations is termed a “propagation sequence”.

The propagation function prop(S,C) adds new information to the constraint store, and
thus under our ordering prop(S, C) < S. In other words the propagation function is decreas-
ing. We require one more property of the propagation function and that is monotonicity.
If there is more information in the constraint store then propagation on a given constraint
should not yield less additional information.

Lemma 1 If S1 < 52, then prop(S1,C) < prop(52,C).

Proof 1 The condition S1 < S2 implies that (C' A S1) — (C A 52). From the definition of
an answer it follows that if A is an answer to C with S1 then A is an answer to C with S2.
Thus the set of answers to A in S2 contains the set of answers to A in S1. Therefore any
upper bound on the answers to A with S2 is an upper bound on the answers to A in S1.
Consequently, if AC1 and AC2 are the results of propagation on C' with stores S1 and S2
respectively, AC1 < AC2. Finally prop(51,C) = (51 A AC1) < (S2 A AC2) = prop(S2, C).

In our definition of GP(X) clauses and goals above, we said that the ordering of atoms is
immaterial. We now demonstrate that the information extracted as the result of a propagation
sequence is independent of the order of constraint propagations, thus it is not necessary to
reintroduce any ordering to obtain a well-defined semantics for constraint propagation.

Theorem 2 The fizpoint reached by a propagation sequence is independent of the order in
which propagation steps are performed.

Proof 2 Since propagation steps are monotonic and decreasing, they yield closure operators,
and the theorem is a standard lattice theoretic result.

In an implementation the system must be able to detect when a fixed point has been reached.
This requires an effective decision procedure to determine if an approximation constraint is a
logical consequence of the constraint store.

11

4.5 Propagation in a Program

Unfolding Propagation Constraints It was stated in section 4.1 above that logically
a propagation constraint constraint A is equivalent to the user atom A. However a single
propagation step or propagation sequence is not guaranteed to extract an approximation
constraint equivalent to A.

As much information is extracted as can be expressed using approximation constraints, but
in general there may remain further information not expressible as approximation constraints.
For finite domain propagation an example is the propagation constraint p(X,Y’), defined by
the facts
p(1,2)

p(2,1)

The information extracted from the constraint is that X has domain {1,2} and ¥ has domain
{1,2}. Consequently if p is defined as above and ¢ is defined by the clauses

q(1,1)

9(2,2)

then the query constraint p(X,Y), constraint ¢(X,Y) will yield X € {1,2},Y € {1,2} after
propagation. However the result of the query p(X,Y), ¢(X,Y) is, of course, failure.

This example shows that for soundness of GP(X) it is necessary that evaluation should
not terminate until the basic constraints in the constraint store imply the truth of the user
atom in the constraint.® We therefore say that propagation is not complete until this state is
reached. In the following definition we denote by b(S) the conjunction of basic constraints in
the constraint store 5.

Definition 7 Propagation on a constraint PG is complete when the constraint store S licenses
the implication: = b(S) — G.

In the CHIP system this condition is not enforced by the system, but left to the pro-
grammer who generally adds a “labelling” routine to instantiate problem variables non-
determistically to values in their current domains. The labellings adds the required basic
constraints (equalities) to the constraint store.

In GP(X) the soundness is enforced automatically by the system. When the goal is
empty, before termination, propagation constraints for which propagation is not complete are
selected to be evaluated like user atoms by unfolding them. Consequently sound and complete
answers are computed as in the CLP(X) framework. This is an appropriate (and automatic)
generalisation of CHIP’s labelling routines.

Soundness of GP(X) In the following we shall view propagation constraints as “anno-
tated” atoms, and we shall call interpreted constraints and user atoms “un-annotated” atoms.
We shall call the CLP(X) program that results from a GP(X) program by replacing all prop-
agation constraints constraint A by A, the “un-annotated” program. An un-annotated goal
is defined similarly. The soundness and completeness of GP(X) for an arbitrary goal and
program will be proved by using the soundness and completeness of the un-annotated goal
and program.

For the purposes of these proofs, any unfolding of propagation constraints in G P(X) will
not be distinguished from the unfolding of un-annotated user atoms.

The constraints added to the constraint store during the processing of un-annotated atoms
in a GP(X) goal and program are precisely those added in a CLP(X) evaluation of the
un-annotated goal and program. Thus the constraint store contains computed answers to all
un-annotated atoms in the goal. For the propagation constraints, propagation is not complete
until the constraint store implies their truth. Since the whole constraint store is consistent,
the computed answers are indeed answers to the complete goal.

Completeness of GP(X) If we assume that generalised propagation introduces no extra
non-termination, then the completeness of generalised propagation is a consequence of the
completenes of C'LP(X). We first prove that every success branch in the un-annotated pro-
gram remains successful in the GP(X) program. Then we show that the final constraint store

3The restriction to basic constraints is required if answers are expressed as basic constraints. Alternatively the
framework could allow approximation constraints to appear in answers.

12

for the un-annotated program on any branch is logically stronger than that for the GP(X)
program on the same branch. The completeness of the GP(X) program is then a direct
consequence of the completeness of the un-annotated program.

The proof that every success branch for the un-annotated program remains successful in
the GP(X) program depends on a few simple observations. Let S be the final constraint store,
PA and PB be arbitrary propagation constraints, CA and CB the complete conjunction of
approximation constraints extracted from PA and P B respectively during propagation, and
A and B arbitrary answers to PA and PB. Finally let C' be an arbitrary constraint added to
the constraint store during evaluation of the un-annotated program.

1. EA—CAand EB—CB

2. If S A Ais consistent then sois SACA

3. If SAAAC is consistent, then sois SACAAC
4. If S A AA B is consistent, then sois SACAACB.

From 2 we conclude that the extraction of approximation constraints from a propagation
constraint cannot fail if there are any consistent answers. Thus no extra failure is introduced.
From 3 we conclude that the approximation constraints extracted and held in the constraint
store cannot prevent any other finally consistent constraints being added. Thus no extra
failure can be caused.

From 4 we conclude that the approximation constraints held in the store cannot cause any
further propagation to fail, if there are any consistent answers. Thus no extra failure is
introduced.

Consequently the tell operation which adds constraints to the constraint store never fails on
a particular branch in a GP(X) program if it did not already fail on the same branch in the
un-annotated CLP(X) program.

To prove that the final constraint store in the un-annotated program is logically stronger
than that in the GP(X) program we examine the added constraints.

Firstly all the same constraints are added during the processing on un-annotated atoms.
Secondly the approximation constraints extracted from the propagation constraints are log-
ically weaker than all answers, and in particular weaker than answers computed by the un-
annotated program. Therefore for every computed answer obtained from the un-annotated
program there is a logically weaker computed answer obtained from the GP(X) program.
The completeness of the GP(X) program is immediate from the completeness of CLP(X).

4.6 Termination in GP(X)

Termination of the search for answers to a propagation constraint is not guaranteed. Non-
termination due to unfolding is inherited from C'LP(X): in practise the programmer is re-
sponsible for ensuring that unfolding should terminate. Just as any user goal in CLP(X),
a propagation constraint in GP(X) can only be evaluated after the clause in whose body it
appears has been unfolded. In this sense GP(X) is no different from CLP(X).

There are two differences. Firstly all answers to a propagation constraint are generally
required instead of just one as in CLP(X). Of course backtracking will generally imply that
many answers to a goal must be found in CLP(X) as well. The theoretical problem remains
that in CLP(X) every answer lies at the end of a terminating success branch, whilst the
requirement during propagation for all answers to a propagation constraint implies that any
infinite branch in the search tree can cause non-termination of a propagation step.*

Secondly, a propagation constraint may be evaluated and re-evaluated many times in
GP(X). Luckily this does not alter the termination behaviour of the program. The reason is
that on later evaluations the constraint store is logically at least as strong as before. Conse-
quently the later evaluations may benefit from extra pruning of some branches, but no new
infinite branches can arise.

Of particular concern in GP(X) is the potential for propagation sequences not to termi-
nate, even though the propagation constraints are satisfiable and unfolding would terminate
in every case. A propagation sequence defines a sequence of constraint stores

SNAC

4But it frequently does not, as we show below in section 4.7.

13

SNACT NAC,

where no AC), is a logical consequence of S A ACy A ... A AC,,—1. However in this case no
AC, 18 a logical consequence of ACy A... A AC,,_; either, and therefore the conjunctions of
approximation constraints define a descending sequence. If the constraints are satisfiable, so
are all the approximations. Such a satisfiable sequence cannot be infinite due to our well-
foundedness assumption (section 4.3 above). Therefore every satisfiable propagation sequence
must terminate.

4.7 Topological Branch and Bound

Evaluating Propagation Constraints Conceptually the evaluation of a propagation
constraint PC requires

e finding all the answers to the goal PC

e finding the smallest approximation constraint which is an upper bound for the set of
answers

Lemma 3 The upper bounds of the set of answers S are precisely the upper bounds of the set
of computed answers R

Proof 3 If u is an upper bound of S, then since R C S, u s also an upper bound of R.

Show that if u is an upper bound of R it is an upper bound of S. If u is not an upper bound
of S, then for some answer s € S and some variable valuation o, =o s but |=,—~u. However
by our definition of completeness there is an v € R such that |=o v and therefore u is not an
upper bound for R.

Using this result, when finding the smallest approximation constraint, the system can use the
set of computed answers instead of the whole set of answers.

We shall start by assuming that the computation of the computed answers terminates,
and therefore the set of computed answers is finite. Notice that a finite number of computed
answers in a CLP(X) program may denote an infinite number of solutions. For example the
propagation constraint p(X), defined by
p(X)—X>1
p(X)—X <1
has a finite number (two) of computed answers, though it has an infinite number of solutions
over the domain of integers.

For GP(X) three built-in procedures are required.

e For finding answers, the system must support an effective decision procedure for basic
constraints over X (the same procedure is required for CLP(X))

e For extracting approximations, the system must additionally support an effective proce-
dure for producing the smallest approximation constraint which is an upper bound for
a finite set of basic constraints.

e In section 4.4 above another effective decision procedure was mentioned, to determine
if an approximation constraint is a logical consequence of the current store. This is
necessary to enable propagation sequences to terminate.

Interleaving Answering and Approximation Practically the evaluation of propa-
gation constraints interleaves the finding of individual answers and their generalisation. To
make this possible we assume that our procedure for extracting approximations can return
the smallest approximation constraint which is an upper bound for a basic constraint and an
approximation constraint. To approximate a finite set of computed answers it is now possible
perform the approximations pairwise.

Lemma 4 If A2 is the best approzimation of {D1, D2} and A3 is the best approzimation of
{A2, D3}, then A3 is the best approzimation of {D1, D2, D3}.

Proof 4 Suppose AC is the best approzimation of { D1, D2, D3}, then AC is an upper bound
for {D1, D2}.

14

Consequently A2 — AC. However we also know that D3 — AC. and therefore AC is an
upper bound for { A2, D3}. However we assumed A3 was the best approzimation for { A2, D3},
therefore AC = A3.

This lemma generalises to finite sets of answers by induction.

Cutting All Remaining Branches We now describe two optimisations which fit nat-
urally into the evaluation of propagation constraints. Both optimisations depend upon the
interleaving of answering and approximation. At any point in the evaluation of a propagation
constraint the system has available

o the constraint store S

e the current approximation constraint AC which is the smallest approximation constraint
which is an upper bound for the answers found so far

The current approximation constraint can be used just like the current best cost in a branch
and bound search. However it can also be used, in a way not available in branch and bound,
to prune off all the remaining branches of the search tree.

Using the procedure which decides if an approximation constraint is implied by the con-
straint store, it is possible to prune the evaluation of a propagation constraint by

e interleaving the finding of answers and generating new approximation constraints AC

e terminating the computation as soon as the current approximation constraint is implied
by the constraint store S, i.e. S — AC

This optimisation is very important for propagation constraints defined by large numbers of
clauses. For such constraints it is often easy to find a few solutions, but very expensive to find
them all. Tts significance is illustrated by the crossword compilation application described
below 5.1.

Cutting off the Current Branch When exploring a single branch the system collects
locally a set of basic constraints extracted during the unfolding of clauses. The conjunction
of all the basic constraints extracted along a branch goes to make up a single answer to the
propagation constraint. If this answer is logically stronger than the current approximation
constraint (which approximates all the answers found so far), then it cannot affect the final
result.

Branch and bound search benefits from the observation that there is no need to explore to
the end a branch that is already more expensive than the current best branch. In evaluating
a propagation constraint the same observation applies: there is no need to explore further
if the local constraints gathered on a branch are already logically stronger than the current
approximation constraint.

The required decision procedure is the same as before: we need to determine if the current
approximation constraint is implied by a set of basic constraints.

This optimisation proves to be very valuable for propagation constraints defined by recur-
sive clauses. This will be illustrated using the member predicate in section 5.2 below.

We can summarise the procedure for evaluating a propagation constraint constraint G
with constraint store .S as follows:

After each answer A to the goal G is retrieved it is first checked for consistency
with the constraint store S. If S A A is unsatisfiable, then the answer is thrown
away. If no consistent answers are found, then constraint propagation has detected
an inconsistency, and the propagation sequence terminates signalling inconsistency.

The initial approximation constraint AC is set to false. When a consistent
answer A is found it is added to the current best approximation, and the pair
{AC, A} is approximated yielding a new approximation constraint. AC is set to
the new constraint.

During the search for an answer, basic constraints are added to a local constraint
store, LS. If at any stage L.S — AC/ then the local search is abandoned. Search
for new answers continues by choosing other clauses to unfold.

Propagation terminates as soon as the approximation constraint is implied by
the constraint store, S — AC. In this case no new information could be extracted,

15

and so prop(S,G) = S. Otherwise propagation terminates when there are no
further alternative clauses to unfold. Then the current approximation constraint
is added to the constraint store, and so prop(S, G) = (S A AC).

Evaluating Propagation Sequences In the case of finite domain propagation, the
procedure for performing propagation on a single constraint is called REVISE [MF85]. Es-
sentially the evaluation of a propagation sequence for generalised propagation can be obtained
from the AC-3 algorithm by replacing REVISE with topological branch and bound.

A feature of AC-3 is that after propagating on a constraint ', C' is removed from the list
of constraints to be dealt with in the current propagation sequence. C' is only added to the
list again if some of its variables are affected by propagation on other constraints. For the
correctness of AC-3 it is therefore necessary that propagation on a single constraint is itself a
fixpoint operation. This can be stated as a simple lemma:

Lemma 5 For any constraint store S and propagation constraint C, prop(S, C') = prop(prop(S, C), C)

Proof 5 Let AC be the result of propagation on constraint C with store S. By definition,
prop(S,C) = SAAC. AC approzimates every answer A to C with S, so A — AC. Since every
A is consistent with S, it follows that A is consistent with S AN AC. Moreover if (SAA) — C,
then a fortiori (S N AC AN A) — C. Consequently every answer to C with S is also an answer
to C with prop(S,C). Therefore the result of propagation on C with prop(S,C) remains
prop(S, C).

This condition is not satisfied by relazed tell [HD91], which is an abstraction of generalised
propagation (see below 6.3).

5 Some Instances of GP(X)

Two implementations of generalised propagation over the Herbrand universe have been com-
pleted. In the two following sections the examples we describe have all been run on a GP(HU)
implementation called “Propia”. Propia extracts information about equalities from propaga-
tion constraints, and it offers a number of approximation languages some of which will be
described below. Propia is implemented in Sepia [MACT89] with the help of some special
added built-ins.

5.1 GP(Datalog)

Datalog is logic programming without functions. The basic constraints in Datalog are equal-
ities, X = cor X =Y where ¢ is a constant and X and Y are variables. This means that the
number of ground answers to an n-ary query top(Xu,..., Xy) is finite (at most d™ where d is
the number of constants appearing in the program). There are also finitely many non-ground
answers. Fither X; = ¢, for some constant ¢, or X; = X; for one or more other query variables
X, or X; is unconstrained.

Crossword Compilation Crossword compilation is an application of GP(Datalog).
Each word in the lexicon is recorded as a fact for the user-predicate word, thus:

word(a,r, k)

word(a,r, m)

word(a,r,r,a,y)

As explained in the introduction, the problem is expressed as a set of propagation constraints,
each one representing a blank word in the crossword

top —
constraint word(Al, A2, B1, A4,C1),

constraint word(B1, B2, B3, B4),
constraint word(C1,C2,C3),

16

The program is evaluated by performing generalised propagation on all the individual words,
until the propagation sequence reaches a fixpoint. On most real crosswords, the first fixpoint
is reached without extracting any information whatsoever out of the propagation constraints.
Next one of the constraints is selected for unfolding. For example the lexically first constraint
word(Al, A2, B1, A4, C1) might be chosen. The result of unfolding is the addition to the
constraint store of a conjunction of equalities, say (A1l = a) A (A2 =7r) A (Bl=r)A (A4 =
a) A (C1 = y). Now propagation on the other constraints is attempted. For example the
system will search for all answers to the goal word(b, B2, B3, B4) and attempt to extract an
approximation of these answers. Propagation continues until the second propagation sequence
is complete (in a typical crossword no information will normally be extracted after the second
propagation sequence either).
In our implementation the cost of these fruitless propagation sequences is kept low by

e only attempting propagation on constraints affected by the last unfolding or the current
propagation sequence

o ceasing the search for answers after finding only a few, since the approximation of only
a few answers soon becomes general enough to allow the search to be terminated (see
above section 4.7).

As the crossword fills up, the propagation begins to produce information which ensures no
bad choices can be made later. At this point propagation sequences begin to grow in length,
as information extracted from one constraint enables further information to be extracted from
others.

To sum up, little work is invested in generalised propagation by the system until it actually
starts to be useful. Evidence for the naturally good behaviour of generalised propagation on
crossword compilation is this. The crossword program sketched above is perfectly naive.
In fact a meta-program has been written which takes any crossword drawn as a grid and
generates such a program automatically. Yet generalised propagation applied to the resulting
program happens to yield a crossword compilation algorithm very similar to one developed
specially for crosswords and described in [Ber87]. On a Sun3 workstation, with a 25000 word
lexicon, the Herald Tribune crossword can be compiled by Propia in a few minutes.

Propagation as Consistency Checking Various alternative approximation languages
can be used for generalised propagation. The more expressive the approximation language
the more information is extracted, but the costlier the propagation.

One very simple approximation language has just two approximation constraints: true
and false. We call this the consistency approximation language. With this language the
result of propagation on a constraint is either nothing (in case an answer was found) or failure
(in case none could be found). The behaviour of the crossword program with this language
is to use each constraint as a continual check on the choices made so far. This ensures that
no inconsistent choices are made, but that no “active” constraint propagation is done.

The advantage of using such a trivial approximation language is that in this case topologi-
cal branch and bound is very effective in optimising the evaluation of propagation constraints.
Suppose a certain constraint is being evaluated for propagation. As soon as a single answer
is found, the current approximation constraint (approximating the answers found so far) be-
comes true. Since true is implied by the current constraint store (since it is implied by any
constraint store) propagation terminates immediately.

Clearly with the trivial approximation language generalised propagation is very cheap to
implement. It offers an alternative to intelligent backtracking, in this sense. If every user goal
is annotated as a propagation constraint, as in the current example, then the propagation
prevents any further (irrelevant) choices being made if any other goal is already unsatisfiable.
This is because the failure is detected immediately when attempting propagation.

Equalities Between Variables TFor the crossword application above, the only useful
information concerns values for variables (expressed as an equality between a variable and
a constant). In this section we shortly demonstrate the usefulness of extracting informa-
tion about equalities between variables. Applications where such information is important
include those involving boolean variables, such as circuit design, analysis and testing, and
propositional satisfiablity problems.

17

Such applications involve complex boolean functions describing the behaviour of, for ex-
ample, circuit components which are already analysed. FEach such function can be used
immediately as a propagation constraint. Let us choose a very simple “and-gate” to illustrate
the following discussion. Its behaviour can be described using four clauses:
and(true, true, true).
and(true, fals, false).
and(false, true, false).
and(false, false, false).

The approximation language admits any equality as an atomic approximation constraint. In
a program where constraint and(X,Y,Z) appears as a goal, the following information can
be extracted:

Constraint store Information extracted
Empty Nothing

X = false 7 = false

X = true Z=Y

Y = false 7 = false

Y = true Z =X

Z = true X =true ANY = true
X=Y =X

Even though boolean variables have finite (2-element) domains, finite domain propagation
cannot elicit any information in case, for example, the constraint store has X = true. In this
case both Y and Z could take either value true or false. For real problems in the applications
listed above, the extraction of information of the form Z = Y is essential for performance
reasons.

To obtain such a behaviour on these applications in CHIP [SD90, SD87b, SD87a, Sim88§,
SP89] it was necessary to use a form of guarded clause called “demons”. Demons are predicates
whose goals behave as follows. FEach goal delays until one of the clauses in the predicate
definition has a head which matches it. The matching clause is then exclusively chosen for
evaluating this goal, and if it fails none of the other clauses are tried.

The demon clauses defining the and predicate explicitly use the constraints in the “Con-
straint Store” column above as guards. Expressed using the syntax of Andorra [HJ90] the
and demons are:
and(X,)Y, 7)) — X = false|Z = false
and(X)Y,Z) — X =true|lZ =Y

Whilst the demons for and are built-in in CHIP, for complex boolean functions the CHIP
programmer is required to generate a set of demons for himself. Propagation constraints like
and can often be encoded into demons. However, experiments have shown that the number
of distinct demons required for even moderately complex boolean functions can often be over
ten thousand.

To encode a set of demons for a propagation constraint the programmer must consider
all cases and generate each demon body by, effectively, performing the propagation in their
head. Since the resulting demons need do no propagation at runtime, they are more efficient
to execute. It is therefore interesting to record that Propia when applied to a benchmark
of propositional satisfiability problems [MR91], had execution times on the same hardware
broadly comparable with that obtained using CHIP’s demons.

The relationship between generalised propagation and committed choice languages will be
discussed in more detail below.

5.2 GP(HU)

In the last section we examined applications run using Propia which did not use functions.
We now consider what happens when functions are used in propagation constraints. The
information extracted remains information about equalities between terms. The answers to
a query are always expressed as conjunctions of equalities of the form X = T, where X is a
variable in the original query, and T is a term (possibly involving non-query variables). In
the Herbrand universe there are arbitrarily long finite sequences of monotonically stronger

18

such equalities, but no infinite sequences which are satisfiable. Consequently the noetherian
requirement is still satisfied.

The presence of function symbols enables generalised propagation to be performed over
lists. In particular we shall examine propagation on the member predicate defined as follows:
member(X,[X]])
member(X,[_|T]) — member(X,T)

In many applications it is of interest to detect the success or failure of membership as soon
as possible, just using member as a check. Yet even this is a serious problem (see for example
[Nai86]). For example even if the tail of the list is known most control regimes require the
check to delay until the head of the list either equals or fails to unify with the first argument.

Generalised propagation can be applied to any member propagation constraint without
fear of non-termination. The information extracted from constraint member (M, [E1l,...En|Tail])
can be summarised as follows.

o If T'asl is empty, then

— M becomes equal to the most specific generalisation of M1,..., Mn where M1 is
the most general unifier of M and Fi. If none of the Ei unify with M, the result is
false.

— FE't becomes equal to the most general unifier of £'s and M if Eu is the only element
that unifies with M. Otherwise there are no resulting constraints on ~\.

o If T'ail is a variable, then

— There are no resulting constraints on M
— There are no resulting constraints on any Ft

— If none of the i unify with M, then Tasl = [_|]

The effect of the topological branch and bound in pruning the search for the infinite set of
answers which return bindings for the tail is essential to ensure termination.

It is very instructive to try and construct ways of expressing the same propagation using
guarded clauses!

So far GP(HU) has only been applied to a few puzzles, and for encoding alternatives within
a single term. This has been used to achieve an approximation to finite domain propagation
in a simple way.

6 Generalised Propagation and Other Approaches

There are many overlaps with other work and in this paper it is not possible to include a full
comparison with all of it. We have tried to consider more closely related research which is
particularly interesting and influential. However even in the short list considered here, there
are many points on which our comparison could be greatly expanded.

6.1 Propagation in CHIP

Generalised propagation is descended from propagation in CHIP. CHIP provides two propa-
gation inference rules, lookahead and forward checking. In this section we shall briefly study
how generalised propagation relates to the two different rules.

Firstly, of course, propagation in CHIP can only produce reductions in finite domains.
Generalised propagation is domain independent and can be used to extract interpreted con-
straints over the domain of computation whatever it is. Within the framework of generalised
propagation, systems have been implemented to perform propagation yielding equality con-
straints and yielding finite domain constraints.

When we compare the implementation of generalised propagation yielding finite domain
constraints with CHIP’s lookahead inference rule, there remain significant differences.

The algorithm underlying CHIP’s lookahead iterates over each finite domain of each free
(unlabelled) variable to determine if there is a labelling of the remaining variables consistent
with it. Because of the high cost of the algorithm (worst case n*d™ where n is the number of
free variables and d the size of the largest domain), lookahead in CHIP is delayed until there
are maximally two free variables.

19

Generalised propagation uses a topological branch and bound procedure which iterates
over the answers to the goal rather than the variable domains. Consequently there is no
penalty associated with constraints involving more than two free variables.

It is possible to find examples where topological branch and bound is more efficient than
CHIP’s algorithm and vice versa. However the flexibility offered by the choice of approxi-
mation constraints makes it possible to perform efficient generalised propagation on a large
range of examples.

CHIP’s forward checking rule offers a restricted form of propagation in which the result
of propagation must be logically equivalent to the constraint itself in the current state. For
example if the current state has X = 2 and p is defined by
p(1,2)

p(2,1)

p(2,2)

then p(X,Y) is logically equivalent to Y € {1,2}. In CHIP forward checking is simply
delayed until there is at most one free variable. The set of values in the domain of this
variable consistent with the constraint are all the answers to the constraint, and they are
its only answers. The required logical equivalence is therefore always achieved between the
constraint and the reduced domain (as illustrated by the above example).

A generalisation of forward checking can be achieved within the framework of generalised
propagation by specifying a rather special approximation language. The propagation language
selfis defined to include all (conjunctions of) answers to the current goal. Each such answer
is, in fact, a conjunction of interpreted constraints in the domain of computation. Generalised
propagation using this language has precisely the effect of forward checking.

This language (or strictly this class of languages) has been implemented in Propia. In fact
its implementation turned out to be very simple (requiring only three lines of code!). Just as
for other language-based approximations of propagation, Propia uses topological branch and
bound for computing the best approximation in the language self. Consequently generalised
forward checking is, as expected, quicker to evaluate than generalised propagation on the
same constraint using basic constraints as the approximation language.

Notice that there is no longer any need to delay forward checking, as in CHIP. Notice
also that generalised forward checking is indeed a generalisation of forward checking in finite
domains. It is applicable to arbitrary computation domains, and returns as a result interpreted
constraints in the current domain of computation, whatever it is.

6.2 Most Specific Logic Programs

The instance GP(HU) of generalised propagation extracts information from propagation con-
straints which is precisely the most specific generalisation described in [MNL8&8]. In this earlier
work, the most specific generalisation of a set of possible solutions was calculated in advance
of execution, so as to transform a program statically into one which was more efficient and had
other better properties. Various algorithms have been proposed for calculating most specific
logic programs, some using bottom-up evaluation and others breadth-first.

Generalised propagation is, by contrast, performed at runtime, repeatedly as more infor-
mation becomes available and more information can be extracted. The topological branch
and bound procedure, based on a pruned top-down evaluation, is much more efficient to
implement and makes practicable the extraction of most specific generalisations at runtime.

6.3 Relaxed Tell

In [HD91] an operational semantics for constraint logic programming is introduced which
offers an operation called relazed tell. The relaxed tell operation extracts from a non-basic
constraint an approximation. The operation requires two functions, a relazation function and
an approximation function which depends on the relaxation function.

A relaxation function r maps the constraint store .S to an approximation r(.5) satisfying
=S — r(S). CHIP uses such a relaxation function in its treatment of arithmetic constraints
over finite domains. A finite domain for a variable V', such as {1,2,4} can be approximated
by its end points, 1 <V < 4,

An approximation function ap (given a relaxation function r) maps a non-basic constraint
C and a store S to an approximation ap(S, C) satisfying (r(S) A C) — ap(S, C). CHIP also

20

uses approximation functions in its treatment of arithmetic constraints over finite domains.
For example the linear constraint 14+V'1 = V2 is handled by using the equations to reduce the
upper bounds and increase the lower bounds of the variable domains so that the equation is
satisfied by the new bounds. Thus if V1 € {1,3} and V2 € {2, 3}, the result of approximation
on the above equation 1s 1 < V1 <2 and 2 <V2<3.

The requirement on the approximation function in the relaxed tell framework is that it
must approximate the constraint C, whereas in the framework of generalised propagation the
result approximates all the answers to the constraint. This difference arises because relaxed
tell is designed for non-basic built-in constraints such as arithmetic ones. For generalised
propagation any user goal can be annotated as a constraint. In this case there is a clear
definition of an answer to the constraint, but the logical semantics of the constraint itself is
more difficult to pin down. The logical semantics for program clauses does not license any
negative consequences. However in this case no pruning information could be extracted from
propagation constraints! For our purposes it would therefore be necessary to use some form
of minimal model semantics for constraint logic programs, with all the restrictions this entails
[JL87].

Apart from the restriction to built-in constraints, relaxed tell is an abstraction of gener-
alised propagation. The inclusion of a relaxation function makes it strictly more powerful
than generalised propagation, whose “relaxation function” is just the identity function. The
disadvantage of using a relaxation function is that propagation on a single constraint cannot
be guaranteed to yield a fixpoint. In fact the example of approximation above has this prop-
erty. If the result of propagation is added to the constraint store the resulting store now has
a different relaxation 1 < V1 <1, which enables further useful propagation to be performed
on the same constraint. This means that the efficient AC-3 algorithm no longer produces
complete propagation sequences.”

6.4 Guarded Clauses and Concurrent Constraint Logic Pro-
gramming

It is not possible in this paper to make a comparison of generalised propagation with the
different languages in these frameworks. At an abstract level propagation constraints can be
seen as deterministic processing agents which communicate with the constraint store using
relazed tell. More concretely it is interesting to specify precisely what communications take
place in terms of ask and tell, and how this behaviour reflects the declarative semantics of
the constraint.

We can therefore attempt to encode the behaviour of a propagation constraint as a set of
definitions using committed choice, guarded clauses. Let us take finite domain propagation as
an example and use ask X € {C1,...,Cy} to ask if the current constraint store implies that
(X=C) V...V (X =0Cy), and tell X € {Cy,...,Cp} to tell this formula to the constraint
store. For constraint p(X,Y’), where p is defined as

p(1,2)

p(2,1)

p(3,1)

we could express finite domain propagation thus:
constraint p(X,Y) — true | tell X € {1,2,3},tell Y € {1,2}, constraint p1(X,Y)
constraint pl(X,Y) — ask X € {2,3} |tell Y =1
constraint pl(X, Y) —ask X =1 | tell Y =2
constraint p1(X,Y) — ask X =2 | tell Y =1
constraint p1(X,Y) — ask X =3 | tell Y =1
constraint pl(X, Y)—askY =1 | tell X € {2,3}
constraint pl(X,Y) —ask Y =2 | tell X =1

This encoding is similar to that used for the and demons (see section 5.1 above).

The main drawback of using such an encoding is the huge number of clauses necessary to
capture each interesting propagation. We hypothesise that if conjunctions of basic constraints
are admitted in the guard, the number of guarded clauses can rise exponentially with the
number of clauses needed to express the propagation constraint.

5In CHIP, which uses AC-3, it is therefore sometimes necessary to state constraints twice!

21

A second drawback of guarded clauses is, paradoxically, their great expressive power. For
example 1t is possible to express the merge operation using guarded clauses; although this
operation has no logical semantics. In general it is not possible to give a declarative semantics
for a set of guarded clauses, and thus it is not possible to state the effect of a program except
in terms of the operational behaviour of its clauses.

There is a “logical subset” of guarded clause programs that have a logical semantics. It
is possible to state when a set of “logical” guarded clauses is sound with respect to a logic
program specification as in [Smo91]. However even for such logically sound guarded clauses
there remains the question of completeness. There seems no simple way to determine when
the behaviour of a set of clauses is equivalent to the behaviour of generalised propagation. For
example it is only possible to confirm that the encoding of constraint p(X,Y’) using guarded
clauses above really does extract all possible propagations in all possible constraint stores
by performing an exhaustive analysis on constraint stores. The set of interesting constraint
stores to be analysed soon grows prohibitively large for non-trivial constraints (see also above
section 5.1).

A form of guarded rules with multiple heads is being investigated at ECRC [Fru91], which
provides a language for expressing constraint simplification. The rules are called simplification
rules. In many cases it would be practical to express certain interesting propagations as sim-
plification rules. The integration of these simplification rules into our framework would make
it possible to encode the results of static analysis and partial evaluation of generalised propa-
gation. Consequently the whole range of possibilities on the continuum between compilation
and interpretation of generalised propagation would be available in one system.

6.5 Andorra

A relationship has been often pointed out between David Warren’s Andorra principle [War88]
and the preference for deterministic computation which underlies constraint propagation.
Whilst the two principles cannot be clearly distinguished, their embodiment in Andorra [HJ90]
and in generalised propagation can usefully be compared.

Andorra promotes deterministic computations. The control of how hard to work to find
subcomputations that yield determistic results has reached a considerable degree of sophis-
tication. However the basic idea is to perform parts of the computation locally and if the
result is deterministic to make it available globally, adding the resulting constraints to the
constraint store. This is similar to extracting results from propagation constraints.

In a local computation in Andorra, nothing is thrown away. This is quite different from
constraint propagation which finds many answers, extracts “common” information from them
all, and then throws the answers away again. This can in practise make constraint propa-
gation more expensive than Andorra’s deterministic promotion, but it also makes it possible
to extract more information deterministically than can be done in Andorra. For example
generalised propagation extracts X = f(_) from the propagation constraint constraint p(X)

defined by

p(f(a))
p(f(b))

However the evaluation of p(X) is not determistic so no information can be extracted in
Andorra.

A second difference has to do with the dependence of information extracted on the precise
syntax of the program. In Andorra the information that can be extracted from a local
computation depends on the precise clausal definitions of the goal predicates involved. For
example we could recode p(X) above as
PF(Y)) — (Y)

q(a)

q(b)

to get more information extracted by Andorra from the goal p(X). In constraint propagation
the information extracted is independent of the program syntax. It depends only on the
semantics of the program predicates. Therefore constraint propagation has a more abstract
behavioural semantics than deterministic promotion in Andorra.

22

7 Conclusion

The same word “constraint” has been used to describe two rather different extensions of logic
programming. In one extension (C'LP(X)) “constraints” involve interpreted predicates whose
interpretation on the underlying domain is predefined. In the other extension (based on CSP)
“constraints” are goals which are used not for search but for deterministic reduction of the
search space. This paper has extracted a more abstract concept which includes both uses of
the word constraint.

The abstract concept is useful for clarifying our understanding of C'L P, but this paper
has shown that it also yields immediate practical benefits. A generalisation of propagation
has been introduced which integrates the constraint behaviour of both extensions. This
enables techniques of local consistency enforcement from CSP to be applied to arbitrary goals
in arbitrary CLP(X) programs. The result is called GP(X), for “generalised propagation
parameterised on the computation domain X”.

Propagation on a goal G in GP(X) requires that the system extracts a constraint approx-
imating all the answers to G. The paper has introduced a generic algorithm for generalised
propagation which avoids enumerating all the answers to a propagation constraint. Instead
the retrieval of answers is interleaved with approximation steps, so that an approximation to
the answers found so far is always maintained. This approximation is used to cut branches in
the search for answer, in a way similar to branch and bound. Additionally it is used to cut
all the remaining branches in the search tree, when the approximation becomes too general
to be useful. The algorithm has been called topological branch and bound.

Generalised propagation offers very flexible control via the choice of approximation con-
straints. If only a coarse approximation is offered the topological branch and bound drastically
prunes the search tree, thus making generalised propagation relatively cheap. If a finer approx-
imation is offered, more information is extracted from each propagation constraint, enabling
the global search to be more reduced.

An implementation (called Propia) of generalised propagation over the Herbrand universe
has been described. Experiments with Propia have shown that generalised propagation en-
ables problems to be simply stated and efficiently solved in a way not possible using either
CLP(X) or propagation based on CSP. It has been very rewarding to take pure logic pro-
grams as specifications and, by simply annotating certain goals as propagation constraints,
to achieve an efficient implementation. A very important feature of the resulting programs is
their guaranteed correctness with respect to their specification. This can be contrasted with
the encoding of the same problems using demons (a special form of guarded clause), which
cannot be validated against the specification since they have no declarative semantics.

As to the future, further implementations of generalised propagation are being developed
for new computation domains, thus expanding the range of problems that can be naturally
expressed as G P(X) programs. We are also investigating the notion of propagation constraints
as concurrent processing agents. In this view generalised propagation is an interesting special
case of concurrent constraint logic programming, in which the operational semantics can be
dramatically simplified (and for which there is always an equivalent declarative semantics).
Finally partial evaluation of GP(HU) is already under investigation at ECRC, with the
results expressed in the form of demons. With the integration of simplification rules into our
system (see section 6.4 above), the potential for optimisation of G P(X) programs can be fully
explored.

8 Acknowledgements

We are grateful to our partners in the CHIC project, in particular the CHIC user group, for
posing problems which have helped to motivate generalised propagation and providing test
cases to try it out. This work could never have started without the ground-breaking work of
former members of the CHIP team. Our thanks to them as well. We thank the CORE team
for valuable discussions, and Alexander Herold for his support and careful criticism of earlier
versions of this report.

23

References

[Bers7]
[ClaT9]
[Col8s]
[Davs7]
[DSV90]

[DVS*t88]

[Fik70]
[Fre7s]
[Fru91]
[Gals5]
[GB65]

[HD91]

[HES0]
[HJ90]
[ICL87]
[ICL8S]
[ICL90]
[JL87]
[Llo84]
[Mac77]

[MACT89]

[Mah87]

H. Berghel. Crossword compilation with Horn clauses. The Computer Journal,
30(2):183-188, 1987.

K.L. Clark. Predicate logic as a computational formalism. Technical Report
79/59, Imperial College, London, 1979.

A. Colmerauer. Theoretical Model of Prolog II, pages 3-31. Ablex Publishing
Corporation, 1985.

E. Davis. Constraint propagation with interval labels. Artificial Intelligence,
32:281-331, 1987.

M. Dincbas, H. Simonis, and P. Van Hentenryck. Solving large combinatorial
problems in logic programming. Journal of Logic Programming, 8:74-94, 1990.

M. Dincbas, P. Van Hentenryck, H. Simonis, A. Aggoun, T. Graf, and F. Berthier.
The constraint logic programming language CHIP. In Proceedings of the Inter-
national Conference on Fifth Generation Computer Systems (FGCS’88), pages
693-702, Tokyo, Japan, November 1988.

R.E. Fikes. REF-ARF: A system for solving problems stated as procedures. Ar-
tificeal Intelligence, 1:27-120, 1970.

E.C. Freuder. Synthesizing constraint expressions. Communications of the ACM,
21(11):958-966, November 1978.

T. Fruehwirth. Introducing simplification rules. Technical Report LP, ECRC,
1991.

H. Gallaire. Logic programming: further developments. In IFEE Symposium on
Logic Programming, pages 88—99, Boston, July 1985. Invited paper.

S.W. Golomb and L.D. Baumert. Backtrack programming. Journal of the ACM,
12:516-524, 1965.

P. Van Hentenryck and Y. Deville. Operational semantics of constraint logic
programming over finite domains. In Proc. PLILP’91, Passau, Germany, Aug
1991.

R.M. Haralick and G.L. Elliot. Increasing tree search efficiency for constraint
satisfaction problems. Artificial Intelligence, 14:263-314, October 1980.

Seif Haridi and Sverker Janson. Kernel andorra Prolog and its computation model.
In Proc. of the 7" Int. Conf. on Logic Programming [ICLY0], pages 31-46.

Proceedings of the 4'" International Conference on Logic Programming. MIT
Press, 1987.

Proceedings of the 5" International Conference and Symposium on Logic Pro-
gramming, Seattle, 1988. MIT Press.

Proceedings of the 7" International Conference on Logic Programming, Jerusalem,
Israel, 1990. MIT Press.

J. Jaffar and J.-L. Lassez. Constraint logic programming. In Proceedings
of the Fourteenth ACM Symposium on Principles of Programming Languages
(POPL’87), Munich, FRG, January 1987.

J.W. Lloyd. Foundations Of Logic Programming. Springer-Verlag, 1984.

A.K. Mackworth. Consistency in networks of relations. Artificial Intelligence,
8(1):99-118, 1977.

M. Meier, A. Aggoun, D. Chan, P. Dufresne, R. Enders, D. De Villeneuve,
A. Herold, P. Kay, B. Perez, E.Van Rossum, and J. Schimpf. Sepia - an ex-

tendible prolog system. In G. X. Ritter, editor, Information Processing 89, San
Francisco, September 1989. Elsevier Science Publisher B.V.

M. J. Maher. Logic semantics for a class of committed-choice programs. In Proc.
of the 4" Int. Conf. on Logic Programming [ICL87], pages 858-876.

24

[MF85]

[MNL8g]
[MonT74]

[MR91]

[NAC90]
[Nai86]

[RHZT5]

[Sar89]

[SD8&Ta]

[SD87b]

[SD90]

[Sim88]

[SKL90]

[Smo91]

[SP89]

[SS80]
[Van89]

[VDS6]

[War88]

A.K. Mackworth and E.C. Freuder. The complexity of some polynomial network
consistency algorithms for constraint satisfaction problems. Artificial Intelligence,
25:65-74, 1985.

K. Marriott, L. Naish, and J.-I.. Lassez. Most specific logic programs. In Proc. of
the 5" Int. Conf. and Symp. on Logic Programming [ICL88], pages 909-923.

U. Montanari. Networks of constraints : Fundamental properties and applications
to picture processing. Information Science, 7(2):95-132, 1974.

1. Mitterreiter and F. J. Radermacher. Experiments on the running time behaviour
of some algorithms solving propositional calculus problems. Technical Report

Draft, FAW, Ulm, 1991.

Proceedings of the 1990 North American Conference on Logic Programming. MIT
Press, 1990.

L. Naish. Negation and Control in Prolog, volume 238 of Lecture Notes in Com-
puter Science. Springer, 1986. PhD. Thesis, Melbourne Univ.

A. Rosenfeld, A. Hummel, and S.W. Zucker. Scene labelling by relaxation oper-
ations. Technical Report TR-379, Computer Science Department, University of
Maryland, 1975.

V.A. Saraswat. Concurrent Constraint Programming Languages. PhD thesis,
Carnegie-Mellon University, Pittsburgh, Pa, January 1989.

H. Simonis and M. Dincbas. Using an extended prolog for digital circuit design. In
IEEE International Workshop on AI Applicationsto CAD Systems for FElectronics,
pages 165-188, Munich, W.Germany, October 1987.

H. Simonis and M. Dincbas. Using logic programming for fault diagnosis in digital
circuits. In German Workshop on Artificial Intelligence (GWAI-87), pages 139
148, Geseke, W. Germany, September 1987.

H. Simonis and M. Dincbas. Propositional calculus problems in chip. In H. Kirch-
ner, editor, Proceedings of the 2nd International Conf on Algebraic and Logic
Programming, Nancy, France, October 1990. CRIN and INRIA-Lorraine, Springer
Verlag. (to appear).

H. Simonis. Test pattern generation with logic programming. In New Aspects of
Research for Testing of VLSI Circuits, Ising, W. Germany, March 1988.

Vijay A. Saraswat, Ken Kahn, and Jacob Levy. Janus: A step towards distributed
constraint programming. In Proceedings of the 1990 North American Conference
on Logic Programming [NACI0], pages 431-446.

G. Smolka. Residuation and guarded rules for comstraint logic programming.
Technical Report 12, Digital PRL, June 1991.

H. Simonis and T. Le Provost. Circuit verification in chip: Benchmark results. In
L.J.M. Claesen, editor, Proceedings of the IFIP TC10/WG10.2/WG10.5 Work-
shop on Applied Formal Methods for Correct VLSI Design, Leuven, Belgium,
November 1989. IFIP, North Holland, Elsevier Science Publishers.

G.J. Sussman and G.L. Steele. CONSTRAINTS: A language for expressing
almost-hierarchical descriptions. Artificial Intelligence, 14(1):1-39, January 1980.

P. Van Hentenryck. Constraint Satisfaction in Logic Programming. Logic Pro-
gramming Series. The MIT Press, 1989.

P. Van Hentenryck and M. Dincbas. Domains in logic programming. In Pro-
ceedings of the Fifth National Conference on Artificial Intelligence (AAAI'S6),
Philadelphia, PA, August 1986.

D.H.D. Warren. The andorra model. Presented at the Gigalips Workshop, Univ.
of Manchester, 1988.

25

