
Integrating Propagationand Built-in ConstraintsThierry Le ProvostMark WallaceJanuary 1992AbstractConstraint logic programming is often described as logic programming with uni�cationreplaced by constraint solving over a computation domain. There is another, very di�erent,CLP paradigm based on constraint satisfaction, where program-de�ned goals can be treatedas constraints and handled using propagation. This paper proposes a generalisation of prop-agation, which enables it to be applied on arbitrary computation domains, thereby restoringorthogonality and bridging the gap between two important constraint logic programmingparadigms. The main idea behind generalised propagation is to use whatever constraints areavailable over the computation domain to express restrictions on problem variables. Gener-alised propagation on a goal G requires that the system extracts a constraint approximatingall the answers to G. The paper introduces a generic algorithm for generalised propagationcalled \topological branch and bound" which avoids enumerating all the answers to G. Gen-eralised propagation over the Herbrand universe has been implemented in a system calledPropia, and we describe its behaviour on some applications.1 Background and Motivation1.1 MotivationAlthough classical logic programming is a convenient vehicle for stating combinatorial prob-lems, it can be grossly ine�cient for solving these problems. The essential reason for thisine�ciency is the naivety of Prolog's computation procedure, based solely on resolution.To get an e�cient solution with standard Prolog it is therefore often necessary explicitlyto program adequate algorithms for the problems at hand. One obvious drawback of suchan approach is that the explicit algorithm has little in common with the initial declarativeproblem speci�cation, and hence requires a major development e�ort from the programmer.An even more severe drawback is that the resulting program may no longer correctly solvethe problem.To avoid these drawbacks, it is therefore desirable to try and provide built-in controlmechanisms that would allow a declarative problem statement to be executed e�ciently.Historically, the �rst step in that direction was to introduce so-called dynamic computa-tion rules into Prolog. The idea is to allow programmers to alter the standard left-to-rightgoal selection mechanism of Prolog, so that goals with a bene�cial e�ect on search spacesize are selected for resolution �rst. Control declarations typically take the form of metalog-ical conditions associated to goals (Prolog-II's freeze) or to predicate de�nitions (SEPIA'sdelay, MU-Prolog's wait, NU-Prolog's when), which prescribe when goals may be selectedfor resolution.Unfortunately, dynamic computation rules are limited in scope, as they only a�ect theorder of goal selection; there are many hard search problems for which no good goal orderingexists, as the search space will anyhow remain unacceptably large. Besides, control declara-tions can become quite unwieldy to design, debug, and reason about. Small alterations of theproblem's de�nition often require an extensive revision of dynamic declarations.1

A more recent, orthogonal approach is to build certain goals (\constraints") into the logicprogramming language, so that the system knows about the satis�ability of such goals withoutany e�ort by the programmer. Languages in the CLP Scheme [JL87] and CHIP's �nite domainconstraints are examples of this approach.The shortcoming of such built-in approaches to search space reduction is precisely thatthey are built in. One can of course de�ne new predicates using such hardwired constraints,but these predicates will be processed by the usual blind resolution mechanism. If a particularapplication needs a particular constraint, then it must be compiled into the system.CHIP therefore o�ers a facility to support program-de�ned constraints. It is termedpropagation and is provided via two special inference rules called forward checking andlookahead. Propagation enables program-de�ned predicates to be used as constraints in avery speci�c way: for reducing the domains associated with one or two variables.\Generalised propagation" is a generalisation of CHIP's propagation that overcomes itslimited expressive power. The idea is to reduce search space size while preserving the declar-ativeness of problem statement. Generalised propagation provides a clean and simple meansof using declarative predicate de�nitions as deterministic reasoning agents.1.2 Declaratively Speci�ed ConstraintsThe main idea of generalised propagation is that declarative predicate de�nitions can be giventwo complementary meanings.The �rst meaning is the traditional one, that is, predicate de�nitions denote relations overobjects in some computation domain. In the case of Prolog, the computation domain is theHerbrand Universe (�nite trees), but other languages in the CLP Scheme work on less trivialobjects (rational trees, lists, integers, reals, Booleans, etc).The second, new meaning attributed to predicate de�nitions is that they de�ne determinis-tic \re�nement operators" over variable bindings. Informally, a predicate holds for a (possiblyin�nite) set of values, and all these values might have some common properties. (For examplethey might all be integers greater than 20, or they might all be compound terms of the formbook()). One can therefore validly extract these common properties and add them to thecurrent environment, without losing any potential solutions to the problem at hand.Making common properties explicit helps reduce the search space, as they may precludesome wrong guesses by the resolution procedure. Put another way, a system that featuresa way of extracting properties common to all solutions to goals turns goals into active con-straints.In contrast to the other approaches to introducing constraints outlined above, generalisedpropagation constraints are:� program-de�ned, in that any predicate de�nition can be declared to be a constraint;� declaratively speci�ed, in that the programmer need not describe how constraints oper-ate, but only what relation they enforce.1.3 A few examplesLet us take a \standard" constraint satisfaction problem, which just consists of a conjunctionof goals whose predicate de�nitions are extensional collections of Prolog facts.% Some problem to be solved:?- p(X,f(Y)), q(Y), r(X,Y,Z), ...% The declarative definition for p/2:p(a,f(a)).p(b,c).p(b,f(b)).p(X,g(h(X))).% Other definitions for q/1, r/3, ...:... 2

To use p(X,f(Y)) and r(X,Y,Z) as constraints there is literally nothing to do, exceptannotate the goal as follows:?- constraint p(X,f(Y)), q(Y), constraint r(X,Y,Z), ...Generalised propagation will take any of the constraints (say, p(X,f(Y))), and deter-ministically extract all common properties of the goal's solutions that are expressible as asubstitution. Here, it will infer that X = Y must hold in any solution to the problem. Knowl-edge that X = Y may in turn allow some further deterministic inferences, using the de�nitionfor r=3, and so on. When this propagation process stops, control is given back to the Prologengine to perform a resolution step. The new query will often be more explicit, e.g. morevariables in it will have received a value, and some doomed resolution steps may therefore beavoided.Declaratively speci�ed constraints are not restricted to extensional de�nitions, as for in-stance: member(X,[X|_]).member(X,[_|T]) :-member(X,T).is a perfectly acceptable constraint speci�cation, which allows the system to infer X = a fromthe goal member(a,[b,f(Y),X,c]).Such constraints are not con�ned to reasoning on terms either, as the extracted commonproperties are just whatever the language's basic computation domain a�ords. (Hence thename \generalised propagation", as it generalises over some more restricted, similar notionsthat are available in the Chip system.)For instance, if the host language allows �nite-domain variables, then common propertiesinclude domain reductions in addition to bindings. If hardwired symbolic or arithmetic con-straints are available in the language, then they can be combined with declaratively speci�edconstraints.One demonstration of this is the possibility to employ disjunctively de�ned constraints.Such constraints typically arise in scheduling problems; due to resource usage exclusion, twogiven tasks may not be performed at the same time:% Either Task 1 occurs before Task 2:disj(Start1,Duration1, Start2,Duration2) :-Start2 >= Start1 + Duration1.% Or Task 2 occurs before Task 1:disj(Start1,Duration1, Start2,Duration2) :-Start1 >= Start2 + Duration2.Chip does not allow a disj=4 goal to be used as a constraint, i.e. it must make a guess betweenthe two alternatives when a disj=4 goal is applied (leading to a potential combinatorial explo-sion). Generalised propagation allows the programmer to demand that a disj=4 goal be usedas a constraint; and domain reductions for the four arguments then occur deterministicallywithout committing to either alternative.1.4 ApplicationsWithin the CHIC project a number of applications for generalised propagation have alreadyemerged. The �rst, and simplest, was stated by ICL at a CHIC user group meeting at ECRC.ICL needs to test if a constraint is satis�able, without adding it to the environment. This is adirect application of generalised propagation using the consistency propagation language (asdescribed in section 5.1 below).The second application was stated by OCT at the same CHIC user group meeting. Forpropagating constraints on tra�c
ows it is necessary to use the flow predicate as a constraint,whose de�nition is:flow(1,Flow) :- 0<Flow, Flow<0.3flow(2,Flow) :- 0.3<Flow, Flow<0.7 3

...Thus given the goal ?- flow(D,F) and the constraint D � 2, the system should deduce that0 � F � 0:7. On the other hand, given the constraint 0 � F � 0:5 the system should be ableto deduce thatD � 2. To obtain this behaviour using generalised propagation over inequalitiesit su�ces simply to annotate the goal as a constraint, viz: ?- constraint flow(D,F).The third application is more than just a single application but a very general problemin scheduling: how to deal with disjunctive constraints. The example of disj=4 above showshow disjunctive constraints are treated in a quite natural way using generalised propagation.The way these problems are currently solved is by using special built-in constraints (likethe extended element constraint recently added to CHARME), and by encoding the problemusing an algorithmic understanding of constraint propagation to obtain roughly the requiredbehaviour (as described by Dassault at the CHIC user group meeting in Valencia).However each problem is naturally expressed in standard Prolog, and with generalisedpropagation the required constraint behaviour can be obtained by simply annotating therelevant goal as a constraint. No new built-in constraints need be compiled into the system.The advocated programming methodology using generalised propagation is �rst to design adeclarative Prolog program stating the problem without any concern for e�ciency. Then, thisprobably very ine�cient program can be re�ned by earmarking appropriate goals as declara-tive constraints. Of course, determining which goals are appropriate for use as constraints isthe program designer's responsibility!Programming with declaratively speci�ed constraints is therefore still more of an art thanan exact science ... but in opposition to other approaches to programming with constraints, therequired trial-and-error process of identifying bene�cial constraints can be performed withoutaltering the program's structure, designing complex metalogical declarations, or implementingnew language primitives.2 Introduction2.1 The CLP SchemeConstraint logic programming is often described as logic programming with uni�cation re-placed by constraint solving over a computation domain. This is captured in a theoreticalframework called the CLP scheme [JL87]. A CLP (X) program comprises rules of the formh c1; : : : cn; b1; : : : bmwhere the ci are constraints over the domain X and the bj are (user-de�ned or built-in)logic programming goals. During computation clauses are unfolded, and the constraints intheir bodies are collected up and tested for consistency. In this paper we shall often referto constraints in the CLP (X) framework as \basic constraints". One point to note is thatthe basic constraint predicates are built-into the system, and cannot be de�ned by programclauses. A second point is that the consistency check covers all the basic constraints whichhave been collected up during the computation (which distinguishes constraints from ordinarybuilt-in predicates [Mah87]). This check must, in theory, be e�ective.2.2 CSP in Logic ProgrammingThere is another, very di�erent, CLP paradigm which is based on constraint satisfactiontechniques dating back to Golomb [GB65]. In the constraint satisfaction problem (CSP)paradigm the constraints are problem-speci�c, and de�ned by sets of tuples. When CSP isembedded into logic programming, the de�nition of a constraint can be de�ned in the programas a set of facts, or even as a set of rules [Van89]. We shall often refer to constraints in theCSP framework as \propagation constraints".One prerequisite for applying CSP techniques is that problem variables should have anassociated domain of possible values. Traditionally [Fik70, Mon74, Mac77, HE80] this is a�nite domain, though more recently continuous intervals have been studied [Dav87]. Up tonow, constraint logic programming systems based on the CSP paradigm (eg CHIP [DVS+88])have therefore had to include domain declarations for the problem variables. This is onerestriction we will relax using generalised propagation.4

It should be noted that constraint solving over a computation domain is replaced in thisparadigm by constraint propagation over value domains [Fik70, Mon74, Mac77, HE80]. In-formally constraint propagation operates by looking ahead at yet unsolved goals to see whatlocally consistent valuations there remain for individual problem variables. In the CSP frame-work there is no guarantee that, after a complete propagation sequence, the propagation con-straints are globally consistent, by contrast with constraint solving for basic constraints inthe CLP scheme. However such propagation techniques can have a dramatic e�ect in cut-ting down the size of the search space. Evidence of the practical e�ectiveness of constraintspropagation in logic programming is given in [DSV90].2.3 Propagation in Finite DomainsTo date the technique of propagation in constraint logic programming has only been de�nedfor �nite domain variables. Each such variable can only take a �nite number of values, andlooking ahead is a way of deterministically ruling out certain locally inconsistent values andthus reducing the domains. This restriction has prevented the application of propagation tonew computation domains introduced by the CLP scheme and related approaches. In additionpropagation as currently de�ned only exploits a fraction of the power of its native universe ofdiscourse. For instance it cannot reason on compound terms, thereby enforcing an unnaturaland potentially ine�cient encoding of structured data as collections of constants.This has meant that the two approaches to integrating constraints into logic programming,as basic constraints and as propagation constraints, have had to remain quite separate. Even inthe CHIP system [DVS+88] which utilises both types of integration, propagation is excludedfrom those parts of the programs involving new computation domains, such as Boolean algebraor linear rational arithmetic.2.4 Generalised PropagationThis paper proposes a generalisation of propagation, which enables it to be applied on arbi-trary computation domains. Generalised propagation can be applied in CLP (X) programs,whatever the domain X. We shall call GP (X) the system applying generalised propagationin CLP (X). Finite domain propagation in logic programming is just GP (FD).The basic concepts, theoretical foundations, and abstract operational semantics of GP (X)can be de�ned independently of the computation domain, X. This allows programmers toreason about the e�ciency of GP (X) in an intuitive and uniform way. This generality carriesover to the implementation, where algorithms for executing generalised propagation applyacross a large range of basic constraint theories. Last but not least, the declarative semanticsof CLP (X) programs is preserved in GP (X).We brie
y motivate generalised propagation with a simple example. Constraint logicprogramming has been applied to the problem of crossword compilation [Van89]. A domainvariable was associated with each blank word in the crossword, whose domain was the setof words in the lexicon that could �t there. The correct choice of words was enforced byconstraints on their intersections. The �nite domains associated with the variables had around30 possible words. A more natural representation of the problem, where variables denoteletters ranging over the alphabet, unfortunately fails to allow su�cient constraint propagationto enable the problem to be solved in any reasonable time.With generalised propagation this representation of the problem is possible. It is statedas follows:top :-constraint word(A1,A2,B1,A4,C1),constraint word(B1,B2,B3,B4),constraint word(C1,C2,C3),...where the intersections are re
ected as shared letters in distinct word goals. Instead of prop-agating domain reductions, the system propagates equalities. Not only does this allow theoriginal problem, with a lexicon of 150 words, to be solved, it enables the problem to be scaledup to realistic proportions. Using generalised propagation, this program compiles crosswordsfrom a lexicon of 25000 words. A more detailed discussion of this application follows in section5

5.1. The main idea behind GP (X) is to use whatever constraints are available over the com-putation domain X to express restrictions on problem variables. (Associating �nite domainswith variables is one speci�c application of this concept.) Goals designated as propagationconstraints are repeatedly approximated as closely as possible using these constraints. Whenno further re�nement of the current resolvent's approximation is feasible, a resolution step isperformed and propagation starts again.The practical relevance of generalised propagation has been tested by implementing it inthe underlying constraint theory of �rst-order terms with syntactic equality [Cla79], which isthe computation domain of Prolog. This is GP (HU). Programs are just sets of Prolog ruleswith annotations identifying the goals to be used for propagation. The language has enabledus to write programs which are simple, yet e�cient, without the need to resort to constructswithout a clear declarative semantics such as demons. The performance results have beenvery encouraging.In the next section we shall describe �nite domain propagation in logic programming,then in section 3 we shall specify generalised propagation, discussing its logical and opera-tional semantics and introducing a generic algorithm for its implementation over arbitrarycomputation domains. In section 4 we shall describe two implemented instances of gener-alised propagation, based on a single system called Propia. In section 5 we shall comparegeneralised propagation with some related approaches, and we shall conclude in section 6.3 Constraint PropagationIn this section we brie
y review the motivation of �nite domain propagation in logic program-ming and describe its behaviour with some examples.3.1 Passive and Active ConstraintsFor solving CSP problems in logic programming, backtrack search is used. The aim is toperform relevant \tests" as soon as possible after instantiating a variable. Sophisticated dy-namic computation rules, such as freeze [Col85] and delay [Nai86, MAC+89] can be used todetermine which goal to evaluate next. However even such dynamic rules can only postponeevaluation until the constraints are partially or fully instantiated. Evaluating partially instan-tiated constraints will generate values for variables, usually creating undesirable branches inthe search tree. Waiting till the constraint is ground before evaluating, is to use the constraintas an a posteriori test. To summarise, logic programs can only use constraints passively.Our motivation for constraints logic programming is to support the active use of constraints[Gal85]. This is provided by techniques developed for solving constraint satisfaction problems(CSP). The study of CSP has a long history, and we mention here just a few importantreferences. The concept of arc consistency was introduced in [Mac77, Fre78]; its combinationwith backtrack search was described in [HE80]; the notion of value propagation is due to[SS80]; the application of constraint methods to real arithmetic was surveyed in [Dav87];�nally [Van89] extensively motivates and describes in detail the integration of �nite-domainpropagation methods into logic programming.3.2 Propagation in Constraint Logic ProgrammingThe idea behind local propagation methods for CSP's is to work on each propagation con-straint independently, and deterministically to extract information about locally consistentassignments. This has lead to various consistency algorithms for networks of constraints, themost widely applicable of these being arc-consistency [RHZ75, Mon74]. Consistency can beapplied as a preliminary to the search steps or interleaved with them [HE80]. The applica-tion of these techniques in logic programming was accomplished through two complementaryextensions [VD86, Van89]� explicit �nite domains of values to allow the expression of range restrictions, togetherwith the corresponding extension of uni�cation (FD-resolution)� new inference rules, based on looking ahead at \future" computations, to reduce �nitedomains in a deterministic way 6

The e�ect of looking ahead on a goal is to reduce the domains associated with the vari-ables in the goal, so that the resulting domains approximate as closely as possible the set ofremaining solutions. Application of these inference rules is repeated on all propagation con-straint goals until no more domain reductions are possible, forming a propagation sequence.Propagation constraint goals that are satis�ed by any combination of values in the domainsof their arguments can now be dropped.One algorithm for implementing lookahead is to enumerate all combinations of values forthe constraint's arguments and check each combination by calling the goal instantiated withthese values. The reduced domains are then formed by projecting successful combinations ontoeach argument. CHIP in addition implements a variety of prede�ned constraint predicates,which e�ciently perform domain reduction by specialised algorithms. (The drawback of suchdedicated algorithms is that they cannot be applied to program-de�ned predicates.) Anexample problem encoded in a CHIP-like syntax follows:csp(X1,X2,X3,X4) :-[X1,X2,X3,X4] :: [a,b,c],constraint p(X3,X1), /* 1 */constraint p(X2,X3), /* 2 */constraint p(X2,X4), /* 3 */constraint p(X3,X4). /* 4 */p(a,b). p(a,c). p(b,c).The constraint annotations identify goals that must be treated by the new inference rule.Annotations can be ignored for a declarative reading.For our example problem, the initial propagation sequence is su�cient to produce the onlysolution. A possible computation sequence is as follows (though the ordering is immaterialfor the �nal result):constraint p(X3,X1) [1] produces X3::{a,b}, X1::{b,c}constraint p(X2,X3::{a,b}) [2] produces X2=a, X3=bconstraint p(a,X4) [3] produces X4::{b,c}constraint p(b,X4::{b,c}) [4] produces X4=cconstraint p(b,X1::{b,c}) [1] produces X1=cconstraint p(a,b) [2] succeedsconstraint p(a,c) [3] succeedsconstraint p(b,c) [4] succeedsNote that the propagation constraint [1] takes part in two propagation steps before it is solved.In general constraints may be involved in any number (> 0) of propagation steps.This example is deliberately very simple. Normally an answer is not obtained by propaga-tion alone. If a propagation sequence terminates without producing an answer, then variablesare instantiated non-deterministically to values in their domains: this can be achieved by anexplicit \labelling" routine (as in CHIP) or by an implicit labelling performed automaticallyby the system.3.3 Clauses De�ning Propagation ConstraintsA nice property of constraint logic programming is the �ne level of control it o�ers overproblem solving. A propagation constraint goal can be de�ned by rules and therefore canbe arbitrarily complex. As an example consider a CSP problem comprising propagationconstraints C1; : : : ; Cn. As a constraint logic program this could be expressed astop /* domain declarations */constraint C1,: : :constraint CnAssuming that the propagation constraints are de�ned by immediately accessible facts,independent propagation on the sequence of constraints C1; : : : Cn can be relatively e�cient.CHIP for example uses the arc consistency algorithm of [MF85], which is o(n:d3) where d is7

the size of the largest variable domain. In fact this complexity result holds for constraints ontwo variables. When more variables are linked in a constraint, di�erent algorithms may bemore e�cient.Another way to encode the same problem in CLP is as follows:bigConstraint C1,: : :Cntop /* domain declarations */constraint bigConstraintIn this case, by contrast, to �nd a single tuple for bigConstraint is to solve the whole CSPproblem. Its worst case complexity is therefore exponential in the size of the largest domain.Clearly it brings nothing to de�ne the whole problem as a single propagation constraint.However the facility to combine clusters of constraints into a single larger constraint meansthat propagation can be used to enforce consistency just as local or global as necessary forthe problem at hand. The only practical necessity is to treat e�ciently constraints involvinga number of variables. Indeed there is no reason why a predicate cannot include constraintsin its de�nition, whilst itself appearing in a constraint goal in a larger program. Generalisedpropagation provides a framework where local and global propagation are practical alterna-tives.4 A Speci�cation of GP (X)4.1 De�nitionsThe language syntax and semantics used in this paper are based on �rst order logic. Atomicformulae are built from variables, predicate symbols, function symbols and constant symbols.If � is any open formula, then 9� and 8� denote respectively the existential and universalclosure of � as usual.The predicate symbols are divided into interpreted predicates and user predicates (oftencalled \uninterpreted" predicates). The function and constant symbols are divided similarly.For a given computation domain X, the interpreted symbols have a prede�ned interpreta-tion, independent of the programs in which they appear. The = predicate symbol is always aninterpreted predicate, interpreted as equality in the underlying domain. Two further predi-cates which are always interpreted are true and false. Typically interpreted function symbolsinclude + and � with their usual interpretation.By contrast the interpretation of the user predicates is dictated by the program semantics.User functions and constants have the free interpretation in the underlying domain.An atom containing only interpreted predicates, functions and constants is termed aninterpreted constraint. An atom containing only user predicates, functions and constants istermed a user atom. An atom cannot contain both interpreted and user symbols.1We admit an additional syntax for atoms constraint A where A is a user atom. Thissyntax yields another kind of constraints called propagation constraints. Unlike interpretedconstraints, propagation constraints have user predicates whose interpretation is dictated bythe program semantics.We now further distinguish two classes of interpreted constraints. These are the basic con-straints and approximation constraints. The conjunction of a set of basic or approximationconstraints is also termed an basic or approximation constraint respectively. Approximationconstraints \approximate" basic constraints in the sense that for any approximation constraintAC there are basic constraints C such that X j= (C ! AC). An example of an approximationconstraint is X :: f1; 2; 3g which states that either X = 1 or X = 2 or X = 3. It approx-imates each of the basic equality constraints X = 1, X = 2 and X = 3. Approximationconstraints are a generalisation of Davis' labels [Dav87]. The approximation constraints and1In practise one can admit such atoms (e.g. p(1 +X)) and view them as abbreviations for a conjunction wherethe equalities are made explicit (e.g. p(Y) ^ Y = (1 +X)).8

the basic constraints need not be disjoint: in other words basic constraints could approximatethemselves.A GP (X) program is a set of clauses of the form Head Body1; : : : ; Bodys. The headHead is a user atom. The body is a set of atoms, which may include user atoms and con-straints. A clause with an empty head Body1; : : : ; Bodys is termed a goal.An example clause isprofit(Company;P) constraint public(Company),income(Company; I),expenditure(Company; E),P = I � E4.2 Logical and Operational Semantics for GP (X)A Framework for Evaluation in GP (X) The framework for evaluation in GP (X) isbased on that of Ja�ar and Lassez [JL87], extended with the concept of a constraint storeand the tell operation by Saraswat [Sar89].An evaluation in GP (X) involves at any time a current goal and a current constraint store.The constraint store contains a conjunction of interpreted constraints.2Declarative Semantics for GP (X) Logically a propagation constraint constraint A isequivalent to the user atom A. A clauseHead Body1; : : : ; Bodys with free variables X1; : : :Xt as usual denotes the formula8X1; : : :Xt:(Head _ :Body1 _ : : : _ :Bodys).The meaning of a program is given by the conjunction of its clauses. The denotation of a goal Body1; : : : ; Bodys, is the positive formula Body1 _ : : : _ Bodys.An answer is a basic constraint which, when added to the constraint store, implies thetruth of the goal:De�nition 1 For a given GP (X) program P , the evaluation of a goal G with current con-straint store S is a basic constraint C such that X j= 9:(S^C) and X j= P ! 8:((S^C)! G)When it is clear from the context, instead of X j= P ! � we shall write j= �. Thus we canwrite that every answer C to a goal G with store S satis�es j= 8:((S ^C)! G).Operational Semantics for GP (X) A query Q is evaluated against a GP (X) programby initialising the goal to Q and starting with an empty constraint store. In general a goalmay contain both atomic constraints and user atoms.As in CLP (X), a goal is evaluated by reducing user atoms to constraints and adding theconstraints to the constraint store. Each atom in the goal is selected and processed in turn.However a user atom can only be selected if there are no constraints left in the goal.As in CLP (X), a user atom A is processed by non-determistically selecting a clauseH B1; : : : Bn whose head matches A. The atom A is then replaced in the goal by the setfH = A;B1 : : : Bng. Each alternative clause selection de�nes an alternative branch in theevaluation.When a constraint is selected it is �rst removed from the goal. Then information isextracted from it and \told" to the constraint store. The tell operation checks that the newinformation is consistent with the store, and if so the information is added to the store. Ifthe new information is inconsistent with the store, the tell operation fails.As in CLP (X), interpreted constraints are treated by \telling" them immediately to theconstraint store.The special feature of GP (X) is the handling of propagation constraints using generalisedpropagation. Generalised propagation can be seen as an example of the relaxed tell operationof [HD91] which is discussed in more detail in section 6.3, below. Approximation constraintsare extracted from the propagation constraint and they are \told" to the store. However2In [SKL90] each store is viewed as a set. However this second view can only treat distinct tokens of informationwhich are logically independent. 9

propagation is a continuing process which goes on until an answer to the propagation con-straint has been found. In general propagation will continue concurrently with the handlingof other constraints and user atoms in the goal.We now de�ne the computed answer returned by an evaluation:De�nition 2 For a given GP (X) program P , the evaluation of a goal G with current con-straint store S terminates when the goal is �nally empty and the propagations are all complete.The conjunction of basic constraints added to the constraint store during the evaluation istermed a \computed answer" to G with S.An answer to a query is a special case of an answer to a goal with a constraint store:De�nition 3 An answer, or computed answer, to a query Q is an answer, or respectively acomputed answer, to Q with the empty constraint store.For soundness we require that all the computed answers are answers. For completenesswe cannot require that all answers are also computed answers, but rather we require thecomputed answers to represent all the answers in the sense that they generate the same setof solutions.This requirement is expressed as follows (see [Smo91]):De�nition 4 Over the computation domain X, a set of computed answers R represents theset of answers S if for every answer s 2 S, and every variable valuation � such that X j=� s,there is a computed answer r 2 R such that X j=� r.If there are no propagation constraints, then our framework reduces to CLP (X). In thiscase, as long as the choice of goals is fair, i.e. in any in�nite branch every goal is selectedsooner or later, then sound and complete sets of answers are returned. The only requirementis that the test for satis�ability of basic constraints be e�ective (correct and terminating). Thespecial requirements on the domain of computation introduced in [JL87] are not necessaryhere since we are only interested in positive queries and programs. The proof of soundnessand completeness is easily adapted from [Llo84]. A related proof is in [Smo91].In such an operational framework, computation can be avoided by adding extra constraintsto the constraint store so that unsatis�ability is detected earlier. This is the idea behindpropagation. For example in �nite domain propagation a domain constraint like X = 1_X = 2when added to the constraint store can cut short the evaluation of the goal p(X;Y) using theclause p(3; Y) body(Y), since the constraint X = 3 is inconsistent with it.4.3 Propagation on a Single ConstraintSome Conditions on ApproximationConstraints The information extracted froma single propagation constraint is informally the best approximation to all its answers. Tomake this notion formal we �rst introduce a partial ordering on interpreted constraints bylogical implication; that is if A implies B we write A � B. Thus logically stronger formulaeare below logically weaker formulae in our ordering.We shall also impose a few conditions on the approximation constraints.� They should include true and false.� The ordering on approximation constraints should be well-founded: i.e. any set ofapproximation constraints should have a least element. If the set is consistent, the leastelement should be di�erent from false.� Every consistent decreasing sequence of approximation constraints should be �nite: i.e.the ordering restricted to the approximation constraints is well-founded.The �rst condition will merely ensure that every propagation constraint has an approxima-tion. The second condition will ensure that every propagation constraint has a best approx-imation, which is not false if the propagation constraint is satis�able. The third conditionwill ensure that successful propagation sequences terminate. The third condition, togetherwith the fact that approximation constraints are closed under �nite conjunction, implies thesecond condition. 10

Information Extracted by a Single Propagation Step We are now in a positionto specify precisely the result of a single propagation step on a constraint.De�nition 5 The result of a single propagation step on a propagation constraint PC withconstraint store S is the smallest approximation constraint AC which is an upper bound onthe set of answers to PC with S.The intuition behind this de�nition is to extract as much information as possible from thepropagation constraint without excluding any answers. For example, the result of �nitedomain propagation on the constraint p(X;Y) de�ned by the factsp(1; 2)p(2; 1)p(3; 1)with storeX 2 f2; 3g is the smallest domain constraint which is implied by both X = 2^Y = 1and X = 3 ^ Y = 1. This is indeed (X = 1 _X = 2) ^ Y = 1 as expected.We now introduce a function prop(S; C) which captures the e�ect of propagation on aconstraint C with constraint store S. Speci�cally prop(S; C) is the new constraint storewhich results from adding to S the result of propagation on C with S.De�nition 6 If the result of propagation on constraint C with store S is AC, then prop(S; C)is de�ned to be S ^AC.4.4 Propagation SequencesAfter propagation on a number of constraints, the constraint store contains new basic con-straints. Since the new store is an argument to the propagation function, yet more informationcan often be extracted by propagating again on the same constraints:S1 = prop(S0; C1): : :Sn = prop(Sn�1; Cn)Sn+1 = prop(Sn; C1): : :S2n = prop(S2n�1; C2n)In order to extract as much information as possible, propagation is attempted repeatedly onall constraints until there is no more information to be extracted. Such a complete sequenceof propagations is termed a \propagation sequence".The propagation function prop(S; C) adds new information to the constraint store, andthus under our ordering prop(S; C) � S. In other words the propagation function is decreas-ing. We require one more property of the propagation function and that is monotonicity.If there is more information in the constraint store then propagation on a given constraintshould not yield less additional information.Lemma 1 If S1 � S2, then prop(S1; C) � prop(S2; C).Proof 1 The condition S1 � S2 implies that (C ^ S1) ! (C ^ S2). From the de�nition ofan answer it follows that if A is an answer to C with S1 then A is an answer to C with S2.Thus the set of answers to A in S2 contains the set of answers to A in S1. Therefore anyupper bound on the answers to A with S2 is an upper bound on the answers to A in S1.Consequently, if AC1 and AC2 are the results of propagation on C with stores S1 and S2respectively, AC1 � AC2. Finally prop(S1; C) � (S1 ^AC1) � (S2 ^AC2) � prop(S2; C).In our de�nition of GP (X) clauses and goals above, we said that the ordering of atoms isimmaterial. We now demonstrate that the information extracted as the result of a propagationsequence is independent of the order of constraint propagations, thus it is not necessary toreintroduce any ordering to obtain a well-de�ned semantics for constraint propagation.Theorem 2 The �xpoint reached by a propagation sequence is independent of the order inwhich propagation steps are performed.Proof 2 Since propagation steps are monotonic and decreasing, they yield closure operators,and the theorem is a standard lattice theoretic result.In an implementation the system must be able to detect when a �xed point has been reached.This requires an e�ective decision procedure to determine if an approximation constraint is alogical consequence of the constraint store. 11

4.5 Propagation in a ProgramUnfolding Propagation Constraints It was stated in section 4.1 above that logicallya propagation constraint constraint A is equivalent to the user atom A. However a singlepropagation step or propagation sequence is not guaranteed to extract an approximationconstraint equivalent to A.As much information is extracted as can be expressed using approximation constraints, butin general there may remain further information not expressible as approximation constraints.For �nite domain propagation an example is the propagation constraint p(X;Y), de�ned bythe factsp(1; 2)p(2; 1)The information extracted from the constraint is that X has domain f1; 2g and Y has domainf1; 2g. Consequently if p is de�ned as above and q is de�ned by the clausesq(1; 1)q(2; 2)then the query constraint p(X;Y), constraint q(X;Y) will yield X 2 f1; 2g; Y 2 f1; 2g afterpropagation. However the result of the query p(X;Y); q(X;Y) is, of course, failure.This example shows that for soundness of GP (X) it is necessary that evaluation shouldnot terminate until the basic constraints in the constraint store imply the truth of the useratom in the constraint.3 We therefore say that propagation is not complete until this state isreached. In the following de�nition we denote by b(S) the conjunction of basic constraints inthe constraint store S.De�nition 7 Propagation on a constraint PG is complete when the constraint store S licensesthe implication: j= b(S)! G.In the CHIP system this condition is not enforced by the system, but left to the pro-grammer who generally adds a \labelling" routine to instantiate problem variables non-determistically to values in their current domains. The labellings adds the required basicconstraints (equalities) to the constraint store.In GP (X) the soundness is enforced automatically by the system. When the goal isempty, before termination, propagation constraints for which propagation is not complete areselected to be evaluated like user atoms by unfolding them. Consequently sound and completeanswers are computed as in the CLP (X) framework. This is an appropriate (and automatic)generalisation of CHIP's labelling routines.Soundness of GP (X) In the following we shall view propagation constraints as \anno-tated" atoms, and we shall call interpreted constraints and user atoms \un-annotated" atoms.We shall call the CLP (X) program that results from a GP (X) program by replacing all prop-agation constraints constraint A by A, the \un-annotated" program. An un-annotated goalis de�ned similarly. The soundness and completeness of GP (X) for an arbitrary goal andprogram will be proved by using the soundness and completeness of the un-annotated goaland program.For the purposes of these proofs, any unfolding of propagation constraints in GP (X) willnot be distinguished from the unfolding of un-annotated user atoms.The constraints added to the constraint store during the processing of un-annotated atomsin a GP (X) goal and program are precisely those added in a CLP (X) evaluation of theun-annotated goal and program. Thus the constraint store contains computed answers to allun-annotated atoms in the goal. For the propagation constraints, propagation is not completeuntil the constraint store implies their truth. Since the whole constraint store is consistent,the computed answers are indeed answers to the complete goal.Completeness of GP (X) If we assume that generalised propagation introduces no extranon-termination, then the completeness of generalised propagation is a consequence of thecompletenes of CLP (X). We �rst prove that every success branch in the un-annotated pro-gram remains successful in the GP (X) program. Then we show that the �nal constraint store3The restriction to basic constraints is required if answers are expressed as basic constraints. Alternatively theframework could allow approximation constraints to appear in answers.12

for the un-annotated program on any branch is logically stronger than that for the GP (X)program on the same branch. The completeness of the GP (X) program is then a directconsequence of the completeness of the un-annotated program.The proof that every success branch for the un-annotated program remains successful inthe GP (X) program depends on a few simple observations. Let S be the �nal constraint store,PA and PB be arbitrary propagation constraints, CA and CB the complete conjunction ofapproximation constraints extracted from PA and PB respectively during propagation, andA and B arbitrary answers to PA and PB. Finally let C be an arbitrary constraint added tothe constraint store during evaluation of the un-annotated program.1. j= A! CA and j= B ! CB2. If S ^A is consistent then so is S ^CA3. If S ^A ^C is consistent, then so is S ^CA ^C4. If S ^A ^B is consistent, then so is S ^CA ^CB.From 2 we conclude that the extraction of approximation constraints from a propagationconstraint cannot fail if there are any consistent answers. Thus no extra failure is introduced.From 3 we conclude that the approximation constraints extracted and held in the constraintstore cannot prevent any other �nally consistent constraints being added. Thus no extrafailure can be caused.From 4 we conclude that the approximation constraints held in the store cannot cause anyfurther propagation to fail, if there are any consistent answers. Thus no extra failure isintroduced.Consequently the tell operation which adds constraints to the constraint store never fails ona particular branch in a GP (X) program if it did not already fail on the same branch in theun-annotated CLP (X) program.To prove that the �nal constraint store in the un-annotated program is logically strongerthan that in the GP (X) program we examine the added constraints.Firstly all the same constraints are added during the processing on un-annotated atoms.Secondly the approximation constraints extracted from the propagation constraints are log-ically weaker than all answers, and in particular weaker than answers computed by the un-annotated program. Therefore for every computed answer obtained from the un-annotatedprogram there is a logically weaker computed answer obtained from the GP (X) program.The completeness of the GP (X) program is immediate from the completeness of CLP (X).4.6 Termination in GP (X)Termination of the search for answers to a propagation constraint is not guaranteed. Non-termination due to unfolding is inherited from CLP (X): in practise the programmer is re-sponsible for ensuring that unfolding should terminate. Just as any user goal in CLP (X),a propagation constraint in GP (X) can only be evaluated after the clause in whose body itappears has been unfolded. In this sense GP (X) is no di�erent from CLP (X).There are two di�erences. Firstly all answers to a propagation constraint are generallyrequired instead of just one as in CLP (X). Of course backtracking will generally imply thatmany answers to a goal must be found in CLP (X) as well. The theoretical problem remainsthat in CLP (X) every answer lies at the end of a terminating success branch, whilst therequirement during propagation for all answers to a propagation constraint implies that anyin�nite branch in the search tree can cause non-termination of a propagation step.4Secondly, a propagation constraint may be evaluated and re-evaluated many times inGP (X). Luckily this does not alter the termination behaviour of the program. The reason isthat on later evaluations the constraint store is logically at least as strong as before. Conse-quently the later evaluations may bene�t from extra pruning of some branches, but no newin�nite branches can arise.Of particular concern in GP (X) is the potential for propagation sequences not to termi-nate, even though the propagation constraints are satis�able and unfolding would terminatein every case. A propagation sequence de�nes a sequence of constraint storesS ^AC14But it frequently does not, as we show below in section 4.7.13

S ^AC1 ^AC2: : :where no ACn is a logical consequence of S ^ AC1 ^ : : : ^ ACn�1. However in this case noACn is a logical consequence of AC1 ^ : : : ^ACn�1 either, and therefore the conjunctions ofapproximation constraints de�ne a descending sequence. If the constraints are satis�able, soare all the approximations. Such a satis�able sequence cannot be in�nite due to our well-foundedness assumption (section 4.3 above). Therefore every satis�able propagation sequencemust terminate.4.7 Topological Branch and BoundEvaluating Propagation Constraints Conceptually the evaluation of a propagationconstraint PC requires� �nding all the answers to the goal PC� �nding the smallest approximation constraint which is an upper bound for the set ofanswersLemma 3 The upper bounds of the set of answers S are precisely the upper bounds of the setof computed answers RProof 3 If u is an upper bound of S, then since R � S, u is also an upper bound of R.Show that if u is an upper bound of R it is an upper bound of S. If u is not an upper boundof S, then for some answer s 2 S and some variable valuation �, j=� s but j=�:u. Howeverby our de�nition of completeness there is an r 2 R such that j=� r and therefore u is not anupper bound for R.Using this result, when �nding the smallest approximation constraint, the system can use theset of computed answers instead of the whole set of answers.We shall start by assuming that the computation of the computed answers terminates,and therefore the set of computed answers is �nite. Notice that a �nite number of computedanswers in a CLP (X) program may denote an in�nite number of solutions. For example thepropagation constraint p(X), de�ned byp(X) X > 1p(X) X < 1has a �nite number (two) of computed answers, though it has an in�nite number of solutionsover the domain of integers.For GP (X) three built-in procedures are required.� For �nding answers, the system must support an e�ective decision procedure for basicconstraints over X (the same procedure is required for CLP (X))� For extracting approximations, the system must additionally support an e�ective proce-dure for producing the smallest approximation constraint which is an upper bound fora �nite set of basic constraints.� In section 4.4 above another e�ective decision procedure was mentioned, to determineif an approximation constraint is a logical consequence of the current store. This isnecessary to enable propagation sequences to terminate.Interleaving Answering and Approximation Practically the evaluation of propa-gation constraints interleaves the �nding of individual answers and their generalisation. Tomake this possible we assume that our procedure for extracting approximations can returnthe smallest approximation constraint which is an upper bound for a basic constraint and anapproximation constraint. To approximate a �nite set of computed answers it is now possibleperform the approximations pairwise.Lemma 4 If A2 is the best approximation of fD1;D2g and A3 is the best approximation offA2;D3g, then A3 is the best approximation of fD1;D2;D3g.Proof 4 Suppose AC is the best approximation of fD1;D2;D3g, then AC is an upper boundfor fD1;D2g. 14

Consequently A2 ! AC. However we also know that D3! AC. and therefore AC is anupper bound for fA2;D3g. However we assumed A3 was the best approximation for fA2;D3g,therefore AC � A3.This lemma generalises to �nite sets of answers by induction.Cutting All Remaining Branches We now describe two optimisations which �t nat-urally into the evaluation of propagation constraints. Both optimisations depend upon theinterleaving of answering and approximation. At any point in the evaluation of a propagationconstraint the system has available� the constraint store S� the current approximation constraint AC which is the smallest approximation constraintwhich is an upper bound for the answers found so farThe current approximation constraint can be used just like the current best cost in a branchand bound search. However it can also be used, in a way not available in branch and bound,to prune o� all the remaining branches of the search tree.Using the procedure which decides if an approximation constraint is implied by the con-straint store, it is possible to prune the evaluation of a propagation constraint by� interleaving the �nding of answers and generating new approximation constraints AC� terminating the computation as soon as the current approximation constraint is impliedby the constraint store S, i.e. S ! ACThis optimisation is very important for propagation constraints de�ned by large numbers ofclauses. For such constraints it is often easy to �nd a few solutions, but very expensive to �ndthem all. Its signi�cance is illustrated by the crossword compilation application describedbelow 5.1.Cutting o� the Current Branch When exploring a single branch the system collectslocally a set of basic constraints extracted during the unfolding of clauses. The conjunctionof all the basic constraints extracted along a branch goes to make up a single answer to thepropagation constraint. If this answer is logically stronger than the current approximationconstraint (which approximates all the answers found so far), then it cannot a�ect the �nalresult.Branch and bound search bene�ts from the observation that there is no need to explore tothe end a branch that is already more expensive than the current best branch. In evaluatinga propagation constraint the same observation applies: there is no need to explore furtherif the local constraints gathered on a branch are already logically stronger than the currentapproximation constraint.The required decision procedure is the same as before: we need to determine if the currentapproximation constraint is implied by a set of basic constraints.This optimisation proves to be very valuable for propagation constraints de�ned by recur-sive clauses. This will be illustrated using the member predicate in section 5.2 below.We can summarise the procedure for evaluating a propagation constraint constraint Gwith constraint store S as follows:After each answer A to the goal G is retrieved it is �rst checked for consistencywith the constraint store S. If S ^ A is unsatis�able, then the answer is thrownaway. If no consistent answers are found, then constraint propagation has detectedan inconsistency, and the propagation sequence terminates signalling inconsistency.The initial approximation constraint AC is set to false. When a consistentanswer A is found it is added to the current best approximation, and the pairfAC;Ag is approximated yielding a new approximation constraint. AC is set tothe new constraint.During the search for an answer, basic constraints are added to a local constraintstore, LS. If at any stage LS ! AC, then the local search is abandoned. Searchfor new answers continues by choosing other clauses to unfold.Propagation terminates as soon as the approximation constraint is implied bythe constraint store, S ! AC. In this case no new information could be extracted,15

and so prop(S;G) = S. Otherwise propagation terminates when there are nofurther alternative clauses to unfold. Then the current approximation constraintis added to the constraint store, and so prop(S;G) = (S ^AC).Evaluating Propagation Sequences In the case of �nite domain propagation, theprocedure for performing propagation on a single constraint is called REV ISE [MF85]. Es-sentially the evaluation of a propagation sequence for generalised propagation can be obtainedfrom the AC-3 algorithm by replacing REV ISE with topological branch and bound.A feature of AC-3 is that after propagating on a constraint C, C is removed from the listof constraints to be dealt with in the current propagation sequence. C is only added to thelist again if some of its variables are a�ected by propagation on other constraints. For thecorrectness of AC-3 it is therefore necessary that propagation on a single constraint is itself a�xpoint operation. This can be stated as a simple lemma:Lemma 5 For any constraint store S and propagation constraintC, prop(S; C) = prop(prop(S; C); C)Proof 5 Let AC be the result of propagation on constraint C with store S. By de�nition,prop(S; C) � S^AC. AC approximates every answer A to C with S, so A! AC. Since everyA is consistent with S, it follows that A is consistent with S ^AC. Moreover if (S ^A)! C,then a fortiori (S ^AC ^A)! C. Consequently every answer to C with S is also an answerto C with prop(S; C). Therefore the result of propagation on C with prop(S; C) remainsprop(S; C).This condition is not satis�ed by relaxed tell [HD91], which is an abstraction of generalisedpropagation (see below 6.3).5 Some Instances of GP(X)Two implementations of generalised propagation over the Herbrand universe have been com-pleted. In the two following sections the examples we describe have all been run on a GP(HU)implementation called \Propia". Propia extracts information about equalities from propaga-tion constraints, and it o�ers a number of approximation languages some of which will bedescribed below. Propia is implemented in Sepia [MAC+89] with the help of some specialadded built-ins.5.1 GP(Datalog)Datalog is logic programming without functions. The basic constraints in Datalog are equal-ities, X = c or X = Y where c is a constant and X and Y are variables. This means that thenumber of ground answers to an n-ary query top(X1; : : : ; Xn) is �nite (at most dn where d isthe number of constants appearing in the program). There are also �nitely many non-groundanswers. Either Xi = c, for some constant c, or Xi = Xj for one or more other query variablesXj, or Xi is unconstrained.Crossword Compilation Crossword compilation is an application of GP (Datalog).Each word in the lexicon is recorded as a fact for the user-predicate word, thus:word(a; r; k)word(a; r;m)word(a; r; r; a; y): : :As explained in the introduction, the problem is expressed as a set of propagation constraints,each one representing a blank word in the crosswordtop constraint word(A1; A2; B1; A4; C1);constraint word(B1; B2; B3; B4);constraint word(C1; C2; C3);: : : 16

The program is evaluated by performing generalised propagation on all the individual words,until the propagation sequence reaches a �xpoint. On most real crosswords, the �rst �xpointis reached without extracting any information whatsoever out of the propagation constraints.Next one of the constraints is selected for unfolding. For example the lexically �rst constraintword(A1;A2; B1; A4; C1) might be chosen. The result of unfolding is the addition to theconstraint store of a conjunction of equalities, say (A1 = a) ^ (A2 = r) ^ (B1 = r) ^ (A4 =a) ^ (C1 = y). Now propagation on the other constraints is attempted. For example thesystem will search for all answers to the goal word(b;B2; B3; B4) and attempt to extract anapproximation of these answers. Propagation continues until the second propagation sequenceis complete (in a typical crossword no information will normally be extracted after the secondpropagation sequence either).In our implementation the cost of these fruitless propagation sequences is kept low by� only attempting propagation on constraints a�ected by the last unfolding or the currentpropagation sequence� ceasing the search for answers after �nding only a few, since the approximation of onlya few answers soon becomes general enough to allow the search to be terminated (seeabove section 4.7).As the crossword �lls up, the propagation begins to produce information which ensures nobad choices can be made later. At this point propagation sequences begin to grow in length,as information extracted from one constraint enables further information to be extracted fromothers.To sum up, little work is invested in generalised propagation by the system until it actuallystarts to be useful. Evidence for the naturally good behaviour of generalised propagation oncrossword compilation is this. The crossword program sketched above is perfectly naive.In fact a meta-program has been written which takes any crossword drawn as a grid andgenerates such a program automatically. Yet generalised propagation applied to the resultingprogram happens to yield a crossword compilation algorithm very similar to one developedspecially for crosswords and described in [Ber87]. On a Sun3 workstation, with a 25000 wordlexicon, the Herald Tribune crossword can be compiled by Propia in a few minutes.Propagation as Consistency Checking Various alternative approximation languagescan be used for generalised propagation. The more expressive the approximation languagethe more information is extracted, but the costlier the propagation.One very simple approximation language has just two approximation constraints: trueand false. We call this the consistency approximation language. With this language theresult of propagation on a constraint is either nothing (in case an answer was found) or failure(in case none could be found). The behaviour of the crossword program with this languageis to use each constraint as a continual check on the choices made so far. This ensures thatno inconsistent choices are made, but that no \active" constraint propagation is done.The advantage of using such a trivial approximation language is that in this case topologi-cal branch and bound is very e�ective in optimising the evaluation of propagation constraints.Suppose a certain constraint is being evaluated for propagation. As soon as a single answeris found, the current approximation constraint (approximating the answers found so far) be-comes true. Since true is implied by the current constraint store (since it is implied by anyconstraint store) propagation terminates immediately.Clearly with the trivial approximation language generalised propagation is very cheap toimplement. It o�ers an alternative to intelligent backtracking, in this sense. If every user goalis annotated as a propagation constraint, as in the current example, then the propagationprevents any further (irrelevant) choices being made if any other goal is already unsatis�able.This is because the failure is detected immediately when attempting propagation.Equalities Between Variables For the crossword application above, the only usefulinformation concerns values for variables (expressed as an equality between a variable anda constant). In this section we shortly demonstrate the usefulness of extracting informa-tion about equalities between variables. Applications where such information is importantinclude those involving boolean variables, such as circuit design, analysis and testing, andpropositional satis�ablity problems. 17

Such applications involve complex boolean functions describing the behaviour of, for ex-ample, circuit components which are already analysed. Each such function can be usedimmediately as a propagation constraint. Let us choose a very simple \and-gate" to illustratethe following discussion. Its behaviour can be described using four clauses:and(true; true; true):and(true; fals; false):and(false; true; false):and(false; false; false):The approximation language admits any equality as an atomic approximation constraint. Ina program where constraint and(X,Y,Z) appears as a goal, the following information canbe extracted:Constraint store Information extractedEmpty NothingX = false Z = falseX = true Z = YY = false Z = falseY = true Z = XZ = true X = true ^ Y = trueX = Y Z = XEven though boolean variables have �nite (2-element) domains, �nite domain propagationcannot elicit any information in case, for example, the constraint store has X = true. In thiscase both Y and Z could take either value true or false. For real problems in the applicationslisted above, the extraction of information of the form Z = Y is essential for performancereasons.To obtain such a behaviour on these applications in CHIP [SD90, SD87b, SD87a, Sim88,SP89] it was necessary to use a form of guarded clause called \demons". Demons are predicateswhose goals behave as follows. Each goal delays until one of the clauses in the predicatede�nition has a head which matches it. The matching clause is then exclusively chosen forevaluating this goal, and if it fails none of the other clauses are tried.The demon clauses de�ning the and predicate explicitly use the constraints in the \Con-straint Store" column above as guards. Expressed using the syntax of Andorra [HJ90] theand demons are:and(X;Y;Z) X = falsejZ = falseand(X;Y;Z) X = truejZ = Y: : :Whilst the demons for and are built-in in CHIP, for complex boolean functions the CHIPprogrammer is required to generate a set of demons for himself. Propagation constraints likeand can often be encoded into demons. However, experiments have shown that the numberof distinct demons required for even moderately complex boolean functions can often be overten thousand.To encode a set of demons for a propagation constraint the programmer must considerall cases and generate each demon body by, e�ectively, performing the propagation in theirhead. Since the resulting demons need do no propagation at runtime, they are more e�cientto execute. It is therefore interesting to record that Propia when applied to a benchmarkof propositional satis�ability problems [MR91], had execution times on the same hardwarebroadly comparable with that obtained using CHIP's demons.The relationship between generalised propagation and committed choice languages will bediscussed in more detail below.5.2 GP(HU)In the last section we examined applications run using Propia which did not use functions.We now consider what happens when functions are used in propagation constraints. Theinformation extracted remains information about equalities between terms. The answers toa query are always expressed as conjunctions of equalities of the form X = T , where X is avariable in the original query, and T is a term (possibly involving non-query variables). Inthe Herbrand universe there are arbitrarily long �nite sequences of monotonically stronger18

such equalities, but no in�nite sequences which are satis�able. Consequently the noetherianrequirement is still satis�ed.The presence of function symbols enables generalised propagation to be performed overlists. In particular we shall examine propagation on the member predicate de�ned as follows:member(X; [Xj])member(X; [jT]) member(X;T)In many applications it is of interest to detect the success or failure of membership as soonas possible, just using member as a check. Yet even this is a serious problem (see for example[Nai86]). For example even if the tail of the list is known most control regimes require thecheck to delay until the head of the list either equals or fails to unify with the �rst argument.Generalised propagation can be applied to any member propagation constraint withoutfear of non-termination. The information extracted from constraint member(M,[E1,...En|Tail])can be summarised as follows.� If Tail is empty, then{ M becomes equal to the most speci�c generalisation of M1; : : : ;Mn where Mi isthe most general uni�er of M and Ei. If none of the Ei unify with M , the result isfalse.{ Ei becomes equal to the most general uni�er of Ei and M if Ei is the only elementthat uni�es with M . Otherwise there are no resulting constraints on Ei.� If Tail is a variable, then{ There are no resulting constraints on M{ There are no resulting constraints on any Ei{ If none of the Ei unify with M , then Tail = [j]The e�ect of the topological branch and bound in pruning the search for the in�nite set ofanswers which return bindings for the tail is essential to ensure termination.It is very instructive to try and construct ways of expressing the same propagation usingguarded clauses!So farGP (HU) has only been applied to a few puzzles, and for encoding alternatives withina single term. This has been used to achieve an approximation to �nite domain propagationin a simple way.6 Generalised Propagation and Other ApproachesThere are many overlaps with other work and in this paper it is not possible to include a fullcomparison with all of it. We have tried to consider more closely related research which isparticularly interesting and in
uential. However even in the short list considered here, thereare many points on which our comparison could be greatly expanded.6.1 Propagation in CHIPGeneralised propagation is descended from propagation in CHIP. CHIP provides two propa-gation inference rules, lookahead and forward checking. In this section we shall brie
y studyhow generalised propagation relates to the two di�erent rules.Firstly, of course, propagation in CHIP can only produce reductions in �nite domains.Generalised propagation is domain independent and can be used to extract interpreted con-straints over the domain of computation whatever it is. Within the framework of generalisedpropagation, systems have been implemented to perform propagation yielding equality con-straints and yielding �nite domain constraints.When we compare the implementation of generalised propagation yielding �nite domainconstraints with CHIP's lookahead inference rule, there remain signi�cant di�erences.The algorithm underlying CHIP's lookahead iterates over each �nite domain of each free(unlabelled) variable to determine if there is a labelling of the remaining variables consistentwith it. Because of the high cost of the algorithm (worst case n �dn where n is the number offree variables and d the size of the largest domain), lookahead in CHIP is delayed until thereare maximally two free variables. 19

Generalised propagation uses a topological branch and bound procedure which iteratesover the answers to the goal rather than the variable domains. Consequently there is nopenalty associated with constraints involving more than two free variables.It is possible to �nd examples where topological branch and bound is more e�cient thanCHIP's algorithm and vice versa. However the
exibility o�ered by the choice of approxi-mation constraints makes it possible to perform e�cient generalised propagation on a largerange of examples.CHIP's forward checking rule o�ers a restricted form of propagation in which the resultof propagation must be logically equivalent to the constraint itself in the current state. Forexample if the current state has X = 2 and p is de�ned byp(1; 2)p(2; 1)p(2; 2)then p(X;Y) is logically equivalent to Y 2 f1; 2g. In CHIP forward checking is simplydelayed until there is at most one free variable. The set of values in the domain of thisvariable consistent with the constraint are all the answers to the constraint, and they areits only answers. The required logical equivalence is therefore always achieved between theconstraint and the reduced domain (as illustrated by the above example).A generalisation of forward checking can be achieved within the framework of generalisedpropagation by specifying a rather special approximation language. The propagation languageself is de�ned to include all (conjunctions of) answers to the current goal. Each such answeris, in fact, a conjunction of interpreted constraints in the domain of computation. Generalisedpropagation using this language has precisely the e�ect of forward checking.This language (or strictly this class of languages) has been implemented in Propia. In factits implementation turned out to be very simple (requiring only three lines of code!). Just asfor other language-based approximations of propagation, Propia uses topological branch andbound for computing the best approximation in the language self . Consequently generalisedforward checking is, as expected, quicker to evaluate than generalised propagation on thesame constraint using basic constraints as the approximation language.Notice that there is no longer any need to delay forward checking, as in CHIP. Noticealso that generalised forward checking is indeed a generalisation of forward checking in �nitedomains. It is applicable to arbitrary computation domains, and returns as a result interpretedconstraints in the current domain of computation, whatever it is.6.2 Most Speci�c Logic ProgramsThe instance GP (HU) of generalised propagation extracts information from propagation con-straints which is precisely the most speci�c generalisation described in [MNL88]. In this earlierwork, the most speci�c generalisation of a set of possible solutions was calculated in advanceof execution, so as to transform a program statically into one which was more e�cient and hadother better properties. Various algorithms have been proposed for calculating most speci�clogic programs, some using bottom-up evaluation and others breadth-�rst.Generalised propagation is, by contrast, performed at runtime, repeatedly as more infor-mation becomes available and more information can be extracted. The topological branchand bound procedure, based on a pruned top-down evaluation, is much more e�cient toimplement and makes practicable the extraction of most speci�c generalisations at runtime.6.3 Relaxed TellIn [HD91] an operational semantics for constraint logic programming is introduced whicho�ers an operation called relaxed tell. The relaxed tell operation extracts from a non-basicconstraint an approximation. The operation requires two functions, a relaxation function andan approximation function which depends on the relaxation function.A relaxation function r maps the constraint store S to an approximation r(S) satisfyingj= S ! r(S). CHIP uses such a relaxation function in its treatment of arithmetic constraintsover �nite domains. A �nite domain for a variable V , such as f1; 2; 4g can be approximatedby its end points, 1 � V � 4.An approximation function ap (given a relaxation function r) maps a non-basic constraintC and a store S to an approximation ap(S; C) satisfying (r(S) ^ C) ! ap(S; C). CHIP also20

uses approximation functions in its treatment of arithmetic constraints over �nite domains.For example the linear constraint 1+V 1 = V 2 is handled by using the equations to reduce theupper bounds and increase the lower bounds of the variable domains so that the equation issatis�ed by the new bounds. Thus if V 1 2 f1; 3g and V 2 2 f2; 3g, the result of approximationon the above equation is 1 � V 1 � 2 and 2 � V 2 � 3.The requirement on the approximation function in the relaxed tell framework is that itmust approximate the constraint C, whereas in the framework of generalised propagation theresult approximates all the answers to the constraint. This di�erence arises because relaxedtell is designed for non-basic built-in constraints such as arithmetic ones. For generalisedpropagation any user goal can be annotated as a constraint. In this case there is a clearde�nition of an answer to the constraint, but the logical semantics of the constraint itself ismore di�cult to pin down. The logical semantics for program clauses does not license anynegative consequences. However in this case no pruning information could be extracted frompropagation constraints! For our purposes it would therefore be necessary to use some formof minimal model semantics for constraint logic programs, with all the restrictions this entails[JL87].Apart from the restriction to built-in constraints, relaxed tell is an abstraction of gener-alised propagation. The inclusion of a relaxation function makes it strictly more powerfulthan generalised propagation, whose \relaxation function" is just the identity function. Thedisadvantage of using a relaxation function is that propagation on a single constraint cannotbe guaranteed to yield a �xpoint. In fact the example of approximation above has this prop-erty. If the result of propagation is added to the constraint store the resulting store now hasa di�erent relaxation 1 � V 1 � 1, which enables further useful propagation to be performedon the same constraint. This means that the e�cient AC-3 algorithm no longer producescomplete propagation sequences.56.4 Guarded Clauses and Concurrent Constraint Logic Pro-grammingIt is not possible in this paper to make a comparison of generalised propagation with thedi�erent languages in these frameworks. At an abstract level propagation constraints can beseen as deterministic processing agents which communicate with the constraint store usingrelaxed tell. More concretely it is interesting to specify precisely what communications takeplace in terms of ask and tell, and how this behaviour re
ects the declarative semantics ofthe constraint.We can therefore attempt to encode the behaviour of a propagation constraint as a set ofde�nitions using committed choice, guarded clauses. Let us take �nite domain propagation asan example and use ask X 2 fC1; : : : ; Cng to ask if the current constraint store implies that(X = C1) _ : : : _ (X = Cn), and tell X 2 fC1; : : : ; Cng to tell this formula to the constraintstore. For constraint p(X;Y), where p is de�ned asp(1; 2)p(2; 1)p(3; 1)we could express �nite domain propagation thus:constraint p(X;Y) true j tell X 2 f1; 2; 3g; tell Y 2 f1; 2g; constraint p1(X;Y)constraint p1(X;Y) ask X 2 f2; 3g j tell Y = 1constraint p1(X;Y) ask X = 1 j tell Y = 2constraint p1(X;Y) ask X = 2 j tell Y = 1constraint p1(X;Y) ask X = 3 j tell Y = 1constraint p1(X;Y) ask Y = 1 j tell X 2 f2; 3gconstraint p1(X;Y) ask Y = 2 j tell X = 1This encoding is similar to that used for the and demons (see section 5.1 above).The main drawback of using such an encoding is the huge number of clauses necessary tocapture each interesting propagation. We hypothesise that if conjunctions of basic constraintsare admitted in the guard, the number of guarded clauses can rise exponentially with thenumber of clauses needed to express the propagation constraint.5In CHIP, which uses AC-3, it is therefore sometimes necessary to state constraints twice!21

A second drawback of guarded clauses is, paradoxically, their great expressive power. Forexample it is possible to express the merge operation using guarded clauses, although thisoperation has no logical semantics. In general it is not possible to give a declarative semanticsfor a set of guarded clauses, and thus it is not possible to state the e�ect of a program exceptin terms of the operational behaviour of its clauses.There is a \logical subset" of guarded clause programs that have a logical semantics. Itis possible to state when a set of \logical" guarded clauses is sound with respect to a logicprogram speci�cation as in [Smo91]. However even for such logically sound guarded clausesthere remains the question of completeness. There seems no simple way to determine whenthe behaviour of a set of clauses is equivalent to the behaviour of generalised propagation. Forexample it is only possible to con�rm that the encoding of constraint p(X;Y) using guardedclauses above really does extract all possible propagations in all possible constraint storesby performing an exhaustive analysis on constraint stores. The set of interesting constraintstores to be analysed soon grows prohibitively large for non-trivial constraints (see also abovesection 5.1).A form of guarded rules with multiple heads is being investigated at ECRC [Fru91], whichprovides a language for expressing constraint simpli�cation. The rules are called simpli�cationrules. In many cases it would be practical to express certain interesting propagations as sim-pli�cation rules. The integration of these simpli�cation rules into our framework would makeit possible to encode the results of static analysis and partial evaluation of generalised propa-gation. Consequently the whole range of possibilities on the continuum between compilationand interpretation of generalised propagation would be available in one system.6.5 AndorraA relationship has been often pointed out between David Warren's Andorra principle [War88]and the preference for deterministic computation which underlies constraint propagation.Whilst the two principles cannot be clearly distinguished, their embodiment in Andorra [HJ90]and in generalised propagation can usefully be compared.Andorra promotes deterministic computations. The control of how hard to work to �ndsubcomputations that yield determistic results has reached a considerable degree of sophis-tication. However the basic idea is to perform parts of the computation locally and if theresult is deterministic to make it available globally, adding the resulting constraints to theconstraint store. This is similar to extracting results from propagation constraints.In a local computation in Andorra, nothing is thrown away. This is quite di�erent fromconstraint propagation which �nds many answers, extracts \common" information from themall, and then throws the answers away again. This can in practise make constraint propa-gation more expensive than Andorra's deterministic promotion, but it also makes it possibleto extract more information deterministically than can be done in Andorra. For examplegeneralised propagation extracts X = f() from the propagation constraint constraint p(X)de�ned byp(f(a))p(f(b))However the evaluation of p(X) is not determistic so no information can be extracted inAndorra.A second di�erence has to do with the dependence of information extracted on the precisesyntax of the program. In Andorra the information that can be extracted from a localcomputation depends on the precise clausal de�nitions of the goal predicates involved. Forexample we could recode p(X) above asp(f(Y)) q(Y)q(a)q(b)to get more information extracted by Andorra from the goal p(X). In constraint propagationthe information extracted is independent of the program syntax. It depends only on thesemantics of the program predicates. Therefore constraint propagation has a more abstractbehavioural semantics than deterministic promotion in Andorra.22

7 ConclusionThe same word \constraint" has been used to describe two rather di�erent extensions of logicprogramming. In one extension (CLP (X)) \constraints" involve interpreted predicates whoseinterpretation on the underlying domain is prede�ned. In the other extension (based on CSP)\constraints" are goals which are used not for search but for deterministic reduction of thesearch space. This paper has extracted a more abstract concept which includes both uses ofthe word constraint.The abstract concept is useful for clarifying our understanding of CLP , but this paperhas shown that it also yields immediate practical bene�ts. A generalisation of propagationhas been introduced which integrates the constraint behaviour of both extensions. Thisenables techniques of local consistency enforcement from CSP to be applied to arbitrary goalsin arbitrary CLP (X) programs. The result is called GP (X), for \generalised propagationparameterised on the computation domain X".Propagation on a goal G in GP (X) requires that the system extracts a constraint approx-imating all the answers to G. The paper has introduced a generic algorithm for generalisedpropagation which avoids enumerating all the answers to a propagation constraint. Insteadthe retrieval of answers is interleaved with approximation steps, so that an approximation tothe answers found so far is always maintained. This approximation is used to cut branches inthe search for answer, in a way similar to branch and bound. Additionally it is used to cutall the remaining branches in the search tree, when the approximation becomes too generalto be useful. The algorithm has been called topological branch and bound.Generalised propagation o�ers very
exible control via the choice of approximation con-straints. If only a coarse approximation is o�ered the topological branch and bound drasticallyprunes the search tree, thus making generalised propagation relatively cheap. If a �ner approx-imation is o�ered, more information is extracted from each propagation constraint, enablingthe global search to be more reduced.An implementation (called Propia) of generalised propagation over the Herbrand universehas been described. Experiments with Propia have shown that generalised propagation en-ables problems to be simply stated and e�ciently solved in a way not possible using eitherCLP (X) or propagation based on CSP. It has been very rewarding to take pure logic pro-grams as speci�cations and, by simply annotating certain goals as propagation constraints,to achieve an e�cient implementation. A very important feature of the resulting programs istheir guaranteed correctness with respect to their speci�cation. This can be contrasted withthe encoding of the same problems using demons (a special form of guarded clause), whichcannot be validated against the speci�cation since they have no declarative semantics.As to the future, further implementations of generalised propagation are being developedfor new computation domains, thus expanding the range of problems that can be naturallyexpressed asGP (X) programs. We are also investigating the notion of propagation constraintsas concurrent processing agents. In this view generalised propagation is an interesting specialcase of concurrent constraint logic programming, in which the operational semantics can bedramatically simpli�ed (and for which there is always an equivalent declarative semantics).Finally partial evaluation of GP (HU) is already under investigation at ECRC, with theresults expressed in the form of demons. With the integration of simpli�cation rules into oursystem (see section 6.4 above), the potential for optimisation of GP (X) programs can be fullyexplored.8 AcknowledgementsWe are grateful to our partners in the CHIC project, in particular the CHIC user group, forposing problems which have helped to motivate generalised propagation and providing testcases to try it out. This work could never have started without the ground-breaking work offormer members of the CHIP team. Our thanks to them as well. We thank the CORE teamfor valuable discussions, and Alexander Herold for his support and careful criticism of earlierversions of this report. 23

References[Ber87] H. Berghel. Crossword compilation with Horn clauses. The Computer Journal,30(2):183{188, 1987.[Cla79] K.L. Clark. Predicate logic as a computational formalism. Technical Report79/59, Imperial College, London, 1979.[Col85] A. Colmerauer. Theoretical Model of Prolog II, pages 3{31. Ablex PublishingCorporation, 1985.[Dav87] E. Davis. Constraint propagation with interval labels. Arti�cial Intelligence,32:281{331, 1987.[DSV90] M. Dincbas, H. Simonis, and P. Van Hentenryck. Solving large combinatorialproblems in logic programming. Journal of Logic Programming, 8:74{94, 1990.[DVS+88] M. Dincbas, P. Van Hentenryck, H. Simonis, A. Aggoun, T. Graf, and F. Berthier.The constraint logic programming language CHIP. In Proceedings of the Inter-national Conference on Fifth Generation Computer Systems (FGCS'88), pages693{702, Tokyo, Japan, November 1988.[Fik70] R.E. Fikes. REF-ARF: A system for solving problems stated as procedures. Ar-ti�cial Intelligence, 1:27{120, 1970.[Fre78] E.C. Freuder. Synthesizing constraint expressions. Communications of the ACM,21(11):958{966, November 1978.[Fru91] T. Fruehwirth. Introducing simpli�cation rules. Technical Report LP, ECRC,1991.[Gal85] H. Gallaire. Logic programming: further developments. In IEEE Symposium onLogic Programming, pages 88{99, Boston, July 1985. Invited paper.[GB65] S.W. Golomb and L.D. Baumert. Backtrack programming. Journal of the ACM,12:516{524, 1965.[HD91] P. Van Hentenryck and Y. Deville. Operational semantics of constraint logicprogramming over �nite domains. In Proc. PLILP'91, Passau, Germany, Aug1991.[HE80] R.M. Haralick and G.L. Elliot. Increasing tree search e�ciency for constraintsatisfaction problems. Arti�cial Intelligence, 14:263{314, October 1980.[HJ90] Seif Haridi and Sverker Janson. Kernel andorra Prolog and its computation model.In Proc. of the 7th Int. Conf. on Logic Programming [ICL90], pages 31{46.[ICL87] Proceedings of the 4th International Conference on Logic Programming. MITPress, 1987.[ICL88] Proceedings of the 5th International Conference and Symposium on Logic Pro-gramming, Seattle, 1988. MIT Press.[ICL90] Proceedings of the 7th International Conference on Logic Programming, Jerusalem,Israel, 1990. MIT Press.[JL87] J. Ja�ar and J.-L. Lassez. Constraint logic programming. In Proceedingsof the Fourteenth ACM Symposium on Principles of Programming Languages(POPL'87), Munich, FRG, January 1987.[Llo84] J.W. Lloyd. Foundations Of Logic Programming. Springer-Verlag, 1984.[Mac77] A.K. Mackworth. Consistency in networks of relations. Arti�cial Intelligence,8(1):99{118, 1977.[MAC+89] M. Meier, A. Aggoun, D. Chan, P. Dufresne, R. Enders, D. De Villeneuve,A. Herold, P. Kay, B. Perez, E.Van Rossum, and J. Schimpf. Sepia - an ex-tendible prolog system. In G. X. Ritter, editor, Information Processing 89, SanFrancisco, September 1989. Elsevier Science Publisher B.V.[Mah87] M. J. Maher. Logic semantics for a class of committed-choice programs. In Proc.of the 4th Int. Conf. on Logic Programming [ICL87], pages 858{876.24

[MF85] A.K. Mackworth and E.C. Freuder. The complexity of some polynomial networkconsistency algorithms for constraint satisfaction problems. Arti�cial Intelligence,25:65{74, 1985.[MNL88] K. Marriott, L. Naish, and J.-L. Lassez. Most speci�c logic programs. In Proc. ofthe 5th Int. Conf. and Symp. on Logic Programming [ICL88], pages 909{923.[Mon74] U. Montanari. Networks of constraints : Fundamental properties and applicationsto picture processing. Information Science, 7(2):95{132, 1974.[MR91] I. Mitterreiter and F. J. Radermacher. Experiments on the running time behaviourof some algorithms solving propositional calculus problems. Technical ReportDraft, FAW, Ulm, 1991.[NAC90] Proceedings of the 1990 North American Conference on Logic Programming. MITPress, 1990.[Nai86] L. Naish. Negation and Control in Prolog, volume 238 of Lecture Notes in Com-puter Science. Springer, 1986. PhD. Thesis, Melbourne Univ.[RHZ75] A. Rosenfeld, A. Hummel, and S.W. Zucker. Scene labelling by relaxation oper-ations. Technical Report TR-379, Computer Science Department, University ofMaryland, 1975.[Sar89] V.A. Saraswat. Concurrent Constraint Programming Languages. PhD thesis,Carnegie-Mellon University, Pittsburgh, Pa, January 1989.[SD87a] H. Simonis and M. Dincbas. Using an extended prolog for digital circuit design. InIEEE InternationalWorkshop on AI Applications to CAD Systems for Electronics,pages 165{188, Munich, W.Germany, October 1987.[SD87b] H. Simonis and M. Dincbas. Using logic programming for fault diagnosis in digitalcircuits. In German Workshop on Arti�cial Intelligence (GWAI-87), pages 139{148, Geseke, W. Germany, September 1987.[SD90] H. Simonis and M. Dincbas. Propositional calculus problems in chip. In H. Kirch-ner, editor, Proceedings of the 2nd International Conf on Algebraic and LogicProgramming, Nancy, France, October 1990. CRIN and INRIA-Lorraine, SpringerVerlag. (to appear).[Sim88] H. Simonis. Test pattern generation with logic programming. In New Aspects ofResearch for Testing of VLSI Circuits, Ising, W. Germany, March 1988.[SKL90] Vijay A. Saraswat, Ken Kahn, and Jacob Levy. Janus: A step towards distributedconstraint programming. In Proceedings of the 1990 North American Conferenceon Logic Programming [NAC90], pages 431{446.[Smo91] G. Smolka. Residuation and guarded rules for constraint logic programming.Technical Report 12, Digital PRL, June 1991.[SP89] H. Simonis and T. Le Provost. Circuit veri�cation in chip: Benchmark results. InL.J.M. Claesen, editor, Proceedings of the IFIP TC10/WG10.2/WG10.5 Work-shop on Applied Formal Methods for Correct VLSI Design, Leuven, Belgium,November 1989. IFIP, North Holland, Elsevier Science Publishers.[SS80] G.J. Sussman and G.L. Steele. CONSTRAINTS: A language for expressingalmost-hierarchical descriptions. Arti�cial Intelligence, 14(1):1{39, January 1980.[Van89] P. Van Hentenryck. Constraint Satisfaction in Logic Programming. Logic Pro-gramming Series. The MIT Press, 1989.[VD86] P. Van Hentenryck and M. Dincbas. Domains in logic programming. In Pro-ceedings of the Fifth National Conference on Arti�cial Intelligence (AAAI'86),Philadelphia, PA, August 1986.[War88] D.H.D. Warren. The andorra model. Presented at the Gigalips Workshop, Univ.of Manchester, 1988. 25

