
1 Terminological Reasoning with ConstraintHandling RulesChapter 19 in Principles and Practice of Constraint Programming,V. Saraswat and P. Van Hentenryck (Eds.), MIT Press, 1995.Thom Fr�uhwirth1 and Philipp Hanschke21.1 AbstractTerminological knowledge representation formalisms in the tradition ofkl-one enable one to de�ne the relevant concepts of a problem domainand their interaction in a structured and well-formed way. In recentyears, a wealth of literature has appeared on this topic, e.g. [Baj93].Sound and complete inference algorithms for terminological logics havebeen developed using constraint calculi. These terminological reasoningservices can be reduced to a single algorithm checking consistency.We propose constraint handling rules (CHRs) as an implementationlanguage for terminological reasoning. We will give an introduction intothe language. CHRs are a exible means to implement `user-de�ned'constraints on top of existing host languages like Prolog and Lisp. Inparticular, inference rules, which are often used to de�ne constraint cal-culi, can usually be written as CHRs with little modi�cation. The resultof using CHRs for terminological reasoning is an incremental and con-current consistency checking algorithm.The implementation provides a natural combination of three layers:(i) a constraint layer that reasons in well-understood domains such as ra-tionals or �nite domains, (ii) a terminological layer providing a tailored,validated vocabulary on which (iii) the application layer can rely. Asan application example, a con�guration problem is modeled. The exi-bility of the approach will be illustrated by extending the formalism, itsimplementation and the example with attributes, a new quanti�er andconcrete domains.1Address: ECRC, Arabellastrasse 17, D-81925 Munich, Germany, thom@ecrc.de.Partially supported by ESPRIT Project 5291 CHIC.2Current address: sd&m, Schimmersfeld 7a, D-40880 Ratingen, Germany,hanschke@uni-duesseldorf.de. Partially supported by BMFT Projects ARC-TEC(Grant ITW 8902 C4) and IMCOD/VEGA (Grant 413 5839 ITW 9304/3). Workwas done while at DFKI, Postfach 2080, D-67608 Kaiserslautern, Germany.

2 Chapter 11.2 IntroductionA reader interested in constraint-based programming may consider thischapter as a case study on user-de�ned constraints using the CHRs ap-proach. A reader with background in terminological reasoning may learnabout a exible way to implement terminological languages. We triedto tackle the di�culties of serving both audiences. The �nal judgementis to you, the reader.Terminological formalisms based on kl-one [BS85] are used to rep-resent the terminological knowledge of a particular problem domain onan abstract logical level. To describe this kind of knowledge, one startswith atomic concepts and roles, and then de�nes new concepts and theirrelationship in terms of existing concepts and roles. For example,grand father isa male and some child is parent.Concepts can be considered as unary relations which intensionally de�nesets of objects (similar to types). Roles correspond to binary relationsover objects (not necessarily of the same kind - properties like color canbe roles as well). Then, assertions are added, describing actual objectsof the application, e.g.john:male. (john,jack):child. jack:parent.Terminological formalisms have a straightforward embedding in �rst-order logic, so it seems natural to implement them as logic programs.Moreover, the limited expressiveness of terminological formalisms allowsfor decision procedures for a number of interesting reasoning problems.These problems include consistency of assertions and classi�cation ofconcepts. The key idea of [Hol90, ScSm91, BDS93]) for constructingsuch inference algorithms is to reduce all reasoning services to consis-tency checking. This essential algorithm can be considered as constraintsolving, where concepts and roles are the constraints.We therefore aim at implementing reasoning with terminologies asconstraint logic programs (CLP). In this way, an instance of the CLPscheme results, and we can carry over the declarative and operational se-mantics from CLP. Constraint logic programming [JaLa87, VH89, HS90,VH91, F*92, JaMa] combines the advantages of logic programming andconstraint solving. In logic programming, problems are stated in a

Terminological Reasoning with Constraint Handling Rules 3declarative way using rules to de�ne relations (predicates). Problemsare solved by the built-in logic programming engine (LPE) using chrono-logical backtrack search. In constraint solving, e�cient special-purposealgorithms are employed to solve problems involving distinguished rela-tions referred to as constraints.A practical problem remains: Constraint solving is usually `hard-wired' in a built-in constraint solver (CS) written in a low-level lan-guage. While e�cient, this approach makes it hard to build a CS over anew domain like terminologies, let alone verify its correctness. We pro-posed constraint handling rules (CHRs) [Fru92] to overcome this prob-lem. CHRs are a language extension providing a declarative means tointroduce user-de�ned constraints into a given high-level host language.In this chapter the host language is Prolog, a CLP language with equal-ity over Herbrand terms as the only built-in constraint. CHRs de�nesimpli�cation of and propagation over user-de�ned constraints. Sim-pli�cation replaces constraints by simpler constraints while preservinglogical equivalence, e.g.X>Y,Y>X <=> false.Propagation adds new constraints which are logically redundant but maycause further simpli�cation, e.g.X>Y,Y>Z ==> X>Z.When repeatedly applied by a constraint handling engine (CHE) theconstraints are incrementally solved as in a CS, e.g.A>B,B>C,C>A results in false.CHIP was the �rst CLP language to introduce constructs (demons,forward rules, conditionals) [VH89] for user-de�ned constraint handling(like constraint solving, simpli�cation, propagation). These various con-structs have been generalized into CHRs. CHRs are based on guardedrules, as can be found in concurrent logic programming languages [Sha89],in the Swedish branch of the Andorra family [HaJa90], Saraswats cc-framework of concurrent constraint programming [Sar93], and in the`Guarded Rules' of [Smo91]. However all these languages (except CHIP)lack features essential to de�ne non-trivial constraint handling, namelyfor handling conjunctions of constraints and de�ning constraint propa-

4 Chapter 1gation. CHRs provide these two features using multi-headed rules andpropagation rules.This chapter �rst introduces CHRs, then terminological reasoning.Next it is shown that CHRs indeed can serve as a exible implementa-tion layer for an incremental and concurrent version of the consistencytest for terminologies. Moreover, the implementation e�ort turns out tobe minimal, as the CHRs directly reect the inference rules of the tunedtableaux calculus that is used for the consistency test.Last but not least we illustrate that extensions to the basic termi-nological formalism proposed in the literature carry over to the imple-mentation with CHRs in a painless manner. One such extension allowsto parameterize terminologies with concrete domains, e.g. linear con-straints over rational numbers [BaHa91, Han92]. Concrete domains canbe either implemented by CHRs or provided as built-in constraints ofthe host language. In this way we obtain a fairly natural combinationof three knowledge representation layers - the constraint, terminologicaland application layer - on a common implementational basis.1.3 CLP with Constraint Handling RulesHere we assume that constraint handling rules extend a a given con-straint logic programming language. The syntax and semantics givenreect this choice. It should be stressed, however, that the host languagefor CHRs need not be a CLP language. Indeed, the work presented herehas been done at DFKI in the context of LISP [Her93].1.3.1 SyntaxA CLP+CH program is a �nite set of clauses from the CLP languageand from the language of CHRs. Clauses are built from atoms of theform p(t1; :::tn) where p is a predicate symbol of arity n (n � 0) andt1; :::tn is a n-tuple of terms. A term is a variable, e.g. X, or of the formf(t1; :::tn) where f is a function symbol of arity n (n � 0) applied to a n-tuple of terms. Function symbols of arity 0 are also called constants. Inthis chapter, predicate and function symbols start with lowercase letterswhile variables start with uppercase letters. In�x notation may be usedfor speci�c predicate symbols (e.g. X = Y) and functions symbols(e.g. �X + Y). There are two classes of distinguished atoms, built-in

Terminological Reasoning with Constraint Handling Rules 5constraints and user-de�ned constraints. In most CLP languages thereis a built-in constraint for syntactic equality over Herbrand terms, =,performing uni�cation. The built-in constraint true, which is alwayssatis�ed, can be seen as an abbreviation for 1=1. false (1=2) is thebuilt-in constraint representing inconsistency.A CLP clause is of the formH:- B1; : : :Bn: (n � 0)where the head H is an atom but not a built-in constraint, the bodyB1; : : :Bn is a conjunction of literals called goals. The empty body(n = 0) of a CLP clause may be denoted by the built-in constrainttrue. A query is a CLP clause without head.There are two kinds of CHRs3. A simpli�cation CHR is of the formH1; : : :Hi <=> G1; : : :Gj j B1; : : :Bk.A propagation CHR is of the formH1; : : :Hi ==> G1; : : :Gj j B1; : : :Bk. (i > 0; j � 0; k � 0)where the multi-head H1; : : :Hi is a conjunction of user-de�ned con-straints and the guardG1; : : :Gj is a conjunction of literals which neitherare, nor depend on, user-de�ned constraints.1.3.2 SemanticsDeclaratively, CLP programs are interpreted as formulas in �rst orderlogic. Extending a CLP language with CHRs preserves its declarativesemantics. A CLP+CH program P is a conjunction of universally quan-ti�ed clauses.A CLP clause is an implication4H B1 ^ : : :Bn.A simpli�cation CHR is a logical equivalence provided the guard is truein the current context(G1 ^ : : :Gj)! (H1 ^ : : :Hi$ B1 ^ : : :Bk).A propagation CHR is an implication provided the guard is true3A third, hybrid kind is described in [B*94].4For simplicity of presentation, we do not use Clark's completion.

6 Chapter 1(G1 ^ : : :Gj)! (H1 ^ : : :Hi! B1 ^ : : :Bk).Procedurally, a CHR can �re if its guard allows it. A �ring simpli�ca-tion CHR replaces the head constraint by the body, a �ring propagationCHR adds the body to the head constraints. No theorem proving in thegeneral sense is required to reason with the formulas expressed by CHRs.The operational semantics of CLP+CH can be described by a transi-tion system.A computation state is a tuple< Gs;CU ; CB >,where Gs is a set of goals, CU and CB are constraint stores for user-de�ned and built-in constraints respectively. A constraint store is a setof constraints. A set of atoms represents a conjunction of atoms.The initial state consists of a query Gs and empty constraint stores,< Gs; fg; fg>.A �nal state is either failed (due to an inconsistent built-in constraintstore represented by the unsatis�able constraint false),< Gs;CU ; ffalseg>,or successful (no goals left to solve),< fg; CU; CB >.The union of the constraint stores in a successful �nal state is calledconditional answer for the query Gs, written answer(Gs).The built-in constraint solver (CS) works on built-in constraints inCB and Gs, the user-de�ned CS on user-de�ned constraints in CU andGs using CHRs, and the logic programming engine (LPE) on goals in Gsand CU using CLP clauses. The following computation steps are possibleto get from one computation state to the next.Solve< fCg [Gs;CU ; CB > 7�! < Gs;CU ; C0B >if (C ^ CB)$ C0BThe built-in CS updates the constraint store CB if a new constraint Cwas found in Gs. To update the constraint store means to produce a

Terminological Reasoning with Constraint Handling Rules 7new constraint store C0B that is logically equivalent to the conjunctionof the new constraint and the old constraint store.We will write H =set H0 to denote equality between the sets H andH0, i.e. H = fA1; : : : ; Ang and there is a permutation ofH 0, perm(H0) =fB1; : : : ; Bng, such that Ai = Bi for all 1 � i � n.Introduce< fHg [Gs;CU ; CB > 7�! < Gs; fHg [CU ; CB >if H is a user-de�ned constraintSimplify< Gs;H0 [CU ; CB > 7�! < Gs [B;CU ; CB >if (H <=> G j B) 2 P and CB ! (H =set H 0) ^ answer(G)Propagate< Gs;H0 [CU ; CB > 7�! < Gs [B;H0 [CU ; CB >if (H ==> G j B) 2 P and CB ! (H =set H 0) ^ answer(G)The constraint handling engine (CHE) applies CHRs to user-de�ned con-straints in Gs and CU whenever all user-de�ned constraints needed inthe multi-head are present and the guard is satis�ed. A guard G issatis�ed if its local execution does not involve user-de�ned constraintsand the result answer(G) is entailed (implied) by the built-in constraintstore CB. Equality is entailed between two terms if they match. To in-troduce a user-de�ned constraint means to take it from the goal literalsGs and put it into the user-de�ned constraint store CU . To simplifyuser-de�ned constraints H0 means to replace them by B if H0 matchesthe head H of a simpli�cation CHR H <=> G | B and the guard G issatis�ed. To propagate from user-de�ned constraints H0 means to addB to Gs if H0 matches the head H of a propagation CHR H ==> G |B and G is satis�ed.Unfold< fH0g[Gs;CU; CB > 7�! < Gs[B;CU ; fH = H0g [CB >if (H :- B) 2 P .The logic programming engine (LPE) unfolds goals in Gs. To unfoldan atomic goal H 0 means to look for a clause H: � B and to replacethe H0 by (H = H 0) and B. As there are usually several clauses fora goal, unfolding is nondeterministic and thus a goal can be solved indi�erent ways using di�erent clauses. There can be CLP clauses for user-

8 Chapter 1de�ned constraints. Thus they can be unfolded as well. This unfoldingis called (built-in) labeling. The transition below is somewhat simpli�ed,the details can be found in [Fru92, B*94].Label< Gs; fH 0g[CU ; CB > 7�! < Gs[B;CU ; fH = H0g [CB >if (H :- B) 2 P .Note that any constraint solver written with CHRs will be incremen-tal and concurrent. By \incremental" we mean that constraints canbe added to the constraint store one at a time using the \introduce"-transition. Then CHRs may �re and simplify the user-de�ned constraintstore. The rules can be applied concurrently, even using chaotic iteration(i.e. the same constraint can be simpli�ed by di�erent rules at the sametime), because correct CHRs can only replace constraints by equivalentones or add redundant constraints.1.3.3 ImplementationThe operational semantics are still far from the actual workings of ane�cient implementation. At the moment, there exist two implementa-tions, one prototype in LISP [Her93], and one fully developed compilerin a Prolog extension.The compiler for CHRs is available as a library of ECLiPSe [B*94],ECRC's advanced constraint logic programming platform, utilizing itsdelay-mechanism and built-in meta-predicates to create, inspect andmanipulate delayed goals. All ECLiPSe documentation is available byanonymous ftp from ftp.ecrc.de, directory /pub/eclipse/doc. In such asequential implementation, the transitions are tried in the textual ordergiven above. To reect the complexity of a program in the number ofCHRs, at most two head constraints are allowed in a rule5. This re-striction also makes complexity for search of the head constraints of aCHR linear in the number of constraints on average (quadratic in theworst case) by using partitioning and indexing methods. Terminationof a propagation CHR is achieved by never �ring it a second time withthe same pair of head constraints.The CHRs library includes a debugger and a visual tracer as well as a5Two is the minimal number such that a rule with more head constraints can berewritten into several number-restricted rules.

Terminological Reasoning with Constraint Handling Rules 9full color demo using geometric constraints in a real-life application forwireless telecommunication. 18 constraint solvers currently come withthe release, for booleans, �nite domains (similar to CHIP [VH89]), alsoover arbitrary ground terms, reals and pairs, incremental path consis-tency, temporal reasoning (quantitative and qualitative constraints overtime points and intervals [Fru93]), solving linear polynomials over thereals (similar to CLP(R) [J*92]) and rationals, for lists, sets, trees, termsand the solver described in this chapter. The average number of rulesin a constraint solver is as low as 24. Typically it took only a few daysto produce a reasonable prototype solver, since the usual formalisms todescribe a constraint theory, i.e. inference rules, rewrite rules, sequents,�rst-order axioms, can be expressed as CHRs programs in a straight-forward way. Thus one can directly express how constraints simplifyand propagate without worrying about implementation details. Start-ing from this executable speci�cation, the rules then can be re�ned andadapted to the speci�cs of the application.On a wide range of solvers and examples, the run-time penalty for ourdeclarative and high-level approach turned out to be a constant factorin comparison to dedicated built-in solvers (if available). Moreover, theslow-down is often within an order of magnitude. On some examples(e.g. those involving �nite domains with the element-constraint), ourapproach is faster, since we can exactly de�ne the amount of constraintsimpli�cation and propagation that is needed. This means that thesolver are intentionally made as incomplete as the application requiresit. Some solvers (e.g. disjunctive geometric constraints in the phonedemo) would be very hard to recast in existing CLP languages.1.4 Terminological ReasoningIn this chapter we will recall the concept language ALC [ScSm91] as ourbasic terminological logic (TL) and show its implementation in CHRs.Section 1.5 will then proceed with some useful extensions of this formal-ism demonstrating the exibility of the CHRs approach.1.4.1 TerminologyA terminology (T-box) consists of a �nite, cycle free set of concept de�-nitions

10 Chapter 1C isa s,where C is the newly introduced concept name and s is a concept termconstructed from concept names and roles. Inductively, concept termsare de�ned as follows:1. Every concept name C is a concept term.2. If s and t are concept terms and R is a role name then the followingexpressions are concept terms:s and t (conjunction),s or t (disjunction),nota s (complement),every R is s (value restriction),some R is s (exists-in restriction).Although there is an established notation for terminologies, we use amore verbose syntax so that readers not familiar with the topic can readthe expressions easily as sentences in (almost) natural language.An interpretation I with a set domI as domain interprets a con-cept name C as a set CI � domI and a role name R as a set RI �domI � domI . In other words, roles are interpreted as an arbitrary bi-nary relation over domI . It can be lifted to concept terms in a straight-forward manner: Conjunction, disjunction, and complement are inter-preted as set intersection, set union, and set complement wrt domI ,respectively, anda 2 (every R is s)I i�, for all b 2 domI , (a; b) 2 RIimplies b 2 sI , anda 2 (some R is s)I i�, there is some b 2 domI such that(a; b) 2 RI , b 2 sI .An interpretation is a model of a terminology T if CI = sI for all (Cisa s) 2 T .Example: The domain of a con�guration application comprises at leastdevices, interfaces, and con�gurations. The following concept de�nitionsexpress that these are disjoint concepts.

Terminological Reasoning with Constraint Handling Rules 11primitive device.6interface isa nota device.configuration isa nota (interface or device).Let us assume that a simple device has at least one interface. We in-troduce a role connector which relates devices to interfaces and employthe exists-in restriction.role connector.simple device isa device andsome connector is interface.1.4.2 Assertions and Reasoning ServicesObjects are (Herbrand) constants or variables. Let a, b be objects, R arole, and C a concept term. Then b : C is a membership assertion and(a; b) : R is a role-�ller assertion. An A-box is a collection of membershipand role-�ller assertions.Example (contd): We introduce instances of devices and interfaces.pc:device. rs231:interface. (pc,rs231):connector.An interpretation of an A-box A is a model of the underlying termi-nology that, in addition, maps Herbrand constants to elements of domI .For these constants we adopt the unique name assumption. An A-boxA is consistent if there is an interpretation I and a variable assign-ment � : objects ! domI such that all assertions of A are satis�ed, i.e.,(a�I ; b�I) 2 RI and b�I 2 CI, for all (a; b) : R and b : C in A. An ob-ject a is a member of a concept C i� for all models I of the terminologyall assignments � : objects ! domI that satisfy A also satisfy a : C. Aconcept C1 subsumes a concept C2 i� for all models I of the terminologyCI1 � CI2 . Figure 1.1 shows the subsumption graph of the terminologydeveloped in sections 1.4 and 1.5.The consistency test is the central reasoning service for terminologicalknowledge representation systems with complete inference algorithms.Various other services can be reduced to this test [Hol90]. In particu-lar, the subsumption (and similarly membership) services can be imple-mented on the basis of the consistency test of A-boxes:6This declaration introduces a concept name that is not de�ned any further.

12 Chapter 1
���	 @@@R

�������) BBBNHHHHHj AAAAAU?? ����������9 ���=SSSSw���) PPPq ��������� ?? topbus device configurationcpu devicesimple devicevery simple device simple configelectrical configlow cost device high voltage deviceelectrical device bus configcpu device bus interface
Figure 1.1Subsumption Graph of the Example Terminology1. A concept C1 subsumes a concept C2 i� an A-box consisting just of themembership assertion a : C2 and nota C1 is inconsistent.2. An object a is a member of C wrt the A-box A i� fa : nota Cg [A isinconsistent.1.4.3 CLP+CH(TL)Roughly, the consistency test of A-boxes works as follows.1. Simplify and propagate the assertions in the A-box to make the knowl-edge more explicit.2. Look for obvious contradictions (\clashes") such as \X:C, X:nota C".The consistency test can be implemented with CHRs by regarding asser-tions as user-de�ned constraints. CHRs similar to the ones that followcan be found as the unfolding and completion rules in [ScSm91] andthe propagation rules in [BDS93]. However, the former work does notprovide an incremental algorithm and the latter does not simplify con-straints.First we treat the complement operator:

Terminological Reasoning with Constraint Handling Rules 13I:nota nota S <=> I:S.I:nota (S or T) <=> I:(nota S and nota T).I:nota (S and T) <=> I:(nota S or nota T).I:nota every R is S <=> I:some R is nota S.I:nota some R is S <=> I:every R is nota S.These simpli�cation CHRs show how the complement operator nota canbe pushed towards the leaves of a concept term.The conjunction rule generates two new, smaller assertions:I:S and T <=> I:S,I:T.An exists-in restriction generates a new object (i.e. variable) thatserves as a \witness" for the restriction:I:some R is S <=> (I,J):R, J:S.The time-complexity of executing the above CHRs is linear in the size ofthe concept term.A value restriction has to be propagated to all role �llers:I:every R is S, (I,J):R ==> J:S.In the implementation this propagation rule will be applied only onceper matching pair of membership and role-�ller assertions. The time-complexity is quadratic in the number of assertions.Disjunction is treated lazily by two CLP clauses (introducing a dis-junction for built-in labeling):I:S or T :- I:S.I:S or T :- I:T.These are the two rules where the exponential complexity of consistencytests for terminologies surfaces.The unfolding rules expand concept names to their de�nitions:I:C <=> (C isa S) | I:S.I:nota C <=> (C isa S) | I:nota S.Since concept de�nitions do not contain cycles, the above two CHRsclearly terminate.For ALC we need only the following single clash rule, one may needmore for extensions of the formalism.

14 Chapter 1I:nota S, I:S <=> false:The above solver simpli�es terminological constraints until a normalform is reached. In the normal form, the only constraints are I:C,I:nota C, I:S or T, I:every R is S, (I,J):R, where C is a primi-tive concept name. The solver is complete, i.e. it detects all inconsisten-cies through the clash rule independent of the order in which constraintsare added and CHRs are applied. All CHRs except the clash rule havepairwise disjoint heads (C can only stand for concept names). Thereforefor completeness we have to show that the clash rule can still be appliedeven after an inconsistent pair of membership assertions is reduced byother rules. For example, the inconsistent constraintsI:nota every R is S, I:every R is Scan be simpli�ed by pushing nota down in the �rst constraintI:some R is nota S, I:every R is S 7�! (some-rule)(I,J):R, J:nota S, I:every R is S 7�! (every-rule)(I,J):R, J:nota S, I:every R is S, J:Sand the clash rule applies to J:nota S, J:S leading to false.1.5 ExtensionsIn a number of papers (e.g., [Hol90, ScSm91, BDS93]) the above ideaof a tableaux based consistency test as the central reasoning servicehas been successfully applied to terminological logics with various otherlanguage constructs. This exibility carries over to extensions of ourimplementation.1.5.1 Functional RolesAttributes (also called features) are functional roles, i.e., their interpre-tation is the graph of a partial function domI * domI . Assuming dec-larations of attributes of the form attribute F , F an attribute name,we just have to extend our implementation by(I,J1):F, (I,J2):F ==> attribute F j J1=J2.Example (contd): Now we are ready to de�ne a simple con�gurationwhich consists of two distinguished simple devices:

Terminological Reasoning with Constraint Handling Rules 15attribute component 1.attribute component 2.simple config isa configuration andsome component 1 is simple device andsome component 2 is simple device.Asking the query:- config1:simple config, (config1,dev1):component 1,(config1,dev2):component 2,the membership service can derive that dev1 and dev2 are simple de-vices. The reason is that the attribute-rule constrains the witness forsome component 1 is simple device and the second argument of therole (config1,dev1):component 1 to be equal (analogously for dev2).A more local way to specify functionality of roles is provided throughconcept terms of the form \at most one R", R a role name.7 An a 2domI is an element of (at most one R)I if there is at most one R-role�ller for a. This is implemented throughI:at most one R, (I,J1):R, (I,J2):R ==> J1=J2.An object does not belong to at most one R if, and only if, there are atleast two di�erent role �llers:I:nota at most one R <=>(I,J1):R, (I,J2):R, different(J1,J2).The constraint different is unsatis�able if its arguments are identical.different(X,X) <=> false.Example (contd):very simple device isa simple device andat most one connector.1.5.2 Concrete DomainsIn [Han92] restricted forms of quanti�cation over predicates of a concretedomain D have been suggested as concept forming operators. Examples7The at most one construct is a restricted form of the number restriction [BS85].

16 Chapter 1of concrete domains are Allen's temporal interval relations, rational (nat-ural) numbers with comparison operators and linear polynomials overthe reals (all of which have been implemented by CHRs). An admissibleconcrete domain has to be closed under complement (since we have topropagate the complement operator nota) and has to provide a satis�a-bility test for conjunctions of predicates. Unlike in [FrHa93], we presenthere an untyped and thus simpler version of the concrete domains ex-tension for space reasons.The syntax for the new operators in the extension TL(D) of the con-cept language is as follows:every w0 and : : :and wn is psome w0 and : : :and wn is p,where wi is of the form \Ri1 of : : :of Riki", Rij are role names, n > 0,ki � 0, i = 1; � � � ; n, and p is an n-ary concrete predicate (constraint)of D. These constructs are inspired by the value restriction and theexists-in restriction. The semantics of the new operators is as follows:a 2 (every w0 and : : :and wn is p)Ii�, for all b1; � � � ; bn 2 domI: (a; bi) 2 wIi , for i = 1; � � � ; n,implies (b1; � � � ; bn) 2 pIa 2 (some w0 and : : :and wn is p)Ii�, there are b1; � � � ; bn 2 domI such that (a; bi) 2 wIi , fori = 1; � � � ; n, and (b1; � � � ; bn) 2 pIThe denotation of wIi is de�ned inductively similar to relational product:(a; c) 2 [R of S]I i� there exists a b such that (a; b) 2 SI and (b; c) 2RI .Note that with R matching the expression \w0 and : : :and wn" thecomplement-rules are also applicable to the new constructs for concretedomains. We just have to introduce a CHR to complement predicatesover the concrete domain:(X1; � � � ;Xn):nota P <=>concrete complement(P,Q) | (X1; � � � ;Xn):Q,where concrete complement is a two place predicate belonging to I thatassociates each predicate of the concrete domain with its complementwrt to domnI .

Terminological Reasoning with Constraint Handling Rules 17Analogous to the value restriction (resp., the exists-in restriction)CHR we have to collect (resp., generate) objects satisfying the con-crete domain predicate. This can be implemented through a �xed,�nite set of CHRs that collect (resp., generate) objects according tothe roles and attributes occurring in the operators \from left to right"and then restrict the collected (resp., generated) objects with the con-crete predicate. To simplify the presentation we give two schemata ofpropagation (resp., simpli�cation) rules. For each term of the formevery w0 and : : :and wn is P that occurs in the knowledge base orin a query we introduce a ruleX:every w0 and : : :and wn is P;(X; X11) : R11; � � � ; (X1k1�1; X1k1) : R1k1 ;� � �(X; Xn1) : Rn1; � � � ; (Xnkn�1; Xnkn) : Rnkn ==> (X1k1; � � � ; Xnkn):P.Analogously, for a term some w0 and : : :and wn is P we introduce arule X:some w0 and : : : and wn is P <=>(X1k1 ; � � � ; Xnkn):P;(X; X11) : R11; � � � ; (X1k1�1; X1k1) : R1k1;� � �(X; Xn1) : Rn1; � � � ; (Xnkn�1; Xn;kn) : Rnkn:For example, an expression every f of r1 and r2 is p leads to arule X:every f of r1 and r2 is P, (X,X11):r1, (X11,X12):f,(X,X21):r2 ==> (X12,X21):P.As a simple example of a concrete domain we take inequalities overrational numbers. The reasoning in the concrete domain itself is imple-mented through the following rules which �nd all contradictions (but donot perform all possible simpli�cations).X > Y <=> Y < X.X >= Y <=> Y =< X.X =< X <=> true.X < X <=> false.X =< Y <=> number >(X,Y) | false.

18 Chapter 1X < Y <=> number >=(X,Y) | false.X < Y, Y < Z ==> X < Z.X =< Y, Y < Z ==> X < Z.X < Y, Y =< Z ==> X < Z.X =< Y, Y =< Z ==> X =< Z.The guard number >(X,Y) (resp., number >=(X,Y)) is true if X and Yare bound to numbers x and y and x > y (resp., x � y). The pred-icate concrete complement associating concrete predicates with theircomplements is de�ned by the following clauses:concrete complement(<,>=).concrete complement(>=,<).concrete complement(=<,>).concrete complement(>,=<).The CHRs for the new operator generates atoms of the form (x; y) :hcomparison operatori and x : (hcomparison operatorihnumberi)8. Theseatoms have to be translated to the in�x syntax of the concrete domain:X:(< N) <=> X < N.X:(> N) <=> X > N.X:(>= N) <=> X >= N.X:(=< N) <=> X =< N. (X,Y):< <=> X < Y.(X,Y):> <=> X > Y.(X,Y):=< <=> X =< Y.(X,Y):>= <=> X >= Y.Example (contd): Now we can associate price and voltage with a de-vice and require that in an electrical con�guration the voltages have tobe compatible.attribute price.attribute voltage.electrical device isa very simple device andsome voltage is > 0 and some price is > 1 .low cost device isa electrical device andevery price is < 200.high voltage device isa electrical device andevery voltage is > 15.electrical config isa simple configuration and8The latter enables the use of numbers in concept terms.

Terminological Reasoning with Constraint Handling Rules 19every component 1 is electrical device andevery component 2 is electrical device andevery voltage of component 1 andvoltage of component 2 is >=.The new operator can also be used to specify upper bounds. This isillustrated by a con�guration where several CPUs are plugged onto abus with the side condition that the maximal frequency of the CPUsmust be less than the frequency of the bus.attribute frequency.primitive bus.bus device isa simple device and bus andsome frequency is > 0 .primitive cpu.cpu device isa simple device and cpu andsome frequency is > 0 .role main device.role sub device.bus config isa configuration andsome main device is bus device andevery component is cpu device andevery frequency of main device andfrequency of sub device is > .1.5.3 CLP+CH(TL(D))If we apply the CLP scheme of H�ohfeld und Smolka [HS90] in a straight-forward manner to A-boxes of TL(D), we obtain a CLP language withthree representation and reasoning layers [AH93].Example (contd): The following CLP clauses specify the catalog ofdevices and describe possible con�gurations that are based on this cat-alog. catalog(dev1) :- dev1:electrical device,(dev1,10):voltage, (dev1,100):price.catalog(dev2) :- dev2:electrical device,(dev2,20):voltage, (dev2,1000):price.possible config(C) :-

20 Chapter 1catalog(D1), (C,D1):component 1,catalog(D2), (C,D2):component 2.The following queries enumerate possible con�gurations satisfying therequirements.:- possible config(C).:- possible config(C), C:electrical config.:- possible config(C), C:electrical config,(C,D1):component 1, D1:low cost device,(C,D2):component 2, D2:high voltage device.The �rst query enumerates all possible electrical con�gurations compris-ing two devices based on the catalog, i.e., con�gurations consisting oftwo devices dev1, two dev2, or dev1 and dev2. The second query allowsfor all con�gurations involving dev1 and dev2, except the one wheredev1 is component one and dev2 is component two. Finally, the thirdquery has no solution, because the catalog lists only one low-cost deviceand there is no high-voltage device with a compatible voltage.1.6 ConclusionsConstraint handling rules (CHRs) are a language extension for imple-menting user-de�ned constraints. Rapid prototyping of novel applica-tions for constraint techniques is encouraged by the high level of ab-straction and declarative nature of CHRs.In this chapter we investigated terminological reasoning as constraintsolving with CHRs. The terminological constraint system is related toother term domains like [Sow91, Smo92, APG93], which we currentlyimplement in a similar way. The overall language has some similaritieswith LOGIN [AiNa86]. Flexibility was illustrated by extending the for-malism and its implementation with attributes, a special quanti�er andconcrete domains. Applicability was illustrated by sketching a generic,hybrid knowledge base for solving con�guration problems.

Bibliography[AiNa86] H. Ait-Kaci and R. Nasr, Login: A Logic Programming Language withBuilt-In Inheritance, Journal of Logic Programming, 3:185-215, 1986.[APG93] H. Ait-Kaci, A. Podelski and S. C. Goldstein,Order-SortedFeature TheoryUni�cation, DEC PRL Research Report 32, May 1993, DEC Paris ResearchLaboratory, France.[AH93] A. Abecker and P. Hanschke. TaxLog: A exible architecture for logic pro-gramming with structured types and constraints. In Notes of the Workshop onConstraint Processing held in conjunction with CSAM'93, Petersburg, 1993.[B*94] ECLiPSe 3.4 Extensions User Manual, ECRC Munich, Germany, July 1994.[Baj93] R. Bajcsy (ed.), Terminological Logic I-IV, Sessions in Proceedings ofthe 13th International Joint Conference on Arti�cial Intelligence, Chambery,France, Morgan Kaufmann, 1993, pp. 662-717.[BaHa91] F. Baader and P. Hanschke. A scheme for integrating concrete domainsinto concept languages. In Proceedings of the 12th International Joint Confer-ence on Arti�cial Intelligence, 1991.[BS85] R. J. Brachman and J. G. Schmolze. An overview of the KL-ONE knowledgerepresentation system. Cognitive Science, 9(2):171{216, 1985.[BDS93] M. Buchheit, F. M. Donini and A. Schaerf. Decidable Reasoning in Termi-nological Knowledge Representation Systems. Journal of Arti�cial IntelligenceResearch, 1(1993):109-138.[F*92] T. Fr�uhwirth et al, Constraint Logic Programming - An Informal Introduc-tion, Logic ProgrammingSummerSchool, Zurich, Switzerland, September1992,Springer LNCS 636, 1992 (also Technical Report ECRC-93-05, ECRC Munich,Germany, February 1993).[FrHa93] Terminological Reasoning with Constraint Handling Rules, Workshop onPrinciples and Practice of Constraint Programming, Newport, Rhode Island,USA, April 1993 (revised version as Technical Report ECRC-94-06, ECRC Mu-nich, Germany, February 1994, available by anonymous ftp from ftp.ecrc.de,directory pub/ECRC tech reports/reports, �le ECRC-94-06.ps.Z).[Fru92] T. Fr�uhwirth, Constraint Simpli�cation Rules (former name for CHRs),Technical Report ECRC-92-18, ECRC Munich, Germany, July 1992 (re-vised version of Internal Report ECRC-LP-63, October 1991), available byanonymous ftp from ftp.ecrc.de, directory pub/ECRC tech reports/reports, �leECRC-92-18.ps.Z.[Fru93] T. Fr�uhwirth, Temporal Reasoning with Constraint Handling Rules, Tech-nical Report ECRC-94-05, ECRC Munich, Germany, February 1994. (�rstpublished as CORE-93-08, January 1993), available by anonymous ftp fromftp.ecrc.de, directory pub/ECRC tech reports/reports, �le ECRC-94-05.ps.Z.[HaJa90] S. Haridi and S. Janson, Kernel Andorra Prolog and its ComputationModel, Seventh International Conference on Logic Programming, MIT Press,1990, pp. 31-46.[Han92] P. Hanschke. Specifying role interaction in concept languages. In ThirdInternational Conference on Principles of Knowledge Representation and Rea-soning (KR '92), October 1992.[Han93] P. Hanschke. A declarative integration of terminological, constraint-based,data-driven, and goal-directed reasoning. PhD Thesis at University of Kaiser-slautern, Germany, July 1993.

22 Bibliography[Her93] Eine homogene Implementierungsebene fuer einen hybriden Wissensreprae-sentationsformalismus, Master Thesis, in German, University of Kaiserslautern,Germany, April 1993.[Hol90] B. Hollunder. Hybrid inferences in KL-ONE-based knowledge representationsystems. In 14th German Workshop on Arti�cial Intelligence (GWAI-90),volume 251, pages 38{47. Springer, 1990.[HS90] M. H�ohfeld and G. Smolka, De�nite Relations over Constraint Languages.LILOG Report 53, IBM Deutschland, West Germany, October 1988.[J*92] J. Ja�ar et al., The CLP(R) Language and System, ACM Transactions onprogramming Languages and Systems, Vol.14:3, July 1992, pp. 339-395.[JaLa87] J. Ja�ar and J.-L. Lassez, Constraint Logic Programming, ACM 14thPOPL 87, Munich, Germany, January 1987, pp. 111-119.[JaMa] J. Ja�ar and M. Maher, Constraint Logic Programming: A Survey, Journalof Logic Programming, 1994:19,20:503-581.[Sar93] V. A. Saraswat, Concurrent Constraint Programming, MIT Press, Cam-bridge, 1993.[ScSm91] M. Schmidt-Schau� and G. Smolka. Attributive concept descriptions withcomplements. In Journal of Arti�cial Intelligence, 47, 1991.[Sha89] E. Shapiro, The Family of Concurrent Logic ProgrammingLanguages, ACMComputing Surveys, 21(3):413-510, September 1989.[Smo91] G. Smolka, Residuation and Guarded Rules for Constraint Logic Program-ming, Digital Equipment Paris Research Laboratory Research Report, France,June 1991.[Smo92] G. Smolka, Feature Constraint Logics for Uni�cation Grammars, JournalOf Logic Programming, 12:51-87 (1992).[Sow91] J. Sowa (ed.), Principles of Semantic Networks, Morgan Kaufmann, 1991.[VH89] P. Van Hentenryck, Constraint satisfaction in Logic Programming, MITPress, Cambridge, 1989.[VH91] P. Van Hentenryck, Constraint Logic Programming, The Knowledge Engi-neering Review, Vol 6:3, 1991, pp 151-194.

