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1.1 Abstract

Terminological knowledge representation formalisms in the tradition of
KL-ONE enable one to define the relevant concepts of a problem domain
and their interaction in a structured and well-formed way. In recent
years, a wealth of literature has appeared on this topic, e.g. [Baj93].
Sound and complete inference algorithms for terminological logics have
been developed using constraint calculi. These terminological reasoning
services can be reduced to a single algorithm checking consistency.

We propose constraint handling rules (CHRs) as an implementation
language for terminological reasoning. We will give an introduction into
the language. CHRs are a flexible means to implement ‘user-defined’
constraints on top of existing host languages like Prolog and Lisp. In
particular, inference rules, which are often used to define constraint cal-
culi, can usually be written as CHRs with little modification. The result
of using CHRs for terminological reasoning is an incremental and con-
current consistency checking algorithm.

The implementation provides a natural combination of three layers:
() a constraint layer that reasons in well-understood domains such as ra-
tionals or finite domains, (i7) a terminological layer providing a tailored,
validated vocabulary on which (ii¢) the application layer can rely. As
an application example, a configuration problem is modeled. The flexi-
bility of the approach will be illustrated by extending the formalism, its
implementation and the example with attributes, a new quantifier and
concrete domains.
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1.2 Introduction

A reader interested in constraint-based programming may consider this
chapter as a case study on user-defined constraints using the CHRs ap-
proach. A reader with background in terminological reasoning may learn
about a flexible way to implement terminological languages. We tried
to tackle the difficulties of serving both audiences. The final judgement
1s to you, the reader.

Terminological formalisms based on KL-ONE [BS85] are used to rep-
resent the terminological knowledge of a particular problem domain on
an abstract logical level. To describe this kind of knowledge, one starts
with atomic concepts and roles, and then defines new concepts and their
relationship in terms of existing concepts and roles. For example,

grand father isa male and some child is parent.

Concepts can be considered as unary relations which intensionally define
sets of objects (similar to types). Roles correspond to binary relations
over objects (not necessarily of the same kind - properties like color can
be roles as well). Then, assertions are added, describing actual objects
of the application, e.g.

john:male. (john,jack):child. jack:parent.

Terminological formalisms have a straightforward embedding in first-
order logic, so it seems natural to implement them as logic programs.
Moreover, the limited expressiveness of terminological formalisms allows
for decision procedures for a number of interesting reasoning problems.
These problems include consistency of assertions and classification of
concepts. The key idea of [Hol90, ScSm91, BDS93]) for constructing
such inference algorithms is to reduce all reasoning services to consis-
tency checking. This essential algorithm can be considered as constraint
solving, where concepts and roles are the constraints.

We therefore aim at implementing reasoning with terminologies as
constraint logic programs (CLP). In this way, an instance of the CLP
scheme results, and we can carry over the declarative and operational se-
mantics from CLP. Constraint logic programming [JaLa87, VH89, HS90,
VHI1, F*92, JaMa] combines the advantages of logic programming and
constraint solving. In logic programming, problems are stated in a
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declarative way using rules to define relations (predicates). Problems
are solved by the built-in logic programming engine (LPE) using chrono-
logical backtrack search. In constraint solving, efficient special-purpose
algorithms are employed to solve problems involving distinguished rela-
tions referred to as constraints.

A practical problem remains: Constraint solving is usually ‘hard-
wired’ in a built-in constraint solver (CS) written in a low-level lan-
guage. While efficient, this approach makes it hard to build a CS over a
new domain like terminologies, let alone verify its correctness. We pro-
posed constraint handling rules (CHRs) [Fru92] to overcome this prob-
lem. CHRs are a language extension providing a declarative means to
introduce user-defined constraints into a given high-level host language.
In this chapter the host language is Prolog, a CLP language with equal-
ity over Herbrand terms as the only built-in constraint. CHRs define
stmplification of and propagation over user-defined constraints. Sim-
plification replaces constraints by simpler constraints while preserving
logical equivalence, e.g.

>Y,¥>X <=> false.

Propagation adds new constraints which are logically redundant but may
cause further simplification, e.g.

Y, Y>Z ==> X>Z.

When repeatedly applied by a constraint handling engine (CHE) the
constraints are incrementally solved as in a CS, e.g.

A>B,B>C,C>A results in false.

CHIP was the first CLP language to introduce constructs (demons,
forward rules, conditionals) [VH89] for user-defined constraint handling
(like constraint solving, simplification, propagation). These various con-
structs have been generalized into CHRs. CHRs are based on guarded
rules, as can be found in concurrent logic programming languages [Sha89],
in the Swedish branch of the Andorra family [HaJa90], Saraswats cc-
framework of concurrent constraint programming [Sar93], and in the
‘Guarded Rules’ of [Smo91]. However all these languages (except CHIP)
lack features essential to define non-trivial constraint handling, namely
for handling conjunctions of constraints and defining constraint propa-
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gation. CHRs provide these two features using multi-headed rules and
propagation rules.

This chapter first introduces CHRs, then terminological reasoning.
Next it is shown that CHRs indeed can serve as a flexible implementa-
tion layer for an incremental and concurrent version of the consistency
test for terminologies. Moreover, the implementation effort turns out to
be minimal, as the CHRs directly reflect the inference rules of the tuned
tableaux calculus that is used for the consistency test.

Last but not least we illustrate that extensions to the basic termi-
nological formalism proposed in the literature carry over to the imple-
mentation with CHRs in a painless manner. One such extension allows
to parameterize terminologies with concrete domains, e.g. linear con-
straints over rational numbers [BaHa91, Han92]. Concrete domains can
be either implemented by CHRs or provided as built-in constraints of
the host language. In this way we obtain a fairly natural combination
of three knowledge representation layers - the constraint, terminological
and application layer - on a common implementational basis.

1.3 CLP with Constraint Handling Rules

Here we assume that constraint handling rules extend a a given con-
straint logic programming language. The syntax and semantics given
reflect this choice. It should be stressed, however, that the host language
for CHRs need not be a CLP language. Indeed, the work presented here
has been done at DFKI in the context of LISP [Her93].

1.3.1 Syntax

A CLP+4CH program is a finite set of clauses from the CLP language
and from the language of CHRs. Clauses are built from atoms of the
form p(t1,...t,) where p is a predicate symbol of arity n (n > 0) and
t1, ...t 18 a n-tuple of terms. A term is a variable, e.g. X, or of the form
f(t1,...tn) where fis a function symbol of arity n (n > 0) applied to a n-
tuple of terms. Function symbols of arity 0 are also called constants. In
this chapter, predicate and function symbols start with lowercase letters
while variables start with uppercase letters. Infix notation may be used
for specific predicate symbols (e.g. X = Y) and functions symbols
(e.g. =X +7Y). There are two classes of distinguished atoms, built-in
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constraints and user-defined constraints. In most CLP languages there
is a built-in constraint for syntactic equality over Herbrand terms, =,
performing unification. The built-in constraint true, which is always
satisfied, can be seen as an abbreviation for 1=1. false (1=2) is the
built-in constraint representing inconsistency.

A CLP clause is of the form

H:-By,...B,. (n>0)

where the head H is an atom but not a built-in constraint, the body
By,...B, is a conjunction of literals called goals. The empty body
(n = 0) of a CLP clause may be denoted by the built-in constraint
true. A queryis a CLP clause without head.

There are two kinds of CHRs®. A simplification CHR is of the form

Hl,...Hi <=> Gl,...Gj | Bl,...Bk.
A propagation CHR is of the form
Hl,...HZ'==>G1,...Gj|Bl,...Bk. (Z>0,j20,k’20)

where the multi-head Hq,...H; is a conjunction of user-defined con-
straints and the guard G4, ... G is a conjunction of literals which neither
are, nor depend on, user-defined constraints.

1.3.2 Semantics

Declaratively, CLP programs are interpreted as formulas in first order
logic. Extending a CLP language with CHRs preserves its declarative
semantics. A CLP+CH program P is a conjunction of universally quan-
tified clauses.

A CLP clause is an implication®

H+ B N...B,.

A simplification CHR is a logical equivalence provided the guard is true
in the current context

(Gl/\...Gj)%(Hl/\...HZ'HBl/\...Bk).

A propagation CHR is an implication provided the guard is true

3 A third, hybrid kind is described in [B*94].

4For simplicity of presentation, we do not use Clark’s completion.
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(Gl/\...Gj)%(Hl/\...HZ'—>Bl/\...Bk).

Procedurally, a CHR can fire if its guard allows it. A firing simplifica-
tion CHR replaces the head constraint by the body, a firing propagation
CHR adds the body to the head constraints. No theorem proving in the
general sense is required to reason with the formulas expressed by CHRs.

The operational semantics of CLP4CH can be described by a transi-
tion system.

A computation state is a tuple

< Gs,Cy,Cp >,

where G's is a set of goals, Cy and C'p are constraint stores for user-
defined and built-in constraints respectively. A constraint store is a set
of constraints. A set of atoms represents a conjunction of atoms.

The wnitial state consists of a query G's and empty constraint stores,

< Gs, {4 {}>.

A final state is either failed (due to an inconsistent built-in constraint
store represented by the unsatisfiable constraint false),

< Gs,Cy,{false} >,
or successful (no goals left to solve),
< {}, CU, Cp >.

The union of the constraint stores in a successful final state is called
conditional answer for the query G's, written answer(Gs).

The built-in constraint solver (CS) works on built-in constraints in
Cp and Gs, the user-defined CS on user-defined constraints in Cy and
(s using CHRs, and the logic programming engine (LPE) on goals in G's
and Cy using CLP clauses. The following computation steps are possible
to get from one computation state to the next.

Solve
<{C}UGs,Cy,Cp > — <GS,CU,CJ/3>
if(C'/\CB)HCJ/B

The built-in CS updates the constraint store C'g if a new constraint '
was found in G's. To update the constraint store means to produce a
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new constraint store C'; that is logically equivalent to the conjunction
of the new constraint and the old constraint store.

We will write H =,.; H' to denote equality between the sets H and
H'ie. H={A1,..., Ay} and there is a permutation of H’, perm(H') =
{Bi,...,B,}, such that A; = B; for all 1 <7 <n.

Introduce
<{H}UGs,Cy,Cp > — < Gs,{H}UCy,Cp >

if H 1s a user-defined constraint

Simplify
<Gs,HHUCy,Cg > — < GsUB,Cy,Cp >
if (H<=>G|B)ePand Cp— (H =5t H') A answer(G)

Propagate
<Gs,HHUCy,Cg > — <GsUB H' UCy,Cp >
if (H==>G|B)ePand Cp— (H =t H') A answer(G)

The constraint handling engine (CHE) applies CHRs to user-defined con-
straints in GGs and Cpy whenever all user-defined constraints needed in
the multi-head are present and the guard is satisfied. A guard G is
satisfied if its local execution does not involve user-defined constraints
and the result answer(G) is entailed (implied) by the built-in constraint
store C'g. Equality is entailed between two terms if they match. To in-
troduce a user-defined constraint means to take it from the goal literals
(G's and put it into the user-defined constraint store Cy. To simplify
user-defined constraints H’ means to replace them by B if H’ matches
the head H of a simplification CHR H <=> G | B and the guard G is
satisfied. To propagate from user-defined constraints H' means to add
B to G's if H' matches the head H of a propagation CHR H ==> G |
B and G is satisfied.

Unfold
< {H'}UGs,Cy,Cp > — < GsUB,Cy,{H =H'}UCp >
if (H :- B) € P.

The logic programming engine (LPE) unfolds goals in Gs. To unfold
an atomic goal H' means to look for a clause H: — B and to replace
the H' by (H = H') and B. As there are usually several clauses for
a goal, unfolding is nondeterministic and thus a goal can be solved in
different ways using different clauses. There can be CLP clauses for user-



8 Chapter 1

defined constraints. Thus they can be unfolded as well. This unfolding
is called (built-in) labeling. The transition below is somewhat simplified,
the details can be found in [Fru92, B*94].

Label
< Gs,{H'YUCy,Cp > — < GsUB,Cy,{H=H}UCp >
if (H :- B) € P.

Note that any constraint solver written with CHRs will be incremen-
tal and concurrent. By “incremental” we mean that constraints can
be added to the constraint store one at a time using the “introduce”-
transition. Then CHRs may fire and simplify the user-defined constraint
store. The rules can be applied concurrently, even using chaotic iteration
(i.e. the same constraint can be simplified by different rules at the same
time), because correct CHRs can only replace constraints by equivalent
ones or add redundant constraints.

1.3.3 Implementation

The operational semantics are still far from the actual workings of an
efficient implementation. At the moment, there exist two implementa-
tions, one prototype in LISP [Her93], and one fully developed compiler
in a Prolog extension.

The compiler for CHRs is available as a library of ECLiPSe [B*94],
ECRC’s advanced constraint logic programming platform, utilizing its
delay-mechanism and built-in meta-predicates to create, inspect and
manipulate delayed goals. All ECLiPSe documentation is available by
anonymous ftp from ftp.ecrc.de, directory /pub/eclipse/doc. In such a
sequential implementation, the transitions are tried in the textual order
given above. To reflect the complexity of a program in the number of
CHRs, at most two head constraints are allowed in a rule®. This re-
striction also makes complexity for search of the head constraints of a
CHR linear in the number of constraints on average (quadratic in the
worst case) by using partitioning and indexing methods. Termination
of a propagation CHR is achieved by never firing it a second time with
the same pair of head constraints.

The CHRs library includes a debugger and a visual tracer as well as a

5Two is the minimal number such that a rule with more head constraints can be
rewritten into several number-restricted rules.
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full color demo using geometric constraints in a real-life application for
wireless telecommunication. 18 constraint solvers currently come with
the release, for booleans, finite domains (similar to CHIP [VH89]), also
over arbitrary ground terms, reals and pairs, incremental path consis-
tency, temporal reasoning (quantitative and qualitative constraints over
time points and intervals [Fru93]), solving linear polynomials over the
reals (similar to CLP(R) [J*92]) and rationals, for lists, sets, trees, terms
and the solver described in this chapter. The average number of rules
in a constraint solver is as low as 24. Typically it took only a few days
to produce a reasonable prototype solver, since the usual formalisms to
describe a constraint theory, i.e. inference rules, rewrite rules, sequents,
first-order axioms, can be expressed as CHRs programs in a straight-
forward way. Thus one can directly express how constraints simplify
and propagate without worrying about implementation details. Start-
ing from this executable specification, the rules then can be refined and
adapted to the specifics of the application.

On a wide range of solvers and examples, the run-time penalty for our
declarative and high-level approach turned out to be a constant factor
in comparison to dedicated built-in solvers (if available). Moreover, the
slow-down 1is often within an order of magnitude. On some examples
(e.g. those involving finite domains with the element-constraint), our
approach is faster, since we can exactly define the amount of constraint
simplification and propagation that is needed. This means that the
solver are intentionally made as incomplete as the application requires
it. Some solvers (e.g. disjunctive geometric constraints in the phone
demo) would be very hard to recast in existing CLP languages.

1.4 Terminological Reasoning

In this chapter we will recall the concept language ALC [ScSm91] as our
basic terminological logic (TL) and show its implementation in CHRs.
Section 1.5 will then proceed with some useful extensions of this formal-
ism demonstrating the flexibility of the CHRs approach.

1.4.1 Terminology

A terminology (T-box) consists of a finite, cycle free set of concept defi-
nitions
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C isa s,

where (' is the newly introduced concept name and s is a concept term
constructed from concept names and roles. Inductively, concept terms
are defined as follows:

. Every concept name C' is a concept term.

. If s and ¢ are concept terms and R is a role name then the following
expressions are concept terms:

s and ¢ (conjunction),

s or t (disjunction),

nota s (complement),

every R is s (value restriction),

some R is s (exists-in restriction).

Although there is an established notation for terminologies, we use a
more verbose syntax so that readers not familiar with the topic can read
the expressions easily as sentences in (almost) natural language.

An interpretation T with a set domz as domain interprets a con-
cept name C as a set C?7 C doms and a role name R as a set RT C
domz x domgz. In other words, roles are interpreted as an arbitrary bi-
nary relation over domz. It can be lifted to concept terms in a straight-
forward manner: Conjunction, disjunction, and complement are inter-
preted as set intersection, set union, and set complement wrt domg,
respectively, and

a € (every R is s)T iff, for all b € domgz, (a,b) € R?
implies b € s%, and

a € (some R is s)? iff, there is some b € domz such that
(a,b) € RT be st

An interpretation is a model of a terminology 7' if C* = st for all (C
isas) €T.

Ezample: The domain of a configuration application comprises at least
devices, interfaces, and configurations. The following concept definitions
express that these are disjoint concepts.
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primitive device.®

interface isa nota device.
configuration isa nota (interface or device).

Let us assume that a simple device has at least one interface. We in-
troduce a role connector which relates devices to interfaces and employ
the exists-in restriction.

role connector.
simple_device isa device and
some connector is interface. 0

1.4.2 Assertions and Reasoning Services

Objects are (Herbrand) constants or variables. Let a, b be objects, R a
role, and C' a concept term. Then b : C' is a membership assertion and
(a,b) : Ris a role-filler assertion. An A-boxis a collection of membership
and role-filler assertions.

Ezample (contd): We introduce instances of devices and interfaces.

pc:device. rs231:interface. (pc,rsZSl):connector.D

An interpretation of an A-boxr A is a model of the underlying termi-
nology that, in addition, maps Herbrand constants to elements of domz.
For these constants we adopt the unique name assumption. An A-box
A is consistent if there is an interpretation Z and a variable assign-
ment o : objects — domgz such that all assertions of A are satisfied, i.e.,
(aot, bol) € RT and bot € CZ, for all (a,b) : R and b: C in A. An ob-
ject a is a member of a concept C' iff for all models 7 of the terminology
all assignments o : objects — domz that satisfy 4 also satisfy a : C. A
concept C subsumes a concept O iff for all models Z of the terminology
C? D Cf. Figure 1.1 shows the subsumption graph of the terminology
developed 1in sections 1.4 and 1.5.

The consistency test is the central reasoning service for terminological
knowledge representation systems with complete inference algorithms.
Various other services can be reduced to this test [Hol90]. In particu-
lar, the subsumption (and similarly membership) services can be imple-
mented on the basis of the consistency test of A-boxes:

6 This declaration introduces a concept name that is not defined any further.
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Figure 1.1
Subsumption Graph of the Example Terminology

. A concept C] subsumes a concept C5 iff an A-box consisting just of the
membership assertion a : C3 and nota (' is inconsistent.

. An object a is a member of C' wrt the A-box A iff {a : nota C}U A is
inconsistent.

1.4.3 CLP+CH(TL)
Roughly, the consistency test of A-boxes works as follows.

. Simplify and propagate the assertions in the A-box to make the knowl-
edge more explicit.

. Look for obvious contradictions (“clashes”) such as “X:C, X:nota C”.

The consistency test can be implemented with CHRs by regarding asser-
tions as user-defined constraints. CHRs similar to the ones that follow
can be found as the unfolding and completion rules in [ScSm91] and
the propagation rules in [BDS93]. However, the former work does not
provide an incremental algorithm and the latter does not simplify con-
straints.

First we treat the complement operator:
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:nota nota S <=> 1I:S.

:nota (S or T) <=> I:(nota S and nota T).
:nota (S and T) <=> I:(nota S or nota T).
:nota every R is S <=> 1I:some R is nota S.

H H H H H

:nota some R is S <=> 1I:every R is nota S.

These simplification CHRs show how the complement operator nota can
be pushed towards the leaves of a concept term.
The conjunction rule generates two new, smaller assertions:

I:Sand T <=> 1I:S,I:T.

An exists-in restriction generates a new object (i.e. variable) that
serves as a “witness” for the restriction:

I:some R is S <=> (I,J):R, J:S.

The time-complexity of executing the above CHRs is linear in the size of
the concept term.
A value restriction has to be propagated to all role fillers:

I:every R is S, (I,J):R ==> J:S.

In the implementation this propagation rule will be applied only once
per matching pair of membership and role-filler assertions. The time-
complexity is quadratic in the number of assertions.

Disjunction is treated lazily by two CLP clauses (introducing a dis-
junction for built-in labeling):

I:Sor T :- I:S.
I:Sor T :- I:T.

These are the two rules where the exponential complexity of consistency
tests for terminologies surfaces.
The unfolding rules expand concept names to their definitions:

I:C <=> (C isa S) | I:s.
I:nota C <=> (C isa S) | I:nota S.

Since concept definitions do not contain cycles, the above two CHRs
clearly terminate.

For ALC we need only the following single clash rule, one may need
more for extensions of the formalism.
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I:nota S, I:S <=> false.

The above solver simplifies terminological constraints until a normal
form is reached. In the normal form, the only constraints are I:C,
I:nota C, I:S or T, I:every R is S, (I,J):R, where Cis a primi-
tive concept name. The solver is complete, i1.e. it detects all inconsisten-
cies through the clash rule independent of the order in which constraints
are added and CHRs are applied. All CHRs except the clash rule have
pairwise disjoint heads (C can only stand for concept names). Therefore
for completeness we have to show that the clash rule can still be applied
even after an inconsistent pair of membership assertions is reduced by
other rules. For example, the inconsistent constraints

I:nota every R is S, I:every R is S
can be simplified by pushing nota down in the first constraint

I:some R is nota S, I:every R is S +— (some-rule)
(I,J):R, J:nota S, I:every R is S +— (every-rule)
(I,3):R, J:nota S, I:every R is S, J:S

and the clash rule applies to J:nota S, J:S leading to false. 0

1.5 Extensions

In a number of papers (e.g., [Hol90, ScSm91, BDS93]) the above idea
of a tableaux based consistency test as the central reasoning service
has been successfully applied to terminological logics with various other
language constructs. This flexibility carries over to extensions of our
implementation.

1.5.1 Functional Roles

Attributes (also called features) are functional roles, i.e., their interpre-
tation is the graph of a partial function domz — domgz. Assuming dec-
larations of attributes of the form attribute F, I’ an attribute name,
we just have to extend our implementation by

(1,31):F, (1,J2):F ==> attribute F | J1=J2.

Ezample (contd): Now we are ready to define a simple configuration
which consists of two distinguished simple devices:
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attribute component._i.

attribute component 2.

simple config isa configuration and
some component_1 is simple_device and
some component 2 is simple_device.

Asking the query

:— configl:simple config, (configl,devl):component. 1,
(configl,dev2):component 2,

the membership service can derive that devl and dev2 are simple de-
vices. The reason is that the attribute-rule constrains the witness for
some component_1 is simple_device and the second argument of the
role (configl,devl):component_1 to be equal (analogously for dev2).

O

A more local way to specify functionality of roles i1s provided through
concept terms of the form “at_most_one R”, R a role name.” An a €
domyz is an element of (at_most_one R)? if there is at most one R-role
filler for a. This is implemented through

I:atmost_one R, (I,J1):R, (I,J2):R ==> J1=J2.

An object does not belong to at most_one R if, and only if, there are at
least two different role fillers:

I:nota at_most_one R <=>
(1,J1):R, (I,J2):R, different(J1,J2).

The constraint different is unsatisfiable if its arguments are identical.
different(X,X) <=> false.
Ezxample (contd):

very_simple device isa simple_device and
at_most_one connector. 0

1.5.2 Concrete Domains

In [Han92] restricted forms of quantification over predicates of a concrete
domain D have been suggested as concept forming operators. Examples

"The at_most_one construct is a restricted form of the number restriction [BS85].
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of concrete domains are Allen’s temporal interval relations, rational (nat-
ural) numbers with comparison operators and linear polynomials over
the reals (all of which have been implemented by CHRs). An admissible
concrete domain has to be closed under complement (since we have to
propagate the complement operator nota) and has to provide a satisfia-
bility test for conjunctions of predicates. Unlike in [FrHa93], we present
here an untyped and thus simpler version of the concrete domains ex-
tension for space reasons.

The syntax for the new operators in the extension TL(D) of the con-
cept language is as follows:

every wg and ...and w, is p

some wqo and ...and w, is p,
where w; is of the form “R;; of ...of R;,”, R;; are role names, n > 0,
ki >0,4=1,---,n, and p is an n-ary concrete predicate (constraint)

of D. These constructs are inspired by the value restriction and the

exists-in restriction. The semantics of the new operators is as follows:
a € (every wy and ...and w, is p)?

iff, for all by,---,b, € domz: (a,b;) € wl, fori =1,--- n,

implies (by,---,b,) € p*

a € (some wg and ...and w, is p)t

iff, there are by,---,b, € domz such that (a,b;) € wf, for

i=1,---,n and (by, -, b,) € pt

The denotation of w? is defined inductively similar to relational product:
(a,¢) € [R of S)* iff there exists a b such that (a,b) € ST and (b,c) €
R%.

Note that with R matching the expression “wy and ...and w,” the
complement-rules are also applicable to the new constructs for concrete
domains. We just have to introduce a CHR to complement predicates
over the concrete domain:

(X1, -+,X,):nota P <=>
concrete_complement(P,Q) | (Xq, - ,X,):Q,

where concrete_complement is a two place predicate belonging to Z that
assoclates each predicate of the concrete domain with its complement
wrt to dom?.
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Analogous to the value restriction (resp., the exists-in restriction)
CHR we have to collect (resp., generate) objects satisfying the con-
crete domain predicate. This can be implemented through a fixed,
finite set of CHRs that collect (resp., generate) objects according to
the roles and attributes occurring in the operators “from left to right”
and then restrict the collected (resp., generated) objects with the con-
crete predicate. To simplify the presentation we give two schemata of
propagation (resp., simplification) rules. TFor each term of the form
every wy and ...and w, is P that occurs in the knowledge base or
in a query we introduce a rule

X:every wpo and ...and w, is P,

(X,X11) Rty oo, (Kigy—1, Xiky) ¢ Rigy,

(X,%n1) :Rn1, -+, (Xnko—1, Xnk, ) D Bak, ==> X1k, -, Xk, ) i P.
Analogously, for a term some wy and ...and w, is P we introduce a
rule

X:some wyg and ... and w, is P <=>

(Xlkla"'axnkn):Pa
(X,X11) Rty -+, (Kigy -1, X1ky) ¢ Ragy,
(X,%n1) :Rn1, -+, (Xnk,—1, Xn k) © Rk, -

For example, an expression every £ of ril and r2 is p leads to a
rule

X:every f of rl and r2 is P, (X,X11):r1, (X11,X12): 1,
(X,X91):r2==> (Xy2,X21):P.

As a simple example of a concrete domain we take inequalities over
rational numbers. The reasoning in the concrete domain itself is imple-
mented through the following rules which find all contradictions (but do
not perform all possible simplifications).

X>Y <=> Y < X.

>= Y <=> Y =< X.

=< X <=> true.

< X <=> false.

=< Y <=> number>(X,Y) | false.

LT ]
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X < Y <=> number>=(X,Y) | false.

X<Y,Y<Z==> X<Z.
X=<Y,Y<Z==> X<Z.
X<Y,Y=<Z==> X<Z.
X=<Y, ¥=<2Z==> X =<2Z.

The guard number >(X,Y) (resp., number >=(X,Y)) is true if X and Y

are bound to numbers # and y and & > y (resp., # > y). The pred-

icate concrete _complement associating concrete predicates with their
complements is defined by the following clauses:

concrete_complement (<,>=).
concrete_complement (>=,<).
concrete_complement (=<,>).
concrete_complement (>,=<).

The CHRs for the new operator generates atoms of the form (z,y) :

com arison o €TCltO7” andx: com arison o €TCltO7” number 8. These
(comp. P ) p p

atoms have to be translated to the infix syntax of the concrete domain:

X:(< N) <=> X < N. (X,¥):< <=> X < Y.
X:(> N) <=> X > N. (X,Y):> <=> X > Y.
X:(>= N) <=> X >=N. (X,Y):=< <=> X =< Y.
X:(=< N) <=> X =< N. (X,Y):>=<=> X >=Y.

Ezample (contd): Now we can associate price and voltage with a de-

vice and require that in an electrical configuration the voltages have to

be compatible.

attribute price.

attribute voltage.

electrical device isa very._simple_device and
some voltage is > 0 and some price is > 1

low_cost_device isa electrical.device and
every price is < 200.

high voltage device isa electrical.device and
every voltage is > 15.

electrical config isa simple_configuration and

8 The latter enables the use of numbers in concept terms.
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every component_1 is electrical.device and
every component 2 is electrical.device and
every voltage of component_1 and

voltage of component 2 is >=. 0

The new operator can also be used to specify upper bounds. This is
illustrated by a configuration where several CPUs are plugged onto a
bus with the side condition that the maximal frequency of the CPUs
must be less than the frequency of the bus.

attribute frequency.
primitive bus.
bus_device isa simple_device and bus and
some frequency is > 0O
primitive cpu.
cpudevice isa simple device and cpu and
some frequency is > 0O
role main_device.
role sub._device.
bus_config isa configuration and
some main_device is bus_device and
every component is cpu.device and
every frequency of main device and
frequency of sub._device is > . 0

1.5.3 CLP+CH(TL(D))

If we apply the CLP scheme of Hohfeld und Smolka [HS90] in a straight-
forward manner to A-boxes of TL(D), we obtain a CLP language with
three representation and reasoning layers [AH93].

Ezample (contd): The following CLP clauses specify the catalog of
devices and describe possible configurations that are based on this cat-

alog.
catalog(devl) :-devl:electrical device,
(dev1,10):voltage, (dev1,100):price.
catalog(dev2) :- dev2:electrical device,

(dev2,20):voltage, (dev2,1000):price.
possible config(C) :-
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catalog(D1), (C,D1):component. i,
catalog(D2), (C,D2):component 2.

The following queries enumerate possible configurations satisfying the
requirements.

:— possible config(C).

:— possible config(C), C:electrical config.

:— possible config(C), C:electrical config,
(C,D1) :component_1, D1:low_cost._device,
(C,D2) :component 2, D2:high voltage device.

The first query enumerates all possible electrical configurations compris-
ing two devices based on the catalog, i.e., configurations consisting of
two devices devl, two dev2, or devl and dev2. The second query allows
for all configurations involving devl and dev2, except the one where
devl is component one and dev2 is component two. Finally, the third
query has no solution, because the catalog lists only one low-cost device
and there is no high-voltage device with a compatible voltage. O

1.6 Conclusions

Constraint handling rules (CHRs) are a language extension for imple-
menting user-defined constraints. Rapid prototyping of novel applica-
tions for constraint techniques is encouraged by the high level of ab-
straction and declarative nature of CHRs.

In this chapter we investigated terminological reasoning as constraint
solving with CHRs. The terminological constraint system is related to
other term domains like [Sow91, Smo92, APG93], which we currently
implement in a similar way. The overall language has some similarities
with LOGIN [AiNag86]. Flexibility was illustrated by extending the for-
malism and its implementation with attributes, a special quantifier and
concrete domains. Applicability was illustrated by sketching a generic,
hybrid knowledge base for solving configuration problems.
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