
Domain Independent PropagationThierry Le Provost and Mark WallaceAbstractRecent years have seen the emergence of two main approaches to inte-grating constraints into logic programming. The CLP Scheme introducesconstraints as basic statements over built-in computation domains. On theother hand, systems such as CHIP have introduced new inference rules,which enable certain predicates to be used for propagation thereby prun-ing the search tree. Unfortunately these two complementary approacheswere up to now incompatible, since propagation techniques appeared in-timately tied to the notion of �nite domains. This paper introduces ageneralisation of propagation that is applicable to any CLP computationdomain, thereby restoring orthogonality and bridging the gap between twoimportant constraint logic programming paradigms. The practical interestof this new notion of \domain independent" propagation is demonstratedby applying a prototype system for solving some hard search problems.1 IntroductionThere are two main approaches for integrating constraints into logic pro-gramming. The �rst approach, formalised as CLP (X) [JL87], is to replacethe usual domain of computation with a new domain X. The computa-tion domain X speci�es a universe of values; a set of prede�ned functionsand relations on this universe; and a class of basic constraints, which areformulae built from prede�ned predicate and function symbols, and log-ical connectives. The CLP scheme requires that an e�ective proceduredecide on the satis�ability of the basic constraints. The facility to de-�ne new predicates as facts or rules, possibly involving the built-in's, iscarried over from logic programming. The evaluation of queries involvingsuch user-de�ned predicates is performed using an extension of resolution,where syntactic uni�cation is replaced with deciding the satis�ability ofbasic constraints (constraint solving). As with standard logic program-ming the default search method for evaluating program-de�ned predicatesis depth-�rst, based on the ordering of program clauses and goals.The second main approach to integrating constraints in logic program-ming uses the standard, syntactic, domain of computation, except thatthe variables may be restricted to explicitly range over �nite subsets of theuniverse of values (�nite domain variables) [VD86]. In this approach, in-augurated by CHIP [DVS+88], it is the proof system that is extended. The1

new type of controlled inference is termed constraint propagation or consis-tency techniques [Van89]. These techniques combine solution-preservingsimpli�cation rules and tree search, and were originally introduced forsolving constraint satisfaction problems [Mon74, Mac77].Informally constraint propagation aims at exploiting program-de�nedpredicates as constraints. It operates by looking ahead at yet unsolvedgoals to see what locally consistent valuations there remain for individualproblem variables. Such constraint techniques can have a dramatic e�ectin cutting down the size of the search space [DSV90].To date the technique of propagation has only been de�ned for searchinvolving �nite domain variables. Each such variable can only take a �nitenumber of values, and looking ahead is a way of deterministically rulingout certain locally inconsistent values and thus reducing the domains.This restriction has prevented the application of propagation to new com-putation domains introduced by the CLP (X) approach. In addition prop-agation, as currently de�ned, cannot reason on compound terms, therebyenforcing an unnatural and potentially ine�cient encoding of structureddata as collections of constants.This has meant that the two approaches to integrating constraints intologic programming have had to remain quite separate. Even in the CHIPsystem which utilises both types of integration, propagation is excludedfrom those parts of the programs involving new computation domains,such as Boolean algebra or linear rational arithmetic.This paper proposes a generalisation of propagation, which enables itto be applied on arbitrary computation domains. Generalised propagationcan be applied in CLP (X) programs, whatever the domain X. Further-more its basic concepts, theoretical foundations, and abstract operationalsemantics can be de�ned independently of the computation domain. Thisallows programmers to reason about the e�ciency of CLP programs in-volving propagation in an intuitive and uniform way. This generalitycarries over to the implementation, where algorithms for executing gener-alised propagation apply across a large range of basic constraint theories.Last but not least, the declarative semantics of CLP programs is pre-served.The main idea behind generalised propagation is to use whatever basicconstraints are available in a CLP (X) language to express restrictionson problem variables. Goals designated as propagation constraints arerepeatedly approximated to the �nest basic constraint preserving theirsolutions. When no further re�nement of the current resolvent's basicconstraint is feasible, a resolution step is performed and propagation startsagain.The practical relevance of generalised propagation has been tested byimplementing it in the computation domain of Prolog. Programs are justsets of Prolog rules with annotations identifying the goals to be used forpropagation. The language has enabled us to write programs which aresimple, yet e�cient, without the need to resort to constructs without aclear declarative semantics such as demons. The performance results have2

been very encouraging.In the next section we recall the interest of integrating propagationover �nite domains into logic programming. We then present a logicalbasis for propagation that will provide the basis for generalisation. Thefollowing section introduces generalised propagation, and sketches its the-oretical basis. The fourth section introduces our prototype system on topof Prolog, and discusses some of the examples that we tackled with it. Inconclusion we identify the directions that this work is now taking.2 Propagation over Finite Domains2.1 Propagation in Constraint Satisfaction Prob-lemsThe study of constraint satisfaction problems has a long history, and wemention here just a few important references. The concept of arc consis-tency was introduced in [Mac77]; its combination with backtrack searchwas described in [HE80]; the notion of value propagation is due to [SS80];the application of constraint methods to real arithmetic was surveyed in[Dav87]; �nally [Van89] extensively motivates and describes in detail theintegration of �nite-domain propagation methods into logic programming.A constraint satisfaction problem (CSP) can be represented as� a set of variables, fX1; : : : ;Xng, each Xi ranging over a �nite do-main Di;� a set of constraints C1; : : : ; Cm on these variables, where each con-straint Ci is an atomic goal pi(Xi1; :::Xik) de�ned by a k-ary pred-icate pi.A solution to the problem is an assignment of values from the domainsto the variables (a labelling) such that all the constraints are satis�ed.We now briey recall the main approaches to solving CSP's in a logicprogramming setting, using the following toy example. The problem hasfour variables X1;X2;X3;X4, each with domain fa; b; cg. There are fourconstraints, each involving the same binary predicate p:p(X3;X1) ^ p(X2;X3) ^ p(X2; X4) ^ p(X3;X4)The relation denoted by p has three tuples: < a; b >, < a; c >, < b; c >.Generate and Test This approach enumerates labellings in a sys-tematic way until one is found that satis�es all the constraints. It ishopelessly ine�cient for all but the smallest problem instances. In ourexample the system will go through all 27 labellings which begin withan a, before discovering that X1 cannot take this value due to the �rstconstraint p(X3;X1). In general reordering the constraint goals may onlybring minor improvements. Analysing the cause for the failure of goals soas to avoid irrelevant backtrack steps (selective backtracking) makes the3

runtime structures more complex and is insu�cient for complex problems(see for instance [Wol89]).1Backtrack Search A �rst improvement on pure generate-and-test isto check each constraint goal as soon as all its variables have receivedvalues [GB65]. Backtrack search thus performs an implicit enumerationover the space of possible labellings, discarding partial labellings as soonas they can be proved locally inconsistentwith respect to some constraintgoal. Backtrack search demonstrates considerable gains over generate-and-test (the inconsistent assignment X1 = a is detected at once). How-ever this procedure still su�ers from \maladies" [Mac77], the worst beingits repeated discovery of local inconsistencies. For instance it is obviousfrom p(X3;X1)^p(X2;X3) alone that X1 cannot take the value b. Back-track search will nonetheless consider all 9 combinations of values for X2and X3 before rescinding X1 = b.Local Propagation The idea behind local propagation methods forCSP's is to work on each constraint independently, and deterministicallyto extract information about locally consistent assignments. This haslead to various consistency algorithms for networks of constraints, themost widely applicable of these being arc-consistency [Mon74]. Consis-tency can be applied as a preliminary to the search steps or interleavedwith them [HE80]. The application of these techniques in the constraintlogic programming language CHIP was accomplished through two com-plementary extensions [VD86, Van89]� explicit �nite domains of values to allow the expression of rangerestrictions, together with the corresponding extension of uni�cation(FD-resolution)� new lookahead inference rules to reduce �nite domains in a deter-ministic wayThe e�ect of applying lookahead on a goal is to reduce the domainsassociated with the variables in the goal, so that the resulting domainsapproximate as closely as possible the set of remaining goal solutions.The solutions can be determined by simply calling the goal repeatedly.Application of the lookahead rule is repeated on all constraint goals untilno more domain reductions are possible, forming a propagation sequence.Constraint goals that are satis�ed by any combination of values in thedomains of their arguments can now be dropped.Our example problem can be encoded in a CHIP-like syntax as follows:csp(X1,X2,X3,X4) :-lookahead p(X3,X1), /* [1] */lookahead p(X2,X3), /* [2] */lookahead p(X2,X4), /* [3] */1Selective, or intelligent, backtracking [CS90] addresses the symptom of too many choicepoints. Propagation addresses the cause, by reducing the number of choice points in advance.4

lookahead p(X3,X4), /* [4] */dom(X1),dom(X2),dom(X3),dom(X4).The lookahead annotations identify goals that must be treated by thenew inference rule. Annotations can be ignored for a declarative reading.For our example problem, the initial propagation sequence is su�cientto produce the only solution; domain goals merely check each of the vari-able bindings already produced. A possible computation sequence is asfollows (though the ordering is immaterial for the �nal result):lookahead on: produces:p(X3,X1) [1] X3::{a,b}, X1::{b,c}p(X2,X3::{a,b}) [2] X2=a, X3=bp(a,X4) [3] X4::{b,c}p(b,X1::{b,c}) [4] X4=cp(b,X1::{b,c}) [1] X1=cp(a,b) [2] succeedsp(a,c) [3] succeedsp(b,c) [4] succeedsNote that the constraint [1] takes part in two propagation steps before itis solved. In general constraints may be involved in any number (> 0) ofpropagation steps.From this brief summary of consistency techniques for CSP's and theirintegration into logic programming, it may appear that �nite domain vari-ables form the cornerstone of propagation. The purpose of this paper isto show that this is not the case, and that propagation has a very general,natural and useful counterpart in constraint logic programming languagesthat do not feature �nite domains.2.2 A Logical Basis for PropagationThe e�ect of (�nite domain) propagation on a constraint is to reducethe domains associated with the variables appearing in the constraint.The resulting domains capture as precisely as possible the meaning of theconstraint. The aim of this section is to say in what sense the meaningof a constraint is captured by a set of domains, and to give a formalcharacterisation of the quali�cation \as precisely as possible".A constraint C(X1; : : : ;Xn) is to be understood as a logical formulawith free variables X1; : : : ;Xn. A constraint formula has the syntacticform:(X1 = a11 ^ : : : ^Xn = a1n) _ : : : _ (X1 = ak1 ^ : : : ^Xn = akn).A domain formulaDom(X) is a disjunction of equalities involving a singlevariable X:X = a1 _X = a2 _ : : : _X = an.Generally many variables are involved in a problem, and we thereforeintroduce a syntactic class of formulae representing the conjunction oftheir domains. These are the basic formulae. Thus a basic formulaD(X1; : : : ;Xn) has the form:Dom1(X1) ^ : : : ^Domn(Xn). 5

The reduced domains, resulting from propagation on a constraint, ap-proximate the constraint formula as closely as is possible using only abasic formula. Propagation is \precise" if this basic formula is logicallyequivalent to the constraint formula. The problem is that basic formulaehave a limited expressive power, and it is not in general possible to �ndone logically equivalent to a given constraint formula.For example the constraint formula C(X1;X2),(X1 = a ^X2 = b) _ (X1 = a ^X2 = c) _ (X1 = b ^X2 = c),is best approximated by the basic formula(X1 = a _X1 = b) ^ (X2 = b _X2 = c).However there is no basic formula logically equivalent to C(X1;X2).De�nition 1 A propagation step takes a constraint formula C and a basicformula D and yields a \least" basic formula D0 which satis�es (C^D)!D0. D0 is the least such formula in the sense that for any other basicformula D00 satisfying (C ^D)! D00 it is also true that D0 ! D00.This de�nition will be illustrated using the constraint C(X1;X2):(X1 = a ^X2 = b) _ (X1 = b ^X2 = c) _ (X1 = c ^X2 = a).The input basic formula D(X1;X2) is:(X1 = a _X1 = b) ^ (X2 = a _X2 = b _X2 = c).Propagation on a constraint involves two steps: the simpli�cation ofthe constraint and the reduction of domains associated with its variables.The simpli�cation of the constraint C(X1; X2), with respect to thebasic constraint D(X1;X2) is just the calculation of a simpli�ed constraintlogically equivalent to C(X1; X2) ^D(X1;X2). The result of simplifyingis C 0(X1;X2) � (C(X1;X2) ^D(X1;X2)) �(X1 = a ^X2 = b) _ (X1 = b ^X2 = c).The reduction of the domains is the calculation of a new basic formulawhich approximates as closely as possible the simpli�ed constraint. Theresult of reducing is D0(X1;X2) �(X1 = a _X1 = b) ^ (X2 = b _X2 = c).For this example there is no basic constraint logically equivalent toC 0(X1;X2).However D0(X1;X2) is the least basic formula implied by C 0(X1;X2) sincethe domain of X1 must include at least a and b, and the domain of X2must include at least b and c.De�nition 2 Propagation is the result of applying a propagation sequence,which is the repeated application of propagation steps on every constraintuntil no more domain reductions are possible.This de�nition does not mention the order in which propagation steps aredone. In fact the result of performing propagation on a set of constraintsis independent of the order. We prove this as follows.Lemma 1 If basic formulae are ordered by logical entailment, propagationsteps are increasing and monotonic on basic formulae.This is easily deduced from the de�nition of a propagation step.6

Lemma 2 Each (ordered) propagation sequence yields a �xpoint.This follows from the fact that there are only �nitely many basic formulaegreater than a given basic formula under the logical entailment ordering,and propagation steps are increasing.Theorem 1 The result of a propagation sequence is independent of theorder of the steps.Suppose fix1 and fix2 were distinct �xpoints of a propagation sequence,resulting from an initial basic formula s0. Since propagation is increasing,fix1 > s0. fix2 results from applying a particular ordered sequence ofpropagations on s0. By monotonicity this same sequence applied to fix1yields a result fix3 > fix2. However since fix1 is a �xpoint of thepropagation sequence, fix3 = fix1. We conclude that fix1 > fix2.Symmetrically we can conclude that fix2 > fix1, and therefore fix1 =fix2.It is also possible to show that propagation can be performed in par-allel, and still yield the same �xpoint. These and other results fall outvery naturally when lattice theory is used to describe the constraints. Thelattice theoretic formalisation of generalised propagation is described inanother paper [LW92].3 Generalised PropagationFor �nite domain propagation, the basic formulae express domains asso-ciated with the problem variables, and the constraint formulae expressmembership of tuples in relations. Each class of formulae has a certainlimited expressive power. However the de�nition of a propagation stepand a propagation sequence do not depend on the particular syntacticclasses chosen for basic formulae or constraint formulae. In this sectionwe will explore the consequences of admitting di�erent classes of formu-lae. We shall propose a notion of generalised propagation parameterisedon the classes of formulae.In the CLP(X) approach a class of basic constraints is identi�ed foreach domain X. Generalised propagation on a domain X is the result ofadmitting the basic constraints on X as basic formulae as described inthe last section. The class of constraint formulae is the class of goalsexpressible in CLP(X).The basic formulae used for �nite domain propagation involve only theequality predicate and no function symbols. For generalised propagationover a domain X the basic formulae may include other predicates, such as< and >, and function symbols such as + and �. However the purposeand e�ects of propagation remain the same. To detect inconsistenciesearly and to extract as much information as possible from a set of goalsdeterministically before making any choices. The information extractedis expressed as a basic formula, which is added to the current constraintset, either yielding inconsistency immediately, or else helping to prune theremaining search. 7

As a simple example of generalised propagation, consider CLP (Q)with atomic constraints V ar � num and V ar � num, where num is anyrational number. Let us de�ne a predicate p on which we shall performgeneralised propagation.p(X) :- X >= 3.4, X =< 4.6p(X) :- X >= 2.8, X =< 3.9Assume the current constraints include X � 4:0, and p(X) is a goal. TheCLP(X) approach requires us to treat user-de�ned predicates such as p ala Prolog. One clause in the de�nition of p is selected, and if that yieldsan inconsistency the other is tried on backtracking.Generalised propagation on the predicate p, treated this time as aconstraint, deterministically derives the tightest basic constraint C(X)satisfying (p(X)^X � 4:0)! C(X), and adds C(X) to its current set ofconstraints. In this case C(X) � (X � 2:8^X � 4:0), which can be usedto prune the remaining search tree.The case of �nite domains can be viewed as an instance, CLP(FD),of the constraint logic programming scheme, where the basic constraintsare the basic formulae as de�ned in section 2.2. Propagation on �nitedomains can now be seen as an instance of generalised propagation, justas CLP(FD) is an instance of CLP(X). Notice that the expressive powerof CLP(FD) is weaker than that of standard logic programming, since itis impossible using domains to state that two variables are equal, untiltheir domains are reduced to one value. This is indeed a weakness ofpropagation over �nite domains, and in the next section we shall presentan implementation of generalised propagation that overcomes it.Unfortunately it is not the case that generalised propagation can beautomatically derived for any computation domain X. There is a practicalrequirement to constructively de�ne a propagation step. Speci�cally, forpropagating on a goal the system requires an e�cient way to extract abasic formula which generalises all the answers to the goal.More fundamentally a theoretical problem arises when we move from�nite domain constraints to arbitrary basic constraints. There are only�nitely many �nite domain constraints tighter than a given constraint.This fact ensures that propagation is bound to reach a �xpoint. Howeverfor many sets of basic constraints, such as inequalities over the rationals asexampled above, there is no similar guarantee of termination. This prob-lem has been addressed by introducing a notion of approximate generalisedpropagation in [LW92].4 Propia: An Implementation of Gener-alised Propagation4.1 An Overview of the ImplementationThe behaviour of generalised propagation in practise has proved to bemore than satisfactory. An implementation of generalised propagation8

has been completed based on ECRC's Sepia prolog system. We call itPropia. The underlying domain is the Herbrand domain of standard logicprogramming. The built-in relation on this domain is '=', and basic con-straints are conjunctions of equalities (or equivalently substitutions).A simple example of generalised propagation over this domain, is prop-agation on the predicate p de�ned as follows:p(g(1),a,b).p(f(a),a,a).p(g(2),b,a).p(f(b),b,b).The result of generalised propagation on the goal p(A,X,X), is the de-terministic addition of a new equation, A = f(X). Although there aretwo di�erent possible values for A, they both have the form f(X), whereX is the same variable occurring as the second and third arguments inthe goal. Using �nite domains (even if structured terms were admitted)it would only be possible to infer that the domain of X was fa; bg andthe domain of A was ff(a); f(b)g, but not that A = f(X). This is theweakness of �nite domain pointed out on page 8 above.Implementationally constraint simpli�cation with respect to this goalamounts to selecting those clauses in the de�nition which unify with thegoal, as done by Prolog. The reduction step, given a set of answers, �ndsthe set of equations which best approximates them. The best approxima-tion is, in fact, their most speci�c generalisation.Computations interleave the making of choices and propagation. Whena propagation sequence terminates, goals are called a la Prolog until a newbinding, or set of bindings, occur thereby conjoining new equations X = Tto the current basic constraint. At this point propagation restarts. Whena �xpoint is reached, the propagation sequence is complete and furthergoals are called a la Prolog.It would be prohibitively expensive to attempt propagation on all theconstraints at each choice. In practise the system determines on whichvariables new equalities have been added and only propagates on con-straints involving those variables. When further equalities are addedduring a propagation sequence, then propagation is also attempted onconstraints involving these variables.The purpose of propagation is to extract as much information as pos-sible deterministically before making any choices. The Andorra principle[War88] has a similar intent: it states that deterministic goals should beexecuted before other goals. The goal p(A;X;X) in the previous exampleis clearly not deterministic, yet deterministic information can be extractedfrom it. Lee Naish coined the term data determinacy for the determinismdetected and used by generalised propagation, as opposed to Andorra'sweaker control determinacy. 9

4.2 An Example of PropagationThe behaviour of generalised propagation in the syntactic equality theorycan be illustrated using a simple example. We shall investigate whatpropagation is possible for various calls on the 'and' predicate de�ned asfollows:and(true,true,true).and(true,false,false).and(false,true,false).and(false,false,false).We treat the goal as a propagation constraint by making the call ?- propagate and(_,_,_).Note that �nite domain variables are not part of our chosen propagationlanguage.For \most speci�c generalisation" we shall use the abbreviation msg.First if the call is fully uninstantiated ?- propagate and(X,Y,Z) the sys-tem �nds the �rst two answers and forms the msg and(true; Y;Z). Afterthe third answer the msg becomes and(X;Y; Z), which is as little instan-tiated as the query, and propagation stops.Second if the call has its �rst argument instantiated to false ?- propagate and(false,Y,Z)there are two answers whose msg is and(false; ; false). Thus the equalityZ = false is returned.Third if the call has its �rst argument instantiated to true ?- propagate and(true,Y,Z)there are again two answers, and(true; false; false) and and(true; true; true).Our generalisation procedure is able to derive the equality of the last twoarguments and the �nal msg is and(true; Y; Y). Thus the equality Y = Zis returned.We note that the behaviour is very similar to that obtained by encodingand using "cut guards" in Andorra, GHC rules, or "demons" in CHIP. Forexample in CHIP we would write:?- demon and/3.and(false,Y,Z) :- Z=false.and(true,Y,Z) :- Z=Y.and(X,false,Z) :- Z=false.and(X,true,Z) :- Z=X.and(X,Y,true) :- X=true, Y = true.and(X,X,Z) :- Z=XThe di�erence is that the use of propagate enables us to separate thespeci�cation of the predicate, from its control. When using guards ordemons we are forced to mix them together. Indeed generalised propaga-tion allows declarative speci�cations to be directly used as constraints!We used Propia for a benchmark set of propositional satis�ability prob-lems distributed by the FAW research institute [MR91]. Its behaviourwas in general quite comparable to that of CHIP's demons or built-inconstraints.Another application we examined was that of crossword puzzle com-pilation. The problem is to �ll up an empty crossword grid using wordsfrom a given (possibly large) lexicon. The propagation constraints enforce10

membership of words in the given lexicon. Intersections are expressedthrough shared variables.The statement of the problem is as follows:/* some lexicon of available words */word(a).word(a,b,a,c,k)....prog :-propagate word(A,B,C,D),/* Note the shared letter B */propagate word(E,F,B,H),...,The program just comprises a set of propagation constraints. (There isno need for a labelling since Propia itself selects a propagation constraintfor resolution when the propagation sequence terminates.) Immediatelycertain letters are instantiated by the original propagation. Subsequently,each time some letters are instantiated after selecting a word goal for res-olution, the a�ected propagation constraints are re-executed in the hopeof instantiating further letters.The crossword compilation problem has also been addressed usingCLP by Van Hentenryck [Van89]. Generalised propagation yields a per-formance improvement of about 15 times on Van Hentenryck's example.However much more signi�cant is the power of generalised propagation forsolving large problems. Van Hentenryck's example uses a lexicon whichcontained precisely the 150 words needed to compile the crossword. Withgeneralised propagation it is possible to compile crosswords from a 25000word lexicon. It is interesting to note that generalised propagation au-tomatically yields a similar algorithm for generating crosswords as thatdeveloped for specialised crossword puzzle generating programs [Ber87].A further way to control the evaluation of the crossword puzzle exam-ple is to divide the word goals into clusters, reecting connected subareasof the crossword grid. A predicate cluster can be de�ned which combinesall the words in a cluster:cluster(A,B,C,D,E,F) :-word(A,B,C),word(A,D,F),word(C,E,F).Generalised propagation can then be applied to the whole cluster:propagate cluster(A,B,C,D,E,F)In general propagation on cluster yields strictly more information thanpropagation on each of the word goals individually. However the amountof computing required to perform the propagation on cluster is also likelyto be greater than propagating on the word goals individually.If propagation is applied to larger subproblems, then we term it more\global". Global propagation is more expensive than local propagationbut the amount of pruning of the search tree that results can be verysigni�cant. 11

4.3 Topological Branch and BoundGeneralised propagation is based on the idea of �nding all answers toa query and eliciting the most speci�c generalisation. However it muchmore e�cient to alternate the �nding of answers and calculating the mostspeci�c generalisation. We call this \topological branch and bound".For example after �nding two words which satisfy a word goal in thecrossword example, the system immediately attempts to \generalise" by�nding common letters within and between words. If there are no commonletters, the propagation process ceases immediately. Only if there arecommon letters does the system now search for a third word. As a result,the system very rarely needs to �nd more than a few answers to any wordgoal during propagation. This is the reason that the program has such anexcellent runtime, even with a dictionary of 25000 words compiling realcrosswords in a minute. It also accounts for Propia's good performanceon the propositional satis�ability benchmarks despite its recalculating atruntime propagation information which in the CHIP program was hardcoded by the programmer using demons.Further optimisations can be applied if the predicate being used forpropagation is de�ned by rules instead of facts. The exploration of a newbranch in the search tree incrementally builds a new set of equalities. If,when exploring a branch, the partial set of equalities becomes larger thanthe current most speci�c generalisation, then the search on this branchcan be stopped. This means that propagation can terminate even whenthe actual search tree is in�nite. For example given the de�nitionp(s(0)).p(s(X)) :- p(X).propagation on p(X) terminates after �nding two solutions yielding theconstraint X = s().5 ConclusionConstraint logic programming systems o�er a range of tools for writingsimple and e�cient programs over various computation domains. Un-fortunately it is not always possible to use di�erent tools together. Forexample classical propagation cannot be used in programs working ondomains such as Prolog III's trees.A second drawback is that the logic of the program, when e�ciencyconsiderations are taken into account, has to be transformed extensively,or parts of it replaced altogether with rules expressed in some reactivelanguage such as demons. The result for non-toy programs is a loss ofclarity and, possibly, e�ciency. If the programmer is not extremely com-petent these problems compound themselves, too often yielding a resultwhich is not only ine�cient but incorrect.Generalised propagation makes a contribution to both problems. Firstlypropagation can be used for arbitrary domains of computation, therebyimproving orthogonality. Secondly the propagation annotations keep the12

control very simple and quite separate from the program logic, therebypreserving clarity and correctness.Current experiments show generalised propagation to be a powerfuland exible tool for expressing control. More global propagation is morecostly but it can bring a drastic reduction of the search tree. Local prop-agation is a cheap solution which is much easier to program and debugthan guarded clauses or demons.We are continuing to investigate the e�ectiveness of generalised prop-agation on a range of applications, studying its practical applicability toother computation domains, and following up the study of its lattice the-oretic basis.6 AcknowledgementsThis work was funded by the Esprit 2 project, no.5291 CHIC. Thanks alsoto Bull, ICL and Siemens for providing a wonderful working environmentat ECRC.References[Ber87] H. Berghel. Crossword compilation with Horn clauses. TheComputer Journal, 30(2):183{188, 1987.[CS90] P. Codognet and T. Sola. Extending the WAM for intelligentbacktracking. In Proc. 8th International Conference on LogicProgramming. MIT Pres, 1990.[Dav87] E. Davis. Constraint propagation with interval labels. Arti�cialIntelligence, 32:281{331, 1987.[DSV90] M. Dincbas, H. Simonis, and P. Van Hentenryck. Solving largecombinatorial problems in logic programming. Journal of LogicProgramming, 8:74{94, 1990.[DVS+88] M. Dincbas, P. Van Hentenryck, H. Simonis, A. Aggoun,T. Graf, and F. Berthier. The constraint logic programminglanguage CHIP. In Proceedings of the International Confer-ence on Fifth Generation Computer Systems (FGCS'88), pages693{702, Tokyo, Japan, November 1988.[GB65] S.W. Golomb and L.D. Baumert. Backtrack programming.Journal of the ACM, 12:516{524, 1965.[HE80] R.M. Haralick and G.L. Elliot. Increasing tree search e�-ciency for constraint satisfaction problems. Arti�cial Intelli-gence, 14:263{314, October 1980.[JL87] J. Ja�ar and J.-L. Lassez. Constraint logic programming. InProceedings of the Fourteenth ACM Symposium on Principlesof Programming Languages (POPL'87), Munich, FRG, Jan-uary 1987. 13

[LW92] T. Le Provost and M. Wallace. Generalised propagation. Tech-nical Report ECRC-92-1, ECRC, Munich, 1992.[Mac77] A.K. Mackworth. Consistency in networks of relations. Arti�-cial Intelligence, 8(1):99{118, 1977.[Mon74] U. Montanari. Networks of constraints : Fundamental prop-erties and applications to picture processing. Information Sci-ence, 7(2):95{132, 1974.[MR91] I. Mitterreiter and F. J. Radermacher. Experiments on therunning time behaviour of some algorithms solving proposi-tional calculus problems. Technical Report Draft, FAW, Ulm,1991.[SS80] G.J. Sussman and G.L. Steele. CONSTRAINTS: A languagefor expressing almost-hierarchical descriptions. Arti�cial Intel-ligence, 14(1):1{39, January 1980.[Van89] P. Van Hentenryck. Constraint Satisfaction in Logic Program-ming. Logic Programming Series. The MIT Press, 1989.[VD86] P. Van Hentenryck and M. Dincbas. Domains in logic pro-gramming. In Proceedings of the Fifth National Conferenceon Arti�cial Intelligence (AAAI'86), Philadelphia, PA, August1986.[War88] D.H.D.Warren. The Andorra Model. Presented at the GigalipsWorkshop, Univ. of Manchester, 1988.[Wol89] D.A. Wolfram. Forward checking and intelligent backtracking.Information Processing Letters, 32(2):85{87, July 1989.
14

