
Generating Benders Cuts for a General Class ofInteger Programming ProblemsYingyi Chu and Quanshi XiaIC-Parc, Imperial College London,London SW7 2AZ, UKfyyc, q.xiag@imperial.ac.ukAbstract. This paper proposes a method of generating valid integerBenders cuts for a general class of integer programming problems. Ageneric valid Benders cut in disjunctive form is presented �rst, as a basisfor the subsequent derivations of simple valid cuts. Under a quali�cationcondition, a simple valid Benders cut in linear form can be identi�ed.A cut generation problem is formulated to elicit it. The simple validBenders cut is further generalized to a minimally relaxed Benders cut,based on which a complete Benders decomposition algorithm is given,and its �nite convergency to optimality is proved. The proposed algo-rithm provides a way of applying the Benders decomposition strategy tosolve integer programs. The computational results show that using theBenders algorithm for integer programs to exploit the problem structurescan reduce the solving time more and more as the problem size increases.1 IntroductionBenders decomposition is a strategy for solving large-scale optimization prob-lems [1]. The variables of the problem are partitioned into two sets: masterproblem variables and subproblem variables. The Benders algorithm iterativelysolves a master problem, which assigns tentative values for the master problemvariables, and a subproblem, obtained by �xing the master problem variables tothe tentative values. In every iteration, the subproblem solution provides certaininformation on the assignment of master problem variables. Such information isexpressed as a Benders cut, cutting o� some assignments that are not accept-able. The Benders cut is then added to the master problem, narrowing down thesearch space of master problem variables and eventually leading to optimality.On one hand, Benders method is employed to exploit the problem structure:the problem is decomposed into a series of independent smaller subproblems,reducing the complexity of solving it [2]. On the other hand, Benders methodopens a dimension for `hybrid algorithms' [3, 4] where the master problem andthe subproblems can be solved with di�erent methods.The generation of Benders cuts is the core of Benders decomposition algo-rithm. Indeed, valid Benders cuts guarantee the convergence of the iterations tothe optimal solution of the original problem, and also the cuts determine howfast the algorithm converges.



The classic Benders decomposition algorithm [5] was proposed for linear pro-gramming problems, the cut generation of which is based on the strong dualityproperty of linear programming [2]. Geo�rion has extended it to a larger classof mathematical programming problems [6].For integer programming, however, it is di�cult to generate valid integerBenders cut, due to the duality gap of integer programming in subproblems.One possible way is to use the no-good cut to exclude only the current tentativeassignment of master problem variables that is unacceptable. Such no-good Ben-ders cuts will result in an enumerative search and thus a slow convergence. Forsome speci�c problems, better Benders cuts can be obtained [7]. For example, inthe machine scheduling application, the cut that limits the incompatible jobs inthe same machine is generally stronger. For more general integer programming,logic-based Benders decomposition [8] was proposed to generate valid integerBenders cuts, but these cuts contain a large number of disjunctions [9], thelinearization of which leads to huge cuts with many auxiliary variables, compli-cating the master problem signi�cantly.This paper proposes a new method of generating valid Benders cuts for a classof integer programs, in which the objective function only contains the masterproblem variables.As a foundation of our derivation, a generic valid integer Benders cut is�rstly presented. However it is di�cult to use due to its exponential size andnonlinearity. Instead, we can pick only one linear inequality from the disjunctionof the generic cut, while preserving the validity. A quali�cation condition is thengiven, with which such a simple valid cut can be identi�ed. A cut generationproblem is formulated to determine the simple linear valid cut.However, such an integer Benders cut is not always available. The minimallyrelaxed cut is then proposed as a generalization of it, obtainable in all cases. Thesimple integer Benders cut is just a special case of the minimally relaxed cut with`zero' relaxation. Based on this, a complete Benders decomposition algorithm ispresented, and its �nite convergency to optimality is proved.The paper is organized as follows. Section 2 introduces the integer programsunder consideration and the principle of the Benders decomposition algorithm.Section 3 derives the integer Benders cut. Section 4 generalizes to the minimallyrelaxed integer Benders cut. Section 5 presents the complete Benders decompo-sition algorithm that could be used in practice. Section 6 gives computationalresults. Section 7 concludes the paper. The appendix gives the proofs of all thelemmas.2 Preliminaries2.1 Integer ProgramsThe programs we consider in the paper are written as the following form (Suchprograms arise from our study on a path generation application in network tra�cengineering [10]):



P : maxy;x cTys:t: 8<:Dy � d;Ay +Bx � b;y 2 f0; 1gm;x 2 f0; 1gn :The problem variables are partitioned into two vectors y (master problem vari-ables) and x (subproblem variables), and the objective function only containsthe master problem variables.By the use of Benders decomposition, the problem P is decomposed intothe master problem (MP ) that solves only the y variables and the subproblem(SP 0(�y)) that solves only the x variables, by �xing the y variables to the masterproblem solution, denoted by �y.MP : maxy cTys:t: 8<:Dy � d;Benders cuts;y 2 f0; 1gm; SP 0(�y) : maxx 0s:t: �Bx � b�A�y;x 2 f0; 1gn;where the Benders cuts in MP are gradually added during the iterations. Notethat the subproblem is a feasibility problem with a dummy objective.2.2 Principle of Benders Decomposition AlgorithmThe Benders decomposition algorithm iteratively solves the master problem andthe subproblem. In each iteration k, the master problem (MP (k)) sets a tenta-tive value for the master problem variables (�y(k)), with which the subproblem(SP 0(�y(k))) is formed and solved. Using the subproblem solution, a valid Ben-ders cut over the y variables is constructed and added to the master problem inthe next iteration (MP (k+1)). The Benders cut added in every iteration cuts o�some infeasible assignments, thus the search space for the y variables is graduallynarrowed down as the algorithm proceeds, leading to optimality.Algorithm 1. Benders Decomposition Algorithm1. Initialization. Construct the initial master problem MP (0) without any Ben-ders cut. Set k = 0.2. Iteration.(a) Solve MP (k). If it is feasible, obtain the optimal solution �y(k) and theoptimal objective �(k)MP . Otherwise, the original problem is infeasible; set�(k)MP = �1 and go to exit.(b) Construct the subproblem SP 0(�y(k)). If the subproblem is feasible, thenoptimality is found; obtain the optimal solution �x(k), and go to exit.(c) Cut Generation Procedure. Generate a valid integer Benders cut and addit to the master problem to construct MP (k+1). Set k = k + 1 and goback to step 2.



3. Exit. Return the current �(k)MP as the optimal objective. If �(k)MP = �1 thenthe problem P is infeasible. If not, return the current (�y(k); �x(k)) as theoptimal solution of problem P .The Cut Generation Procedure 2(c) is not speci�ed. This is the key step forthe algorithm, which must be selected carefully so that the algorithm eventuallyconverges to the optimality of the original problem in �nite iterations.2.3 Always Feasible SubproblemThe subproblem SP 0(�y) can be reformulated to an equivalent one that is alwaysfeasible: SP (�y) : minx;r 1Trs:t: �Bx � r � b�A�y;x 2 f0; 1gn; r � 0;which simply introduces slack variables r to the constraints of SP 0(�y). Obvi-ously, SP 0(�y) is feasible i� SP (�y) has 0 optimal value. In the Algorithm 1, oncethe objective of SP (�y) equals 0 during iteration, the algorithm terminates (atstep 2(b)), and the optimal solution is found.Dual values are very useful in the cut generation for linear programming. Forinteger programming, however, we need to introduce the �xed subproblems andtheir duals. A �xed subproblem is constructed from any feasible assignment ~xof subproblem SP (�y). It just constrains the x variables to be equal to a givenfeasible ~x. SPf (�y; ~x) : minx;r 1Trs:t: 8<:Bx � r � b�A�y;x = ~x;x:free; r � 0 : (1)The dual of �xed subproblem SPf (�y; ~x) is:DSPf (�y; ~x) : maxu;v (A�y � b)Tu + ~xTvs:t: 8<:�BTu + v = 0;u � 1;v:free;u � 0 : (2)The optimal solution ofDSPf (�y; ~x) depends on the value of ~x (while the feasibleregion of it does not). Let (~u; ~v) denote the corresponding optimal solution ofDSPf (�y; ~x). Since any value ~x 2 f0; 1gn is feasible for SP (�y) (2n possiblecombinations), there are N = 2n possible �xed subproblems, each with its dual.Given ~x, the �xed subproblem SPf (�y; ~x) is itself a linear program. Therefore,strong duality holds for SPf (�y; ~x) and DSPf (�y; ~x). Furthermore, if ~x� is anoptimal solution of SP (�y), then SP (�y), SPf (�y; ~x�) and DSPf (�y; ~x�) have thesame optimal value.



Relations between the optimal primal and dual solutions of SPf (�y; ~x) andDSPf (�y; ~x) can be established via the complementary condition, that is, theKarush-Kuhn-Tucker (KKT) [2] constraints:�ui(�Bx + r �A�y + b)i = 0 8i;ri(u� 1)i = 0 8i; (3)together with the primal and dual constraints, (1) and (2).Consider the complementary condition constraints. First, with the equationx = ~x of (1) and the equation �BTu + v = 0 of (2), variables x and v can bereplaced by ~x and BTu. Secondly, the equation ri(u�1)i = 0 of (3) means thatri = riui. Putting this into the equation ui(�Bx + r � A�y + b)i = 0 of (3),we get ui(�B~x)i+ri = ui(A�y�b)i. The complementary condition constraintscan then be simpli�ed to:8>><>>:B~x � r � b�A�y;ui(�B~x)i + ri = ui(A�y � b)i 8i;ri(u� 1)i = 0 8i;r � 0;0 � u � 1 :Finally, we can show the redundancy of ri(u � 1)i = 0 in the following lemma(Note that the proofs of all the lemmas are given in the appendix):Lemma 1. The constraint ri(u � 1)i = 0 is redundant in the presence of theconstraints: 8<:B~x � r � b�A�y;ui(�B~x)i + ri = ui(A�y � b)i 8i;r � 0;0 � u � 1 : (4)Thus, the complementary condition constraints are �nally simpli�ed to (4).3 Integer Benders Cut Generation3.1 Generic Valid Integer Benders CutIn general, the Benders cut is a logic expression over the y variables, generatedusing the information from the subproblem solution. The valid Benders cut mustguarantee that Algorithm 1 �nitely converges to the optimal solution. We de�nethe valid Benders cut for integer programming.De�nition 1. In a certain iteration of the Benders algorithm, a valid Benderscut is a logic expression over the master problem variables y that satis�es:Condition 1. if the current master problem solution �y is infeasible, then the cutmust exclude at least �y;Condition 2. any feasible assignment of y variables must satisfy the cut.



Condition 1 guarantees �nite convergence since y has a �nite domain. Condition2 guarantees optimality since the cut never cuts o� feasible solutions.Lemma 2. If a valid Benders cut is generated in every iteration (at step 2(c)),then Algorithm 1 �nitely converges to the optimality of the original program P .Using the solutions of all N �xed subproblems (denoted by SPf (�y; ~xi), 8i =1; � � � ; N ), a generic integer Benders cut can be obtained as the disjunction of Nlinear inequalities: (Ay � b)T ~u1 + (~x1)T ~v1 � 0_ (Ay � b)T ~u2 + (~x2)T ~v2 � 0� � � � � � (5)_ (Ay � b)T ~uN + (~xN )T ~vN � 0;where f~x1; � � � ; ~xNg are the list of all the possible ~x values (i.e. an enumerationof f0; 1gn). For each ~xi, (~ui; ~vi) are the corresponding optimal dual solutionsfrom DSPf (�y; ~xi).Similar to the Benders cut for linear programming, each linear inequality inthe disjunction follows the expression of the objective function of DSPf (�y; ~x).However, for integer programming, where a duality gap exists, we use a largenumber of dual �xed subproblem solutions, instead of a single dual subproblemsolution for linear programming where no duality gap exists.Lemma 3. The generic integer Benders cut (5) is a valid cut.The generic cut (5) is valid, but it has a nonlinear (disjunctive) form andintrinsically contains all possible ~x combinations. Although it has theoreticalvalue, it is di�cult to use it directly in practical algorithms.3.2 Integer Benders CutUnder certain conditions, one of the linear inequalities from the disjunction (5)can still be a valid cut. In such cases the valid integer Benders cut becomesa simple linear inequality and the nonlinear disjunction disappears. We givethe following su�cient condition under which such a simple valid cut can beidenti�ed:Theorem 1. If there exists a solution ~x 2 f~x1; � � � ; ~xNg such that ~x and thecorresponding dual ~v satisfy~xT ~v � xT ~v 8 x 2 f~x1; � � � ; ~xNg; (6)then the linear inequality (Ay � b)T ~u+ ~xT ~v � 0 (7)is a valid integer Benders cut.



Proof. (for the valid cut condition 1) If �y is infeasible for the subproblem,then SP (�y) has positive objective value. Thus, any possible SPf (�y;x) (x 2f~x1; � � � ; ~xNg) has a positive objective value, and so do all DSPf (�y;x). There-fore, all linear inequalities in (5) are violated by �y. In particular, (Ay� b)T ~u+~xT ~v � 0 is violated by �y, that is, the cut (7) excludes the infeasible �y.(for the valid cut condition 2) Let ŷ be any feasible solution. There must exista corresponding (x̂; û; v̂) such that SPf (ŷ; x̂) and DSPf (ŷ; x̂) has 0 objectivevalue as (Aŷ� b)T û+ x̂T v̂ = 0. Since the feasible region of all DSPf (y;x) areidentical and independent of the values of y and x, the values of (~u; ~v) which arethe optimal solution for DSPf (�y; ~x) are also a feasible solution for DSPf (ŷ; x̂).Therefore, (Aŷ � b)T ~u+ x̂T ~v � (Aŷ � b)T û + x̂T v̂ = 0 :From the condition (6), we have ~xT ~v � x̂T ~v. Therefore,(Aŷ � b)T ~u+ ~xT ~v � (Aŷ � b)T ~u+ x̂T ~v � 0;which means that the feasible ŷ is not cut o� by (7). utIf one can �nd an ~x such that the condition (6) holds, then the single lin-ear inequality from the disjunction (5) that corresponds to ~x is a valid integerBenders cut by itself. However, the condition (6) involves not only the selected~x, but also all other possible assignments of x, making it di�cult to express (6)as a simple constraint. But the su�cient condition (6) can be converted to anequivalent sign condition.Lemma 4. Inequalities (6) are satis�ed i� the following holds:~xi = 1 =) ~vi � 0;~xi = 0 =) ~vi � 0; 8i = 1; � � � ; n : (8)The above sign condition can be enforced as the constraints:� ~xi~vi � 0 8i;(1 � ~x)i~vi � 0 8i : (9)Unlike the condition (6), the sign condition (9) only involves the selected ~x itselfand the corresponding ~v.3.3 Integer Benders Cut GenerationThe integer Benders cut generation problem is to �nd a ~x such that the signcondition (9) is satis�ed. We formulate a Cut Generation Program (CGP ) toelicit it.The sign condition relates ~x, an assignment that determines SPf (�y; ~x), and~v, the optimal dual solution from DSPf (�y; ~x). The constraints between them



are established by (4). Therefore, the program CGP is composed of constraints(4), the sign condition (9) and a dummy objective function.CGP (�y) : min~x;r;u 0s:t: 8>>>><>>>>:B~x � r � b�A�y;ui(�B~x)i + ri = ui(A�y � b)i 8i;~xi(BTu)i � 0 8i;(1� ~x)i(BTu)i � 0 8i;~x 2 f0; 1gn; r � 0;0 � u � 1 : (10)Note that in CGP ~x (together with r, u) is a variable. The CGP solves for avalue for ~x, which, together with the dual values, satis�es the sign condition. Ifsuch a solution is found, a corresponding Benders cut is immediately obtainedas (7).Because ~xi 2 f0; 1g, all the bilinear terms ~xiuj in the CGP can be linearizedby introducing the variables wij = ~xiuj as:�wij � ~xi; wij � uj ;wij � ~xi + uj � 1; wij � 0; 8 i; j :Thus, CGP can be in practice solved with MIP solvers such as XPRESS [12].Note that the CGP is not necessarily feasible due to the enforcement of theadditional sign condition constraints (9), and hence the integer Benders cut (7)is not always available in each iteration. Therefore, we need to generalize the cutin order to give a complete Benders decomposition Algorithm 1.4 Relaxed Integer Benders Cut4.1 RelaxationWhen the sign condition (8) does not hold, one cannot directly use an inequalityfrom (5) as the valid cut. However, we can still select one inequality but relax itto some extent so that the sign condition is satis�ed. This provides a generalizedway of constructing a valid Benders cut.In fact, any inequality from the disjunction (5):(Ay � b)T ~u+ ~xT ~v � 0 (11)can be relaxed by inverting the ~x values for those elements that violate the signcondition (8) as follows:~x0i = � ~xi if (6) is satis�ed for the ith element;1� ~xi otherwise:In such way ~x0 and ~v satisfy the sign condition, and the relaxed cut is given by:(Ay � b)T ~u + (~x0)T ~v � 0 : (12)



Lemma 5. The relaxed cut (12) satis�es the valid cut condition 2, and therelaxation gap from (11) to (12) is Pni=1(~x � ~x0)i~vi � 0.Note that (12) does not necessarily satisfy the valid cut condition 1, that is,it may not cut o� the infeasible �y in the current iteration due to the relaxation.In this case, however, it can be easily remedied by adding a no-good cut thatexcludes only one point (the infeasible �y):mXj=1 �yj(1� yj) + mXj=1(1� �yj)yj � 1 : (13)4.2 Relaxed Cut GenerationSince any inequality from the disjunction (5) can produce a relaxed cut, one caneven avoid solving the CGP during iterations. Only the subproblem SP (�y) issolved to �nd a solution ~x, and DSPf (�y; ~x) is solved to �nd the duals ~u and ~v.Then a relaxed cut (12), derived from this ~x, can be generated. To ensure thatthe valid cut condition 1 is met, the value of �y is checked against the relaxed cut(12). If it does violate (12), then (12) itself is a valid Benders cut that satis�esvalid cut condition 1 and 2. If not, the conjunction of (12) and (13) constitutesa valid Benders cut.The advantage of such a way of cut generation is its simplicity, since no CGPis involved. The disadvantage is that the selection of the inequality to be relaxedis rather arbitrary, and the generated cut can be loose. In particular, cut (7),which is a tight cut that needs no relaxation, may exist but not be found.Therefore it is desirable to �nd a minimally relaxed cut, that is, its corre-sponding relaxation gap (as is given in Lemma 5) is made as small as possible,and thus the cut is as tight as possible. This is indeed a generalization of thevalid Benders cut (7), which is just the special case when the minimumrelaxationneeded is zero.The minimally relaxed cut can be generated by solving a Relaxed Cut Gen-eration Program CGPr, constructed by introducing slack variables (p, q) to thesign condition constraints of CGP .CGPr(�y) : min~x;r;u;p;q 1Tp+ 1T qs:t: 8>>>>>><>>>>>>:B~x� r � b�A�y;ui(�B~x)i + ri = ui(A�y � b)i 8i;~xi(BTu)i � pi � 0 8i;(1� ~x)i(BTu)i + qi � 0 8i;~x 2 f0; 1gn; r � 0;0 � u � 1;p; q � 0 : (14)As the program CGP , after simple linearization this program is solvable inpractice with MIP solvers.



Lemma 6. If the optimal solution of CGPr is (~x; ~u; ~v), and the optimal objec-tive value is �CGPr , then: �CGPr = nXi=1(~x � ~x0)i~vi :Since the right hand side of the above equation is just the relaxation gap andit is minimized, the derived cut (12) is a minimally relaxed cut. In particular, ifthe optimal objective value of CGPr is 0, then all the sign condition constraintsare satis�ed, and no relaxation is necessary. In this case the minimally relaxedcut is reduced to the basic valid Benders cut (7).In practice, the CGPr(�y) is solved in every iteration (provided the algorithmdoes not terminate from step 2(a) or 2(b) before the cut generation). Its optimalsolution gives a minimally relaxed cut as (12). According to Lemma 5, cut (12)satis�es the valid cut condition 2. If the optimal value is greater than 0, then thecurrent (infeasible) assignment of master problem variables �y is checked againstthe cut. If the cut is violated, then (12) by itself satis�es both the valid cutconditions. If not, the conjunction of (12) and the no-good cut (13) constitutesa valid Benders cut.5 Complete AlgorithmBased on the proposed integer Benders cut, the unspeci�ed cut generation step2(c) in Algorithm 1 can now be given as:Procedure 1. Cut Generation Procedure (step 2(c) of Algorithm 1)Construct the cut generation program CGPr(�y(k)). Solve it to obtain the optimalsolution (~x(k); ~u(k); ~v(k)) and its optimal objective value �(k)CGPr . Generate theminimally relaxed cut:(Ay � b)T ~u(k) + (~x0)(k)T~v(k) � 0 :There are three cases:A. if �(k)CGPr = 0, then ~x0(k) = ~x(k), the above cut is reduced to (7), which is thevalid Benders cut.B. if �(k)CGPr > 0 and the current �y(k) violates the above cut, then this cut is thevalid Benders cut by itself.C. if �(k)CGPr > 0 and the current �y(k) satis�es the above cut, then this cut, inconjunction with the no-good cut (13), is the valid Benders cut.Add the generated Benders cut to the master problem to construct MP (k+1). Setk = k + 1 and go back to step 2 of Algorithm 1.Replacing step 2(c) of Algorithm1 with the above procedure, we have a completeBenders decomposition algorithm.



Theorem 2. The Benders Decomposition Algorithm 1, with its step 2(c) in-stantiated by the Cut Generation Procedure 1, terminates in �nite steps andreturns the optimal solution of the original program P .The proof is trivial according to Lemma 2, since in all the three cases the cutbeing generated satis�es the valid cut condition 1 and 2.6 Computational ExperimentsThis section presents computational results of using Benders decomposition withthe proposed integer cuts in integer programming problems. The algorithm isimplemented using the ECLiPSe [11] platform. The test problems have borderedblock structure in their coe�cient matrices, so that the Benders algorithm candecompose the subproblem. The coe�cients are generated randomly, and 20cases are computed for each problem size con�guration. The minimally relaxedcut derived from the CGPr (14) of Sect. 4.2 is used in the tests.Table 1. Computational Results using Minimally Relaxed CutSPV MPV #Iteravr max #NG(avr) Sol.Timeavr max MP%(avr) SP%(avr) CGP%(avr) MIP.Time(avr) #WIN300 100 10.40 14 0 84.50 132.06 5.1 3.6 91.3 785.07 7/20300 150 11.55 16 0 104.04 187.39 16.2 3.4 80.4 109.84 6/20300 200 12.40 20 0 136.11 260.56 27.1 2.9 70.0 176.20 13/20300 250 13.30 25 0 195.67 562.64 46.9 2.1 51.0 318.35 12/20400 100 12.10 18 0 152.03 245.67 3.4 3.9 92.7 1343.05 13/20400 150 15.20 28 0.05 229.08 566.93 12.2 3.7 84.1 1697.62 17/20400 200 14.50 21 0 215.85 434.22 19.4 3.5 77.1 889.04 19/20400 250 18.05 30 0 371.47 851.96 35.1 2.8 62.1 3655.31 20/20500 100 15.05 23 0.05 302.98 546.46 2.6 4.0 93.4 6482.65 20/20500 150 18.20 36 0.10 409.43 873.56 7.9 3.8 88.3 8673.01 20/20500 200 19.15 39 0.05 483.66 1441.65 15.3 3.4 81.3 8595.30 20/20500 250 21.40 43 0.10 643.67 1929.80 30.7 3.0 66.3 10059.28 20/20Table 1 summarizes the computational results for di�erent problem sizes.The number of constraints is �xed to 300 and the number of blocks in thesubproblem matrix is �xed to 10. Thus, the subproblem is decomposed into 10smaller independent problems, each of which can generate a Benders cut in everyiteration. We vary the number of master problem variables (MPV) and that ofsubproblem variables (SPV). For each problem size con�guration, the averageand maximum number of iterations (#Iter: avr, max) of the 20 test instances,and the average number of no-good cuts that have to be added (#NG) arerecorded. Also the average and maximum solving time (Sol.Time: avr, max) ofthe 20 test instances, and the average percentages of solving time spent in thesolution of master problem, subproblem and relaxed cut generation program



(MP%, SP%, CGP%), are recorded. All the solving times are in seconds. Forcomparison purpose, every problem is also directly solved with MIP solver. Thelast two columns summarize the average MIP solving time (MIP.Time), and inhow many cases (out of the total 20 cases) the Benders algorithm outperformsthe directly solving (#WIN). The external solver used in both the decompositionalgorithm and the direct solving is XPRESS 14.21 [12].Table 1 shows that as the problem size increases, the number of iterationsand the solving time both increase. But throughout the test instances, no-goodcuts being added are rare, which means that the generated cuts are usuallytight enough to exclude the infeasible assignment in each iteration. It is alsonotable that a signi�cant portion of the total solving time is spent in solving therelaxed cut generation program. However, in spite of the time spent in the cutgeneration, the Benders algorithm still wins over directly solving the problemin more cases when the problem size becomes larger. This shows the bene�tsof using Benders decomposition for integer programs to exploit the problemstructures, that is, a problem is decomposed into a master problem and a seriesof smaller independent subproblems, reducing the complexity of solving it.We observed that the decomposition algorithm is especially better for thehard instances. For those problems that take long time by direct solving, theBenders decomposition with integer cuts usually achieves high speedup in termsof solving time. Table 2 shows the comparison. Five hardest instances (in termsof direct MIP solving time) for each �xed subproblem size are recorded.Table 2. Solving Time Comparison for Hard InstancesSPV MPV #Iter Sol.Time MIP.Time300 100 12 94.62 14181.90300 250 17 270.74 1403.68300 250 25 562.64 901.83300 250 14 201.25 833.31300 200 15 171.69 624.48400 250 28 697.45 >20000.00400 150 17 299.12 14577.89400 100 17 235.38 11086.83400 250 12 195.52 10335.30400 250 30 851.96 7061.50500 250 24 803.22 >20000.00500 100 18 372.73 >20000.00500 150 14 297.14 >20000.00500 200 30 834.20 >20000.00500 250 28 924.56 >20000.00We also observed that, for all the test instances that take more than 200seconds by directly solving, the decomposition algorithm invariably consumesless solving time than the direct solving.



7 ConclusionsThis paper studied the generation of valid Benders cuts for a general class ofinteger programming problems. The valid Benders cuts in the form of linearinequalities were derived, based on which a complete Benders algorithm waspresented. The (relaxed) cut generation program was proposed to determine thevalid cuts in practice. In theoretical aspect, the paper extended the applicationscope of Benders decomposition method to integer programming problems. Incomputational experiments, the results showed the bene�ts of using Bendersalgorithm with the proposed cut for integer programs.The master problem discussed in the paper need not be restricted to linearinteger programs. In fact, it can be any formulation and can be solved withany proper algorithm (such as Constraint Programming). More speci�cally, thelinear objective function in problem P (i.e. cTy) can be replaced with a generalfunction f(y). The �rst constraint in P (i.e. Dy � d) can be replaced witha general constraint C(y) (even need not be arithmetic). Since the generalizedobjective and constraint are only handled in the master problem, they do nota�ect the theory and method proposed in the paper. Furthermore, the secondconstraint of P can be generalized to h(y) + Bx � b, that is, the part thatrelates to the master problem variables can be any function on y (i.e. h(y)),in place of the linear one, Ay. Accordingly, all the occurrences of Ay in thederivations are changed to h(y), and the derivations remain valid. As the masterproblem is generalized as above, di�erent modelling and solution methods couldbe combined via the method of Benders decomposition to cooperatively solve agiven optimization problem.References1. Flippo, O.E., Rinnoy Can, A.H.G.: Decomposition in General Mathematical Pro-gramming. Math. Programming. 60 (1993) 361{3822. Lasdon, L.S.: Optimization Theory for Large Systems. MacMillan, New York.(1970)3. Schimpf, J., Wallace, M.: Finding the Right Hybrid Algorithm: A CombinatorialMeta-Problem. Annals of Mathematics and Arti�cial Intelligence. 34 (2002) 259{2694. Eremin, A., Wallace, M.: Hybrid Benders Decomposition Algorithms in ConstraintLogic Programming. In T. Walsh, editor, Principles and Practice of ConstraintProgramming - CP 2001, Springer. (2001) 1{155. Benders, J.F.: Partitioning Procedures for Solving Mixed-Variables ProgrammingProblems. Numerische Mathematik. 4 (1962) 238{2526. Geo�rion, A.M.: Generalised Benders Decomposition. Journal of OptimizationTheory and Application. 10 (1972) 237{2607. Jain, V., Grossmann, I.E.: Algorithms for Hybrid MILP/CP Models for a Class ofOptimisation Problems. INFORMS Journal on Computing. 13 (2001) 258{2768. Hooker, J.N., Ottosson, G.: Logic-Based Benders Decomposition. Math. Program-ming. 96 (2003) 33{60



9. Eremin, A.: Using Dual Values to Integrate Row and Column Generation intoConstraint Logic Programming. PhD Thesis. Imperial College London. (2003)10. Xia, Q., Simonis, H., Chu, Y.: Generating Primary/Secondary Path by Benders De-composition Technique. IC-Parc Internal report, Imperial College London. (2003)11. Imperial College London: ECLiPSe 5.6 User's Manual. (2003)12. Dash Inc: Dash XPRESS 14.21 User's Manual. (2003)Appendix: Proofs of LemmasLemma 1:Proof. It su�ces to show that any feasible solution of (4) automatically satis�esri(u� 1)i = 0. Suppose x̂; r̂; û constitute a feasible solution of (4).The �rst constraint of (4) impliesr̂i � (A�y +Bx̂ � b)i : (15)The second constraint of (4) impliesr̂i = ûi(A�y +Bx̂ � b)i : (16)Consider two cases on the non-negative value of r̂i.Case 1: r̂i = 0. Then the constraint ri(u� 1)i = 0 is trivially satis�ed.Case 2: r̂i > 0. Then we have ûi = 1 (otherwise, 0 � ûi < 1. Then from (16)0 < r̂i = ûi(A�y +Bx̂ � b)i < (A�y +Bx̂ � b)i, which contradicts (15)). Sinceûi = 1, the constraint ri(u � 1)i = 0 is again satis�ed. utLemma 2:Proof. In every iteration, if �y(k) is feasible then the algorithm terminates fromstep 2(b). Otherwise a valid cut is added. Due to the valid cut condition 1, thefeasible space of MP (k+1) must be smaller than that of MP (k), at least reducedby one point. Since the feasible space of master problem is �nite domain, thealgorithm terminates �nitely. Due to the valid cut condition 2, the feasible spaceofMP (k) is always a relaxation of that of the original programP . If the algorithmterminates from 2(a), then MP (k) is infeasible, and so is the original programP . If the algorithm terminates from step 2(b), the current optimal solution ofMP (k) is proved to be feasible for the subproblem and thus feasible for P . SinceMP (k) is a relaxation of P , this solution is optimal for P . utLemma 3:Proof. For the valid cut condition 1, if �y is infeasible for the subproblem, thenSP (�y) has positive objective value. Thus any possible SPf (�y;x) has positiveobjective value, and so do all DSPf (�y;x). Therefore all inequalities in cut (5)are violated, that is, cut (5) excludes �y. For the valid cut condition 2, considerany feasible ŷ. There must exist one value x̂ such that SPf (ŷ; x̂) has 0 objectivevalue, and so do its dual DSPf (ŷ; x̂), that is, (Aŷ�b)T û+ x̂T v̂ = 0 is satis�ed,which means the disjunctive cut (5) does not cut o� the feasible ŷ. ut



Lemma 4:Proof. For necessity, we show that if (8) is violated, then (6) must be violated.Suppose the ith element ~xi = 1 and ~vi > 0 (The case where the second conditionof (8) is violated can be proved similarly). Then ~xi~vi > 0. Consider anotherassignment x, with the ith element xi = 0 and with all other elements the sameas ~x. It is easy to see that ~xT ~v > x~v, which means that (6) is violated.For su�ciency, we suppose (8) is satis�ed for every element. Then the in-equality ~xi~vi � b~vi holds no matter b is 0 or 1. Therefore, for every element ofany x 2 f0; 1gn, we have ~xi~vi � xi~vi, which implies that (6) holds. utLemma 5:Proof. We �rst prove that the relaxed cut satis�es the valid cut condition 2.Following the same reasoning as the proof of Theorem 1, we have:(Aŷ � b)T ~u+ x̂T ~v � (Aŷ � b)T û + x̂T v̂ = 0 :According to the construction of relaxed cut, we have ~x0i~vi � b~vi for any binaryvalue b 2 f0; 1g. In particular, ~x0i~vi � x̂i~vi; 8i. Therefore,(Aŷ � b)T ~u + ~x0T ~v � (Aŷ � b)T ~u + x̂T ~v � 0;which means that the feasible ŷ is not cut o� by (12).The relaxation gap is directly obtained by subtracting the left hand sideof (12) from that of (11). Because ~x0i~vi � x̂i~vi, the relaxation gap Pni=1(~x �~x0)i~vi � 0. utLemma 6:Proof. Consider the program CGPr. Since v = BTu, the constraint ~xi(BTu)i�pi � 0 in (14) becomes ~xivi � pi, and (1 � ~x)i(BTu)i + qi � 0 becomes�(1� ~x)ivi � qi.For each element ~xi and its corresponding ~vi, there are three cases.Case 1: ~xi and ~vi satisfy the sign condition. Then the optimal slack variable p�iand q�i are 0, and ~xi = ~x0i. Therefore, p�i + q�i = (~x� ~x0)i~vi = 0.Case 2: ~xi and ~vi violates the sign condition as ~xi~vi > 0, which implies that~xi = 1 and ~vi > 0. The optimal slack variable p�i = ~vi > 0, and q�i equals 0.Since the sign condition is violated, the value of ~xi will be changed from 1 to 0(~x0i = 0) to construct the relaxed cut, and thus (~x� ~x0)i~vi equals ~vi. Therefore,p�i + q�i = (~x� ~x0)i~vi > 0.Case 3: ~xi and ~vi violates the sign condition as (1 � ~xi)~vi < 0, which impliesthat ~xi = 0 and ~vi < 0. The optimal slack variable q�i = �~vi > 0, and p�i equals0. Since the sign condition is violated, the value of ~xi will be changed from 0to 1 (~x0i = 1) to construct the relaxed cut, and thus (~x � ~x0)i~vi equals �~vi.Therefore, p�i + q�i = (~x � ~x0)i~vi > 0.In all cases the equation p�i + q�i = (~x � ~x0)i~vi � 0 holds. Therefore,�CGPr = nXi=1(p�i + q�i ) = nXi=1(~x � ~x0)i~vi � 0 : ut


