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t. When a major road traÆ
 interse
tion is blo
ked, vehi
lesshould be diverted from the in
oming roads in su
h a way as to avoidthe roads on the diversions from also be
oming over-
ongested. Assumingdi�erent diversions may use partly the same roads, the 
hallenge is tosatisfy the following traÆ
 
ow 
onstraint: ensure that even in the worst
ase s
enario, the diversions 
an a

ommodate the same volume of traÆ
as the blo
ked interse
tion.The number of diversions in
reases quadrati
ally with the number ofroads at the interse
tion. Moreover any road may be used by any subsetof the diversions - thus the number of worst 
ases 
an grow exponentiallywith the number of diversions.This paper investigates two di�erent approa
hes to the problem, de-s
ribes their implementation on the hybrid MIP/CP software platformECLiPSe, and presents ben
hmark results on a set of test 
ases.1 Introdu
tionCities are be
oming more 
ongested, but lu
kily road management te
hnology -sensing, signs, lights et
. - is improving dramati
ally. We now have the oppor-tunity to apply planning and optimisation te
hniques to road management toredu
e 
ongestion and optimise journey times.The problem of diversions ta
kled in this paper is an arti�
ial one, in thatsome of the assumptions do not hold on the ground. However the problem ap-pears in the 
ontext of a larger system for traÆ
 management, and its solutionis in pra
ti
al use today.The problem fo
uses on planning diversions to get around a blo
ked jun
tionor inter
hange, where a number of routes meet ea
h other. Assuming no infor-mation about the destinations of vehi
les on the road, the aim is to ensure thatevery in
oming route is linked to every outgoing route by a diversion.However the requirement is also to ensure that whatever traÆ
 might havebeen 
owing through the jun
tion, the diversion routes are suÆ
iently major to
ope with them. For the purposes of this problem, we ignore any traÆ
 thathappens to be using the diversion roads for other journeys, that would not havepassed through the blo
ked jun
tion.The problem is s
ienti�
ally interesting be
ause, until all the diversions havebeen spe
i�ed, it is not possible to tell what is the maximum possible traÆ
 
owthat 
ould be generated along any given road on a diversion.



Let us illustrate this with an example: The jun
tion j has three in
oming
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tionroads, from a, b and 
 and three outgoing, to d, e and f. Ea
h road has a grade,whi
h determines the amount of traÆ
 it 
an 
arry. These amounts are 5 for ajand jd, 10 for bj and je and 20 for 
j and jf .The diversion 
f from 
 to f 
learly needs to be able to 
arry a traÆ
 quantityof 20. Assume that this diversion shares a road kl with the diversion bf fromb to f. The total traÆ
 on both diversions, in the worst 
ase, is still only 20be
ause the diverted routes both used the road jf , whi
h has a 
apa
ity of 20.However if the diversion 
e from 
 to e also uses the road kl, then in theworst 
ase the traÆ
 over kl goes up to 30. This 
ase arises when there is a 
owof 10 from b to j, a 
ow of 20 from 
 to j, a 
ow of 10 from j to e, and another
ow of 20 from j to f. This means that there may potentially be end-to-end 
owsof 10 from b to f, from 
 to e and from 
 to f.The total number of diversions that must be set up in this 
ase is 9, a diver-sion from ea
h in
oming origin to ea
h outgoing destination. In general, then,the number of diversions grows quadrati
ally in the size of the jun
tion. More-over any subset of these diversions may interse
t, so the number of worst 
ases
enarios to be 
al
ulated is potentially exponential in the number of diversions!The �nal aspe
t of the problem is to �nd a
tual routes for all the diversions,whi
h satisfy all the worst 
ase s
enarios. Given all the above possibilities, agenerate and test approa
h may need to explore a huge number of routes.In this paper we present several approa
hes to solving the problem. The �rstis a global integer/linear model, whi
h 
an solve smaller problem instan
es butgrows in memory usage and exe
ution time for larger problem instan
es whi
hlimits its s
alability. The next three are in
reasingly sophisti
ated versions of aproblem de
omposition. The eÆ
ient handling of the master and subproblems,and addition of new rows to the master problem are supported by the ECLiPSe
onstraint programming system. The most sophisti
ated model solves all theben
hmark problem instan
es with less than 50 iterations.



2 Problem ModelThe road network is broken down into jun
tions, and road segments 
onne
tingthem. Ea
h diversion is mapped to a path from the origin to the destination,avoiding the blo
ked jun
tion. To model the blo
k, we simply drop the jun
tionand its 
onne
ted roads from the network.The 
hallenge is to model the 
apa
ity 
onstraints on ea
h road segment inea
h path in the network. For ea
h road segment, the sum of the traÆ
 
owson all the routes whose diversions pass through that road segment must bea

ommodated. The road segment is over-
ongested if, in the worst 
ase, thissum ex
eeds the 
apa
ity of the road segment.In this paper we shall write 
onstants in lower 
ase (e.g. e, edge), we shall writevariables starting with an upper 
ase letter (e.g. Q, Quantity), variable arrays aresubs
ripted (e.g. with a single subs
ript, Qe, or with multiple subs
ripts Qfe),we shall write fun
tions using bra
kets (e.g. dest(f)). We use bold identi�ers todenote sets (e.g. E). For example, to say that edge e belongs to the set of edgesE, we write e 2 E. Set-valued variables and fun
tions are also written in boldfont.We formalism the problem in terms of a network, with edges representingroad segments, and nodes representing jun
tions.The network 
omprises a set of edges, E and a set of nodes, N. Ea
h edgee 2 E has a 
apa
ity 
ap(e). Allowing for one-way traÆ
, we asso
iate a dire
tionwith ea
h edge (two way roads are therefore represented by two edges, one inea
h dire
tion). The edge from origin o into the jun
tion has 
apa
ity o
ap(o)and the edge leaving the jun
tion and entering the destination d has 
apa
ityd
ap(d).For ea
h node n there is a set of edges IN(n) entering n and a set of edgesOUT(n) leaving n.The set of traÆ
 
ows to be diverted is F. Ea
h 
ow f 2 F has an originorig(f), a destination dest(f) and a maximum 
ow quantity quan(f).quan(f) is limited by the size of the roads of the diverted 
ow, into thejun
tion from the origin and out from the jun
tion to the destination. Thus,quan(f) = minfo
ap(orig(f)); d
ap(dest(f))g.The diversion for the 
ow f is a path DIVf joining its origin orig(f) to itsdestination dest(f). (Assuming no 
y
les, we model the path as a set of edges,thus DIVf is a set-valued variable.)The awkward 
onstraints are the 
apa
ity 
onstraints. For this purpose weeli
it the worst 
ase for ea
h edge, using an optimisation fun
tion.Consider the total 
ow diverted through an edge e: for ea
h 
ow f there isa non-negative 
ow quantity Qfe � quan(f) diverted through e. For all 
ows fthat are not diverted through the edge e this quantity is 0, while for all 
owsin the set of 
ows diverted through an edge e, Fe = ff : e 2 DIVfg, there is anon-negative 
ow quantity.The total diverted 
owDQe through the edge e is thereforeDQe =Pf2Fe Qfe.Clearly it must be within the edge 
apa
ity: 
ap(e) � DQe.



The maximum total diverted 
ow through an edge is in general less thanthe sum of the maxima, quan(f) of all the individual 
ows. Indeed the maxi-mum quantity of the sum of all the 
ows whi
h have the same origin o is 
on-strained by o
ap(o) � Pf :orig(f)=oQfe. Similarly for destination d: d
ap(d) �Pf :dest(f)=dQfe.The worst 
ase for 
apa
ity 
onstraint on edge e is when DQe is maximized,by 
hanging the 
ows through the original jun
tion. The resulting 
onstraint is
ap(e) � maxQfePf2Fe Qfe.3 Formulation as a MIP ProblemFor the MIP model binary (0=1) variables Xfe and 
ontinuous variables Qfe areintrodu
ed. For ea
h 
ow f and edge e, Xfe = 1 if and only if 
ow f is divertedthrough edge e. Thus, DIVf = fe : Xfe = 1gThe problem is to 
hoose diversions (by setting the values of the variablesXfe) su
h that all the worst 
ase 
apa
ity 
onstraints are satis�ed. We introdu
ean optimisation expression: minXfePf2FPe2EXfe, whi
h pre
ludes 
y
les inany diversion sin
e optimisation would set the 
ow through any 
y
le to zeroand minimizes the total diversion path length.minXfe Xf2FXe2EXfe
st:
8>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>:
8f 2 F : 8>>>>>><>>>>>>:8n 2 N n forig(f); dest(f)g : Xe2IN(n)Xfe = Xe2OUT(n)Xfen = orig(f) : Xe2OUT(n)Xfe = 1n = dest(f) : Xe2IN(n)Xfe = 18e 2 E : 
ap(e) �8>>>>>><>>>>>>:maxQfe Xf2FXfe �Qfest: 8>><>>:8o 2 orig(F) : o
ap(o) � Xf :orig(f)=oQfe8d 2 dest(F) : d
ap(d) � Xf :dest(f)=dQfeXfe 2 f0; 1g; quan(f) � Qfe � 0

(1)
The embedded optimisation for ea
h edge e 
an be linearized by using theKarush-Kuhn-Tu
ker 
ondition [1℄. First we dualise it, introdu
ing dual variablesDoe and Dde
ap(e) �8>><>>: minDoe;Dde Xo2orig(F) o
ap(o) �Doe + Xd2dest(F) d
ap(d) �Ddest: �8f 2 F; o = orig(f); d = dest(f) : Doe +Dde � XfeDoe 2 f0; 1g; Dde 2 f0; 1g (2)Note that the upper bounds on the variablesQfe are impli
it from the origin anddestination 
onstraints and variable non-negativity; in forming the dual problem



we have dropped these redundant bounds. Further sin
e the 
oeÆ
ients of thevariables Doe, Dde in the 
ost fun
tion to be minimized in the dual are stri
tlypositive and the variables non-negative an upper bound of 1 
an be dedu
edfor the value of all dual variables in any dual optimal solution, and thus in anyfeasible solution to the original problem, from the dual 
onstraints and the upperbounds of Xfe. Moreover sin
e the 
onstraints of (2) are totally unimodular anybasi
 feasible solution and hen
e any basi
 optimal feasible solution is integral,and Doe, Dde redu
e to binary variables.We introdu
e sla
k variables SQoe and SQde for the 
onstraints in the primal,and dual sla
k variables SDfe in the dual. We 
an now repla
e the embeddedmaximization problem for ea
h edge e by the following 
onstraints:8>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>:

ap(e) �Xf2FQfe8o 2 orig(F) : o
ap(o) = Xf :orig(f)=oQfe + SQoe8d 2 dest(F) : d
ap(d) = Xf :dest(f)=dQfe + SQde8f 2 F; o = orig(f); d = dest(f) : Doe +Dde � SDfe = Xfe8f 2 F : Qfe � SDfe = 08o 2 orig(F) : SQoe �Doe = 08d 2 dest(F) : SQde �Dde = 0) 
omplementarityXfe 2 f0; 1g; Doe 2 f0; 1g; Dde 2 f0; 1g; SDfe 2 f0; 1gquan(f) � Qfe � 0; o
ap(o) � SQoe � 0; d
ap(d) � SQde � 0

(3)
Sin
e Doe; Dde; SDfe are binary (0/1) variables, the 
omplementarity 
on-straints 
an be linearized to obtain the mixed integer linear programming modelwhi
h 
an be solved by MIP solvers:minXfe Xf2FXe2EXfe
st:
8>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

8f 2 F : 8>>>>>><>>>>>>:8n 2 N n forig(f); dest(f)g : Xe2IN(n)Xfe = Xe2OUT(n)Xfen = orig(f) : Xe2OUT(n)Xfe = 1n = dest(f) : Xe2IN(n)Xfe = 1
8e 2 E : 8>>>>>>>>>>>>><>>>>>>>>>>>>>:


ap(e) �Xf2FQfe8o 2 orig(F) : o
ap(o) = Xf :orig(f)=oQfe + SQoe8d 2 dest(F) : d
ap(d) = Xf :dest(f)=dQfe + SQde8f 2 F; o = orig(f); d = dest(f) : Doe +Dde � SDfe = Xfe8f 2 F : quan(f)(1� SDfe)�Qfe � 08o 2 orig(F) : o
ap(o)(1�Doe)� SQoe � 08d 2 dest(F) : d
ap(d)(1�Dde)� SQde � 0Xfe 2 f0; 1g; Doe 2 f0; 1g; Dde 2 f0; 1g; SDfe 2 f0; 1gquan(f) � Qfe � 0; o
ap(o) � SQoe � 0; d
ap(d) � SQde � 0
(4)



The resulting performan
e is summarized in Table 1 under the 
olumn ofMIP.4 Formalization Using De
ompositionMost real resour
e optimisation problems involve di�erent kinds of 
onstraints,whi
h are best handled by di�erent kinds of algorithms. Our traÆ
 diversionsproblem 
an be de
omposed into parts whi
h are best handled by di�erent 
on-straint solvers.Both di�erent problem de
ompositions and the use of di�erent solvers forthe resulting 
omponents were tried on this problem. For reasons of spa
e, wepresent just one de
omposition, into a master problem and a set of (similar)subproblems. The master problem is a pure integer linear programming whi
h isbest handled by a MIP solver. The subproblems are very simple linear programsand well-suited to a linear solver, although they 
ould equally be solved by CPas in [2, 3℄. In our approa
h, CP provides the modelling language and the gluewhi
h enables the solvers to 
ommuni
ate, though not the solvers themselves.4.1 Informal Des
ription of the De
ompositionThe original problem (1) 
an be treated instead by de
omposing it into a multi-
ommodity 
ow master problem, and a maximization subproblem for ea
h edgein the network.The master problem simply assigns a path to ea
h 
ow. Initially these pathsare independent. However as a result of solving the subproblems new 
onstraintsare, later, added to the master problem whi
h pre
lude 
ertain 
ombinations of
ows from being routed through the same edge.Ea
h subproblem takes as an input the path assigned to ea
h 
ow by thelatest solution of the master problem. If the edge asso
iated with the subproblemis e, the relevant 
ows Fe are those whose paths are routed through edge e. Thesubproblem then maximizes the sum of the 
ows in Fe. If this maximum sumex
eeds the 
apa
ity of the edge, then a new 
onstraint is 
reated and passedba
k to the master problem pre
luding any assignment whi
h routes all the 
owsin Fe through the edge e. Although the 
uts added to the master problem areformed di�erently the prin
iple behind this approa
h is 
losely related to thatof 
lassi
 Benders de
omposition [4℄ or its logi
-based extension [5℄.4.2 Model Spe
i�
ationThe formalization of this de
omposed model uses the same binary variables Xfeas the MIP model. Ea
h time the master problem is solved it assigns values (0or 1) to all these binary variables. For the assignment to Xfe returned by thesolution of the kth master problem, we write xkfe.The subproblems in the 
urrent model are linear maximization problemsof the kind that typi
ally o

urs in produ
tion planning, whi
h use the same
ontinuous variables Qfe as the original problem formulation in Se
tion 2 above.



A

ordingly the kth subproblem asso
iated with edge e is simply:maxQfe Xf2Fxkfe �Qfest: 8>>>><>>>>:8o 2 orig(F) : o
ap(o) � Xf :orig(f)=oQfe8d 2 dest(F) : d
ap(d) � Xf :dest(f)=dQfequan(f) � Qfe � 0 (5)The solution to the kth subproblem asso
iated with edge e, is a set of 
owquantities, whi
h we 
an write as qkfe for ea
h 
ow f .Suppose the subproblem asso
iated with edge e indeed returns a maximumsum of 
ows whi
h ex
eeds 
ap(e), i.e. Pf2F qkfe > 
ap(e). Then the 
onstraintpassed to the (k + 1)th master problem from this subproblem isXf2Fxkfe � (1�Xfe) � 1 (6)This 
onstraint ensures that at least one of the 
ows previously routed throughedge e will no longer be routed through e. Therefore, it simply rules out theprevious assignment and those assignments with previous assignment as thesubset [2℄.The kth master problem has the form:minXfe Xf2FXe2EXfe
st: 8>>>>>>>>>>>><>>>>>>>>>>>>:

8f 2 F : 8>>>>>><>>>>>>:8n 2 N n forig(f); dest(f)g : Xe2IN(n)Xfe = Xe2OUT(n)Xfen = orig(f) : Xe2OUT(n)Xfe = 1n = dest(f) : Xe2IN(n)Xfe = 1for 
ertain edges e and iterations j < k : Xf2Fxjfe � (1�Xfe) � 1Xfe 2 f0; 1g
(7)

This model 
an be solved by 
ompleting a bran
h and bound sear
h at everyiteration of the master problem, in order to return the shortest feasible paths,satisfying all the 
uts returned from earlier subproblems. If only feasible, ratherthan shortest, diversions are required, optimality of the master problem solutionis not ne
essary, and the master problem solution 
an be stopped as soon as aninteger feasible solution is found. However, the path 
onstraints, as they stand,admit non-optimal solutions in whi
h there might be 
y
li
 sub-paths in (or evendisjoint from) the path. Whilst it is not in
orre
t to admit su
h irrelevant 
y
li
sub-paths, in fa
t su
h 
y
les 
an easily be eliminated by a pre-pro
essing stepbetween master and subproblem solution sin
e the path produ
ed by removing




y
les from a feasible solution to the kth master problem remains feasible. Su
h apre-pro
essing step would make the diversion problem be solved more eÆ
iently.After the 
urrent master problem returns a feasible solution, it is then 
he
kedby running one or more subproblems, asso
iated with di�erent edges. Naturally ifnone of the subproblems produ
ed a maximum 
ow whi
h ex
eeded the 
apa
ityof its edge, then the master problem solution is indeed a solution to the originaldiversion problem. In this 
ase the algorithm su

eeds. If, on the other hand,after a 
ertain number of iterations, the master problem has no feasible solutionthen the original diversion problem is unsatis�able. There is no way of assigningdiversions to 
ows that have the 
apa
ity to 
ope with the worst 
ase situation.The experimental evaluation of this algorithm is given in Table 1 under the
olumn of D(naive).5 An Enhan
ed De
ompositionUnder 
ertain 
ir
umstan
es the previous de
omposition leads to a very largenumber of iterations of the master problem, with many 
uts added during theiterations. The result is that the master problem be
omes bigger and more dif-�
ult to solve. Moreover, the master problem has to be solved by bran
h andbound sear
h at ea
h of a large number of iterations. This has a major impa
ton run times, as shown in 
olumn D(naive) of the experiments in Table 1.5.1 Generating Fewer CutsA 
ut that only removes the previous assignment is easy to add, but typi
allynot very strong: a di�erent 
ut has to be added for ea
h assignment that is ruledout. This may require a very large number of 
uts. Instead, for the diversionproblem, one 
ould redu
e the number of 
uts by 
onsidering the 
ow quantitiesof the diverted 
ows whose diversion is routed by the kth master problem solutionthrough the relevant edge.Now instead of posting the 
ut (6) whi
h simply rules out the previous as-signment of diversions to edge e, we 
an expli
itly use the 
ow quantities andreturn the 
onstraint Xf2F qkfe �Xfe � 
ap(e) (8)Using this set of 
uts, the kth master problem then has the form:minXfe Xf2FXe2EXfe
st: 8>>>>>>>>>>>><>>>>>>>>>>>>:

8f 2 F : 8>>>>>><>>>>>>:8n 2 N n forig(f); dest(f)g : Xe2IN(n)Xfe = Xe2OUT(n)Xfen = orig(f) : Xe2OUT(n)Xfe = 1n = dest(f) : Xe2IN(n)Xfe = 1for 
ertain edges e and iterations j < k : Xf2F qjfe �Xfe � 
ap(e)Xfe 2 f0; 1g
(9)



The resulting performan
e is summarized in Table 1 under the 
olumn of D(0).5.2 Generating Tighter CutsThe optimisation fun
tion in (5) gives zero weight to any 
ows f =2 Fe, for whi
hxkfe = 0. For any optimal subproblem solution with qkfe > 0 for some f =2 Fethere exists an equivalent optimal solution with qkfe = 0. Thus the 
ow quantitiesqkfe (8 f =2 Fe) in optimal solutions to the subproblem may be zero rather thannon-zero. The 
ut (8) thus may only 
onstrain variables Xfe for whi
h xkfe = 1.Instead, for the diversion problem, one 
ould redu
e the number of 
uts by
onsidering the 
ow quantities of all the diverted 
ows, not just the ones whosediversion is routed by the kth master problem solution through the relevant edge.To extra
t the tightest 
ut from this subproblem, we therefore 
hange theoptimisation fun
tion so as to �rst optimise the 
ow through the relevant edge,and then, for any other 
ows whi
h are still free to be non-zero, to maximizethose 
ows too. This is a
hieved by simply adding a small multiplier � to theother 
ows in the optimisation fun
tion:maxQfe Xf2F(xkfe + �) �Qfest: 8>>>><>>>>:8o 2 orig(F) : o
ap(o) � Xf :orig(f)=oQfe8d 2 dest(F) : d
ap(d) � Xf :dest(f)=dQfequan(f) � Qfe � 0 (10)Now all the variables Qfe will take their maximum possible values (denoted as~qkfe), ensuring that (8) expresses as tight a 
ut as possible.Xf2F ~qkfe �Xfe � 
ap(e) (11)This 
ut not only 
onstrains variablesXfe for whi
h xkfe = 1, but also 
onstrainsthe value of Xfe for other 
ows f whi
h may not have used this edge in the kthsubproblem.A

ordingly the kth master problem then has the form:minXfe Xf2FXe2EXfe
st: 8>>>>>>>>>>>><>>>>>>>>>>>>:

8f 2 F : 8>>>>>><>>>>>>:8n 2 N n forig(f); dest(f)g : Xe2IN(n)Xfe = Xe2OUT(n)Xfen = orig(f) : Xe2OUT(n)Xfe = 1n = dest(f) : Xe2IN(n)Xfe = 1for 
ertain edges e and iterations j < k : Xf2F ~qjfe �Xfe � 
ap(e)Xfe 2 f0; 1g
(12)



The experimental results on the enhan
ed de
omposition model are given inTable 1 under the 
olumn of D(�), where � = 1:0e�5.5.3 Comparison of Cuts TightnessThe 3 di�erent 
ut generation formulations, (6),(8) and (11) have been presented.The tightness for these 
uts, generated by di�erent 
ut formulations are di�erenttoo. For simple example, supposed that the assignment to Xfe returned by thesolution of the kth master problem as[xk1e; xk2e; xk3e; xk4e; xk5e℄ = [1; 1; 1; 0; 0℄The 
ow quantities Qfe returned by the kth subproblem (5) solution as[qk1e; qk2e; qk3e; qk4e; qk5e℄ = [50; 75; 75; 50; 0℄and one returned by the solution of the kth subproblem (10) as[~qk1e; ~qk2e; ~qk3e; ~qk4e; ~qk5e℄ = [50; 75; 75; 50; 75℄Noti
e that qk4e 
an also take 0 as optimal subproblem (5) solution be
ausexk4e = 0.By using of the 
ut generation formulation (6) we will obtain a 
utX1e +X2e +X3e � 2and the 
ut generated by the 
ut formulation (8) is50 �X1e + 75 �X2e + 75 �X3e + 50 �X4e � 100and the 
ut formulation (11) generated a 
ut of50 �X1e + 75 �X2e + 75 �X3e + 50 �X4e + 75 �X5e � 100It is trivial to show that these 
uts are getting tighter and tighter!6 ImplementationThe problem was solved using the ECLiPSe 
onstraint programming platform [6℄.ECLiPSe provides interfa
es both to CPLEX [7℄ and to Xpress-MP [8℄ for solvingMIP problems. The 
urrent appli
ation 
omprises either a single MIP problemfor the model presented in Se
tion 3 or for the de
omposed models presented inSe
tions 4{5 an MIP master problem and, in prin
iple, LP subproblems for ea
hedge in the network.The MIP master problem and LP subproblems were run as separate externalsolver instan
es using the ECLiPSe fa
ility to set up multiple external solvermatri
es. ECLiPSe enables di�erent instan
es to be modi�ed and solved at will.However the implementation does not run - or even set up - subproblems asso-
iated with edges whi
h do not lie on any path returned by the master problemsin
e the 
apa
ity 
onstraints on these edges 
annot, of 
ourse, be ex
eeded.



In the implementation we may 
hoose how many 
uts to return to the masterproblem after ea
h iteration. One extreme is to run the subproblems individuallyand stop as soon as a new 
ut has been eli
ited while the other is to run allsubproblems. These 
hoi
es will respe
tively result in only one 
ut or all possible
uts being added to the master problem at ea
h iteration. The additional 
utswill tend to result in fewer iterations at the 
ost of more time spent per iterationon subproblem solution.Preliminary experiments showed that it was substantially more eÆ
ient ingeneral to run all the subproblems and add all the 
uts at every iteration. Thisresult is unsurprising for the 
urrent appli
ation sin
e the 
ost of solving themaster problem far outweighs that for ea
h subproblem. The subproblems forea
h edge are LPs involving jFj variables and jorig(F)j+ jdest(F)j 
onstraints,and are solved very qui
kly. The master problem however is a pure integer prob-lem involving jFj�jEj variables and jFj�jNj 
onstraints plus any 
uts added sofar. The initial master problem 
onstraints are totally unimodular. As 
uts areadded in further iterations the unimodularity of the master problem is destroyedrequiring solution by bran
h-and-bound sear
h.The ECLiPSe interfa
e enables the user to solve a single problem instan
eusing di�erent optimisation fun
tions. In the 
urrent appli
ation, the subproblemasso
iated with ea
h edge and ea
h iteration has the same 
onstraints. Thedi�eren
e lies only in the optimisation fun
tion. Therefore, only one subproblemneeds to be set up when the algorithm is initialized: our implementation uses thesame problem instan
e for ea
h subproblem, simply running it with a di�erentoptimisation fun
tion for ea
h edge.A

ordingly, in our ECLiPSe implementation, the de
omposition model wasset up using two di�erent problem instan
es, one for the master problem andone for all the subproblems. In the following ECLiPSe 
ode, these instan
es arenamed master and sub. First we 
reate the master problem and the subproblemtemplate::- eplex_instan
e(master). %1:- eplex_instan
e(sub). %2diversions(Xfe_Array) :- %3% Multi
ommodity flow 
onstraints written here %4master:eplex_solver_setup(min(sum(Xfe_Array))), %5% Subproblem 
onstraints written here %6sub:eplex_solver_setup(max(sum(Qfe_Array))), %7iterate(Xfe_Array, Qfe_Array). %8At lines 1 and 2 a master and subproblem solver instan
e are de
lared. They willlater be �lled with linear (and integer) 
onstraints. Line 3 names the pro
edurethat the user 
an invoke to solve the problem.



The problem 
onstraints are entered next. These 
onstraints are problem-instan
e-spe
i�
. Typi
ally they are automati
ally generated from a data �leholding the details of the network.Line 5 sets up the master problem, reading in the 
onstraints added previ-ously, and posting a default optimisation fun
tion (minimize the total numberof edges used in all the diversions).The problem-instan
e-spe
i�
 edge 
apa
ity 
onstraints are now entered.Then the subproblem is set up at line 7, again with a default optimisationfun
tion. Finally at line 8 the iteration pro
edure is invoked.We now write down the 
ode whi
h 
ontrols the iteration.iterate(Xfe_Array, Qfe_Array) :- %9master:eplex_solve(Cost), %10master:eplex_get(typed_solution,Xfe_Values), %11% Find 'Edges' used in paths %12( forea
h(E,Edges), %13% Colle
t violated 
apa
ity 
onstraints into 'CutList' %14do %15% Build optimisation expression 'Expr' %16sub:eplex_probe(max(Expr),SubCost), %17( SubCost > 
ap(E) -> % Create 
ut %18)),( forea
h(Cut, CutList) %19do %20master:Cut % Add 
ut %21),% If CutList is empty, su

eed, otherwise iterate again %22At ea
h iteration, the program solves the master problem (line 10), extra
ts thesolution (values of all the Xfe variables), (line 11), �nds whi
h edges are ondiversions (
ode not given) and then builds, for ea
h edge (line 13), an optimisa-tion fun
tion expression for the subproblem (
ode not given). The subproblemis solved (line 17), and if the maximal solution ex
eeds the 
apa
ity of the edge(line 18), a 
onstraint is 
reated.As a result of solving the subproblem for ea
h edge, a set of 
onstraints are
olle
ted. Ea
h 
onstraint (line 19) is then added to the master problem (line21).If no 
onstraints were 
olle
ted (line 22), this means that no edge had its
apa
ity ex
eeded, even in the worst 
ase. Consequently the iteration terminates.If any 
onstraints were added to the master problem, however, the iteration isrepeated, with the newly tightened master problem.The ECLiPSe language and implementation makes this de
omposition veryeasy to state and to solve. ECLiPSe also supports many other solvers and hy-bridisation te
hniques. A des
ription of the ECLiPSe Benders De
ompositionlibrary, for example, is available in [9℄.



Table 1. The Experimental Evaluation ResultNetwork Flows Obj MIP D(naive) D(0) D(�)(Nodes,Edges) 
pu (Vars, Cstrs) 
pu (MP) 
pu (MP) 
pu (MP)a (38, 172) 40 116 12.45 (25k,20k) 1.83 (1) 1.38 (1) 2.12 (3)54 132 18.77 (33k,26k) 4.05 (8) 3.38 (5) 3.52 (5)b (38, 178) 54 132 18.90 (35k,27k) 4.27 (8) 3.39 (4) 3.85 (5)
 (38, 256) 140 328 108.97 (122k,91k) 16.07 (8) 13.63 (5) 14.15 (5)126 226 TO (198k,146k) 710.47 (129) 35.77 (14) 29.08 (18)d (50, 464) 152 318 TO (236k,173k) 10060.64 (757) 48.16 (12) 72.56 (17)178 410 TO (274k,200k) TO 517.60 (29) 783.94 (40)286 546 TO (435k,317k) TO 459.61 (50) 99.98 (17)e (50, 464) 350 714 TO (528k,383k) TO 339.16 (21) 314.58 (19)418 890 TO (626k,453k) TO 4033.98 (64) 2404.82 (43)f (208, 676) 28 Fail TO (73k,60k) 2673.38 (130) 79.66 (16) 76.63 (15)28 256 TO (73k,60k) 13350.71 (186) 252.44 (23) 706.21 (44)g (208, 698) 28 76 257.64 (75k,62k) 20.83 (1) 20.90 (1) 20.76 (1)h (208, 952) 44 108 361.84 (156k,123k) 50.79 (1) 50.69 (1) 52.87 (3)i (208, 1186) 774 Fail OOM (2910k,2153k) 2635.59 (22) 702.59 (3) 748.17 (3)88 Fail 27.55 (223k,177k) 28.59 (1) 28.28 (1) 28.39 (1)j (212, 734) 104 Fail 33.06 (261k,207k) TO 58.49 (4) 56.73 (3)106 338 TO (266k,210k) TO 4602.80 (31) 7317.42 (40)154 Fail TO (380k,300k) TO 95.33 (5) 82.70 (2)142 Fail 71.22 (729k,565k) 185.76 (6) 139.47 (1) 140.31 (1)k (365, 1526) 154 Fail OOM (784k,606k) TO 293.98 (4) 292.20 (3)178 422 OOM (900k,694k) 46930.15 (1572) 310.90 (12) 314.11 (12)� = 1:0e�5
pu = se
onds on Intel(R) Pentium(R) 4 CPU 2.00GHzMP = number of iterationsOOM = Out of memory on Intel(R) Pentium(R) 4 with 1 Gig of main memoryTO = Timed out after 72000 se
ondsFail = Problem Unsatis�able7 Results and Dis
ussionECLiPSe implementations of the models des
ribed in Se
tions 3{5 were runon a number of test instan
es on road networks of di�ering sizes, the smallestinvolving 38 jun
tions and 172 road segments and the largest 365 jun
tions and1526 road segments. Our data is industrial and 
annot be published in detail.For ea
h road network the 
hoi
e of blo
ked jun
tions with di�erent in- and out-degrees results in problem instan
es having di�erent numbers of 
ows to divert.For ea
h test instan
e the �rst 3 
olumns of Table 1 show ea
h exampleroad network with the number of nodes (jun
tions) and edges (road segments),the number of 
ows to reroute and optimal obje
tive value (or Fail if no feasiblesolution exists). The remaining 4 
olumns show solution time for the four modelswith additionally the total number of variables and number of 
onstraints in



the original MIP model and the number of master problem iterations for thede
omposed models.While there is some variation in the diÆ
ulty of individual instan
es for thedi�erent methods, the de
omposed models outperform the MIP by at least anorder of magnitude on average. It is striking how poorly MIP s
ales for thisproblem: while the MIP is able to solve only 9 of the instan
es within reasonablelimits on exe
ution time and memory usage, even the initial naive de
ompositionsolves all but 8 instan
es within these limits, and the improved de
omposedmodels solve all instan
es within a relatively small number of master problemiterations and relatively short time periods.MIP fo
uses on integer in
onsisten
ies whi
h do not ne
essarily 
orrelate
losely with the real 
auses of in
onsisten
y (i.e. over
ow on an edge). CP enablesus to solve a problem relaxation with whatever s
alable solver is available (e.g.LP, or in the 
urrent master problem, MIP), and then to sele
t the in
onsisten-
ies/bottlene
ks at the problem level rather than at the en
oded linear/integerlevel. This yields a mu
h more problem-fo
used sear
h heuristi
.This is re
e
ted in the results obtained: all instan
es solvable by the MIPapproa
h required only a few master problem iterations in the de
omposed ap-proa
h. In parti
ular the 3 infeasible instan
es in data sets j and k for whi
hMIP outperforms the de
omposed approa
h are very over-
onstrained. Conse-quently they require little sear
h in the MIP and few iterations in the de
om-posed models to prove infeasibility. Similarly the 6 feasible instan
es in data setsa, b, 
, g and h are relatively loosely 
onstrained and easily soluble by all meth-ods. Even here however the 
ombination of smaller 
omponent problem size andmore problem-fo
used sear
h in the de
omposed approa
h yield order of magni-tude improvements. Conversely the remaining instan
es whi
h are neither veryloosely 
onstrained nor very over-
onstrained are very diÆ
ult for both the MIPapproa
h and the naive de
omposition due to the looseness of the 
uts provided,but mu
h more amenable to solution by the problem-fo
used tight 
uts of theimproved de
omposition approa
hes.Although this may suggest that MIP may be preferable for problems display-ing 
ertain 
hara
teristi
s, it is pre
isely those problems whi
h are feasible buttightly 
onstrained or infeasible but only slightly over-
onstrained that are mostinteresting in pra
ti
e.8 Con
lusionThe diversion problem is very awkward in that the 
onstraints involve a sub-sidiary optimisation fun
tion. The problem 
an be expressed as a single MIP,using the KKT 
ondition to transform the embedded optimisation fun
tion intoa set of 
onstraints. Nevertheless the resulting MIP problem is very large ands
ales poorly.A mu
h better approa
h is presented by use of the de
omposition strategy.In parti
ular, tight 
uts are 
reated to improve the eÆ
ien
y and s
alability. The



experimental evaluation shows that de
omposition 
an solve mu
h larger s
aleproblem instan
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