Problem Decomposition for Traffic Diversions

Quanshi Xia!, Andrew Eremin', and Mark Wallace?

1 1C-Parc, Imperial College London, London SW7 2AZ, UK
{q.xia, a.eremin}@imperial.ac.uk
2 School of Business Systems, Monash University, Clayton, Vic 3800, Australia
mark.wallace@infotech.monash.edu.au

Abstract. When a major road traffic intersection is blocked, vehicles
should be diverted from the incoming roads in such a way as to avoid
the roads on the diversions from also becoming over-congested. Assuming
different diversions may use partly the same roads, the challenge is to
satisfy the following traffic flow constraint: ensure that even in the worst
case scenario, the diversions can accommodate the same volume of traffic
as the blocked intersection.

The number of diversions increases quadratically with the number of
roads at the intersection. Moreover any road may be used by any subset
of the diversions - thus the number of worst cases can grow exponentially
with the number of diversions.

This paper investigates two different approaches to the problem, de-
scribes their implementation on the hybrid MIP/CP software platform
ECL'PS®, and presents benchmark results on a set of test cases.

1 Introduction

Cities are becoming more congested, but luckily road management technology -
sensing, signs, lights etc. - is improving dramatically. We now have the oppor-
tunity to apply planning and optimisation techniques to road management to
reduce congestion and optimise journey times.

The problem of diversions tackled in this paper is an artificial one, in that
some of the assumptions do not hold on the ground. However the problem ap-
pears in the context of a larger system for traffic management, and its solution
is in practical use today.

The problem focuses on planning diversions to get around a blocked junction
or interchange, where a number of routes meet each other. Assuming no infor-
mation about the destinations of vehicles on the road, the aim is to ensure that
every incoming route is linked to every outgoing route by a diversion.

However the requirement is also to ensure that whatever traffic might have
been flowing through the junction, the diversion routes are sufficiently major to
cope with them. For the purposes of this problem, we ignore any traffic that
happens to be using the diversion roads for other journeys, that would not have
passed through the blocked junction.

The problem is scientifically interesting because, until all the diversions have
been specified, it is not possible to tell what is the maximum possible traffic flow
that could be generated along any given road on a diversion.

Let us illustrate this with an example: The junction j has three incoming

bf

Fig. 1. A Simple Junction

roads, from a, b and ¢ and three outgoing, to d, e and f. Each road has a grade,
which determines the amount of traffic it can carry. These amounts are 5 for aj
and jd, 10 for bj and je and 20 for ¢j and j f.

The diversion cf from c to f clearly needs to be able to carry a traffic quantity
of 20. Assume that this diversion shares a road kl with the diversion bf from
b to f. The total traffic on both diversions, in the worst case, is still only 20
because the diverted routes both used the road jf, which has a capacity of 20.

However if the diversion ce from c to e also uses the road kl, then in the
worst case the traffic over kl goes up to 30. This case arises when there is a flow
of 10 from b to j, a flow of 20 from c to j, a flow of 10 from j to e, and another
flow of 20 from j to f. This means that there may potentially be end-to-end flows
of 10 from b to f, from ¢ to e and from c to f.

The total number of diversions that must be set up in this case is 9, a diver-
sion from each incoming origin to each outgoing destination. In general, then,
the number of diversions grows quadratically in the size of the junction. More-
over any subset of these diversions may intersect, so the number of worst case
scenarios to be calculated is potentially exponential in the number of diversions!

The final aspect of the problem is to find actual routes for all the diversions,
which satisfy all the worst case scenarios. Given all the above possibilities, a
generate and test approach may need to explore a huge number of routes.

In this paper we present several approaches to solving the problem. The first
is a global integer/linear model, which can solve smaller problem instances but
grows in memory usage and execution time for larger problem instances which
limits its scalability. The next three are increasingly sophisticated versions of a
problem decomposition. The efficient handling of the master and subproblems,
and addition of new rows to the master problem are supported by the ECL!PS®
constraint programming system. The most sophisticated model solves all the
benchmark problem instances with less than 50 iterations.

2 Problem Model

The road network is broken down into junctions, and road segments connecting
them. Each diversion is mapped to a path from the origin to the destination,
avoiding the blocked junction. To model the block, we simply drop the junction
and its connected roads from the network.

The challenge is to model the capacity constraints on each road segment in
each path in the network. For each road segment, the sum of the traffic flows
on all the routes whose diversions pass through that road segment must be
accommodated. The road segment is over-congested if, in the worst case, this
sum exceeds the capacity of the road segment.

In this paper we shall write constants in lower case (e.g. e, edge), we shall write
variables starting with an upper case letter (e.g. Q, Quantity), variable arrays are
subscripted (e.g. with a single subscript, Q., or with multiple subscripts Qre),
we shall write functions using brackets (e.g. dest (f)). We use bold identifiers to
denote sets (e.g. E). For example, to say that edge e belongs to the set of edges
E, we write e € E. Set-valued variables and functions are also written in bold
font.

We formalism the problem in terms of a network, with edges representing
road segments, and nodes representing junctions.

The network comprises a set of edges, E and a set of nodes, N. Each edge
e € E has a capacity cap(e). Allowing for one-way traffic, we associate a direction
with each edge (two way roads are therefore represented by two edges, one in
each direction). The edge from origin o into the junction has capacity ocap(0)
and the edge leaving the junction and entering the destination d has capacity
dcap(d).

For each node n there is a set of edges IN(n) entering n and a set of edges
OUT(n) leaving n.

The set of traffic flows to be diverted is F. Each flow f € F has an origin
orig(f), a destination dest(f) and a maximum flow quantity quan(f).

quan(f) is limited by the size of the roads of the diverted flow, into the
junction from the origin and out from the junction to the destination. Thus,
quan(f) = min{ocap(orig(f)),dcap(dest(f))}.

The diversion for the flow f is a path DIV joining its origin orig(f) to its
destination dest(f). (Assuming no cycles, we model the path as a set of edges,
thus DIV is a set-valued variable.)

The awkward constraints are the capacity constraints. For this purpose we
elicit the worst case for each edge, using an optimisation function.

Consider the total flow diverted through an edge e: for each flow f there is
a non-negative flow quantity Q. < quan(f) diverted through e. For all flows f
that are not diverted through the edge e this quantity is 0, while for all flows
in the set of flows diverted through an edge e, F, = {f : e € DIV}, there is a
non-negative flow quantity.

The total diverted flow D@, through the edge e is therefore DQ, = zfng Qfe.
Clearly it must be within the edge capacity: cap(e) > DQe.-

The maximum total diverted flow through an edge is in general less than
the sum of the maxima, quan(f) of all the individual flows. Indeed the maxi-
mum quantity of the sum of all the flows which have the same origin o is con-
strained by ocap(0) > > ¢ ori4(7)=o @re- Similarly for destination d: dcap(d) >
Zf:dest(f):d Qfe-

The worst case for capacity constraint on edge e is when D@, is maximized,
by changing the flows through the original junction. The resulting constraint is

cap(e) > maxq,. > sep, @fe-

3 Formulation as a MIP Problem

For the MIP model binary (0/1) variables Xy, and continuous variables Q. are
introduced. For each flow f and edge e, X¢. = 1 if and only if flow f is diverted
through edge e. Thus, DIV = {e: Xy, = 1}

The problem is to choose diversions (by setting the values of the variables
X) such that all the worst case capacity constraints are satisfied. We introduce
an optimisation expression: minx, 3 cp 2 .cg X fe, Which precludes cycles in
any diversion since optimisation would set the flow through any cycle to zero
and minimizes the total diversion path length.

min)Y X

fEF ecE
(Vn € N\ {orig(f),dest(f)}: Z Xfe = Z X;e
e€IN(n) e€OUT(n)
VfEF: n = orig(f): Z Xpe=1
e€OUT(n)
n = dest(f) : Z Xfe=1
e€IN(n) (1)
st max Xre e
g Z fe ¥ Qy
fEeF
VeeE: cap(e) > Vo € orig(F) : ocap(o) > Z Qe
st. frorig(f)=o
Vd € dest(F) : dcap(d) > Z Qre
fidest(f)=d
\Xfe 6{07 1}7 quan(f)ZQfEZO

The embedded optimisation for each edge e can be linearized by using the
Karush-Kuhn-Tucker condition [1]. First we dualise it, introducing dual variables
D,. and Dy,

min Z ocap(0) * Doe + Z dcap(d) * Dg.

Doe,Dge -

cap(e) Z o€orig(F) 3 ' 3 dedest(F). (2)
" Vf € F,0=orig(f),d =dest(f): Doec+ Dac > Xye
5 Do €{0,1}, Dg. € {0, 1}

Note that the upper bounds on the variables @ ¢, are implicit from the origin and
destination constraints and variable non-negativity; in forming the dual problem

we have dropped these redundant bounds. Further since the coefficients of the
variables D, D4 in the cost function to be minimized in the dual are strictly
positive and the variables non-negative an upper bound of 1 can be deduced
for the value of all dual variables in any dual optimal solution, and thus in any
feasible solution to the original problem, from the dual constraints and the upper
bounds of X .. Moreover since the constraints of (2) are totally unimodular any
basic feasible solution and hence any basic optimal feasible solution is integral,
and Dy, D4 reduce to binary variables.

We introduce slack variables SQ,e and S@Q 4. for the constraints in the primal,
and dual slack variables SD¢. in the dual. We can now replace the embedded
maximization problem for each edge e by the following constraints:

cap) > ZQfe

feF
Vo € orig(F): ocap(o) = Z Qfe +5Qoc
frorig(f)=o
Vd € dest(F) : dcap(d) = Z Qfe + SQuae
fraest(f)=d (3)

Vf € F,0=orig(f),d =dest(f): Doec+ Dage — SDyse = Xye
VifeF: Qp+SDs =0
Vo € orig(F): SQoe * Doe =0 } complementarity
Vd € dest(F): SQge * Dge =0
Xfe €{0,1}, Do € {0,1}, Dge € {0, 1}, SD;. € {0, 1}
(quan(f) > Qe >0, ocap(0) > SQoe > 0, dcap(d) > SQae >0

Since Dye, Dge,SDy. are binary (0/1) variables, the complementarity con-
straints can be linearized to obtain the mixed integer linear programming model
which can be solved by MIP solvers:

win >, D X

fEF e€E
((VneN \ {orig(f),dest(f Z Xfe = Z Xve
c€IN(n) c€OUT(n)
ViETF: n = orig(f): Z Xe=1
e€OUT(n)
n = dest(f) : Z Xpe =1
e€IN(n)
cap) > Z Qfe
fer ()
st. < Vo € orig(F): ocap(o) = Z Qfe + SQoc
frorig(f)=o
Ve ¢ E: Vd € dest(F) : dcap(d) = Z Qfe + SQuae
Frdest(f)=d
Vf € F,0=orig(f),d =dest(f): Doc + Dge — SDy. = Xy.
VfeF: quan(f)(1—SDy.)— Qs >0
Vo € orig(F): ocap(0)(1 — Doe) — SQoe >0
\ Vd € dest(F) : dcap(d)(1 — Dae) — SQqe >0
Xse €{0,1}, D,e € {0, 1}, Dg4. € {0, 1}, SDy. € {0, 1}
(quan(f) > Qe >0, ocap(0) > SQoc > 0, dcap(d) > SQue >0

The resulting performance is summarized in Table 1 under the column of MIP.

4 Formalization Using Decomposition

Most real resource optimisation problems involve different kinds of constraints,
which are best handled by different kinds of algorithms. Our traffic diversions
problem can be decomposed into parts which are best handled by different con-
straint solvers.

Both different problem decompositions and the use of different solvers for
the resulting components were tried on this problem. For reasons of space, we
present just one decomposition, into a master problem and a set of (similar)
subproblems. The master problem is a pure integer linear programming which is
best handled by a MIP solver. The subproblems are very simple linear programs
and well-suited to a linear solver, although they could equally be solved by CP
as in [2, 3]. In our approach, CP provides the modelling language and the glue
which enables the solvers to communicate, though not the solvers themselves.

4.1 Informal Description of the Decomposition

The original problem (1) can be treated instead by decomposing it into a multi-
commodity flow master problem, and a maximization subproblem for each edge
in the network.

The master problem simply assigns a path to each flow. Initially these paths
are independent. However as a result of solving the subproblems new constraints
are, later, added to the master problem which preclude certain combinations of
flows from being routed through the same edge.

Each subproblem takes as an input the path assigned to each flow by the
latest solution of the master problem. If the edge associated with the subproblem
is e, the relevant flows F, are those whose paths are routed through edge e. The
subproblem then maximizes the sum of the flows in F.. If this maximum sum
exceeds the capacity of the edge, then a new constraint is created and passed
back to the master problem precluding any assignment, which routes all the flows
in F, through the edge e. Although the cuts added to the master problem are
formed differently the principle behind this approach is closely related to that
of classic Benders decomposition [4] or its logic-based extension [5].

4.2 Model Specification

The formalization of this decomposed model uses the same binary variables X ¢,
as the MIP model. Each time the master problem is solved it assigns values (0
or 1) to all these binary variables. For the assignment to Xy, returned by the
solution of the k* master problem, we write x’}e.

The subproblems in the current model are linear maximization problems
of the kind that typically occurs in production planning, which use the same
continuous variables () ¢, as the original problem formulation in Section 2 above.

Accordingly the k** subproblem associated with edge e is simply:

max Z a:];e * Qfe

e

feF
Yo € orig(F): ocap(o) > Z Qe
Frorig(f)=o (5)
st. Vd € dest(F) : dcap(d) > Z Qe
Frdest(f)=d

quan(f) > Qe >0

The solution to the k** subproblem associated with edge e, is a set of flow
quantities, which we can write as q’}e for each flow f.

Suppose the subproblem associated with edge e indeed returns a maximum

sum of flows which exceeds cap(e), i.e. }- ;o q’}e > cap(e). Then the constraint

passed to the (k + 1)"* master problem from this subproblem is

D oaher(1-Xp) 21 (6)

feF

This constraint ensures that at least one of the flows previously routed through
edge e will no longer be routed through e. Therefore, it simply rules out the
previous assignment and those assignments with previous assignment as the
subset [2].

The k** master problem has the form:

min >, X

fEF e€E
(Vn e N\ {orig(f),dest()}: > Xpe= Y. Xp
e€IN(n) e€OUT(n)
ViETF: n = orig(f) : Z Xse=1 -
e€cOUT(n)
st. n = dest(f) : Z Xse=1
e€IN(n)
for certain edges e and iterations j < k : Z mi,e *(1—Xype)2>1
fEF
| X7e € {0, 1}

This model can be solved by completing a branch and bound search at every
iteration of the master problem, in order to return the shortest feasible paths,
satisfying all the cuts returned from earlier subproblems. If only feasible, rather
than shortest, diversions are required, optimality of the master problem solution
is not necessary, and the master problem solution can be stopped as soon as an
integer feasible solution is found. However, the path constraints, as they stand,
admit non-optimal solutions in which there might be cyclic sub-paths in (or even
disjoint from) the path. Whilst it is not incorrect to admit such irrelevant cyclic
sub-paths, in fact such cycles can easily be eliminated by a pre-processing step
between master and subproblem solution since the path produced by removing

cycles from a feasible solution to the k** master problem remains feasible. Such a
pre-processing step would make the diversion problem be solved more efficiently.

After the current master problem returns a feasible solution, it is then checked
by running one or more subproblems, associated with different edges. Naturally if
none of the subproblems produced a maximum flow which exceeded the capacity
of its edge, then the master problem solution is indeed a solution to the original
diversion problem. In this case the algorithm succeeds. If, on the other hand,
after a certain number of iterations, the master problem has no feasible solution
then the original diversion problem is unsatisfiable. There is no way of assigning
diversions to flows that have the capacity to cope with the worst case situation.

The experimental evaluation of this algorithm is given in Table 1 under the
column of D(naive).

5 An Enhanced Decomposition

Under certain circumstances the previous decomposition leads to a very large
number of iterations of the master problem, with many cuts added during the
iterations. The result is that the master problem becomes bigger and more dif-
ficult to solve. Moreover, the master problem has to be solved by branch and
bound search at each of a large number of iterations. This has a major impact
on run times, as shown in column D(naive) of the experiments in Table 1.

5.1 Generating Fewer Cuts

A cut that only removes the previous assignment is easy to add, but typically
not very strong: a different cut has to be added for each assignment that is ruled
out. This may require a very large number of cuts. Instead, for the diversion
problem, one could reduce the number of cuts by considering the flow quantities
of the diverted flows whose diversion is routed by the k** master problem solution
through the relevant edge.

Now instead of posting the cut (6) which simply rules out the previous as-
signment of diversions to edge e, we can explicitly use the flow quantities and
return the constraint

Y dfe # Xje < cap(e) (8)
fEF
Using this set of cuts, the k" master problem then has the form:

min D Xre

fEF ecE
(.
¥n € N\ {orig(f),dest(f)}: Y Xpe= > Xp
e€IN(n) e€OUT(n)
ViETF: n = orig(f): Z Xse=1
e€OUT(n) (9)
st. n = dest(f) : Z Xse=1

e€IN(n)
for certain edges e and iterations j < k : Z q]}e * Xre < cap(e)
fEF

\Xfﬁ € {07 1}

The resulting performance is summarized in Table 1 under the column of D(0).

5.2 Generating Tighter Cuts

The optimisation function in (5) gives zero weight to any flows f ¢ F., for which
x’}e = 0. For any optimal subproblem solution with q’;e > 0 for some f ¢ F,

there exists an equivalent optimal solution with q’; . = 0. Thus the flow quantities
q’]ﬁe (V f ¢ F.) in optimal solutions to the subproblem may be zero rather than

non-zero. The cut (8) thus may only constrain variables X . for which a:’}e =1.

Instead, for the diversion problem, one could reduce the number of cuts by
considering the flow quantities of all the diverted flows, not just the ones whose
diversion is routed by the k** master problem solution through the relevant edge.

To extract the tightest cut from this subproblem, we therefore change the
optimisation function so as to first optimise the flow through the relevant edge,
and then, for any other flows which are still free to be non-zero, to maximize
those flows too. This is achieved by simply adding a small multiplier € to the
other flows in the optimisation function:

max (mlﬁe +e)xQre
Qfe

feF
Yo € orig(F): ocap(o) > Z Qe
Frorig(f)=o (10)
st. Vd € dest(F) : dcap(d) > Z Qre
Fidost(f)=d

quan(f) > Qe >0

Now all the variables Q. will take their maximum possible values (denoted as
(j’;e), ensuring that (8) expresses as tight a cut as possible.

S @+ X < caple) (11)
feF
This cut not only constrains variables X ¢, for which m’;e =1, but also constrains

the value of X, for other flows f which may not have used this edge in the k‘*

subproblem.
Accordingly the k** master problem then has the form:

wmin DD X

FEF e€E
¥n € N\ {orig(f),dest(f)}: Y Xpe= > Xp
e€IN(n) e€OUT(n)
ViETF: n = orig(f): Z Xse=1 (12)
e€OUT(n)
st. n = dest(f): Z Xse =1
e€IN(n)
for certain edges e and iterations j < k : Z q;e * Xre < cap(e)
fEF
\ Xre € {o, 1}

The experimental results on the enhanced decomposition model are given in
Table 1 under the column of D(e), where e = 1.0e5.

5.3 Comparison of Cuts Tightness

The 3 different cut generation formulations, (6),(8) and (11) have been presented.
The tightness for these cuts, generated by different cut formulations are different
too. For simple example, supposed that the assignment to Xy, returned by the
solution of the k** master problem as

[wlfe’ xlgev wlge’ xiev wlge] = [L 1,1,0, 0]
The flow quantities @ ¢. returned by the kth subproblem (5) solution as
(%> Bes e dhes 05] = [50,75, 75,50, 0]

and one returned by the solution of the k** subproblem (10) as
[Qfe’ (jge’ (jgev gfe, (jge] = [50,75,75, 50, 75]

Notice that ¢f, can also take 0 as optimal subproblem (5) solution because
k
x4, = 0.

By using of the cut generation formulation (6) we will obtain a cut

Xle +X2e +X3e S 2

and the cut generated by the cut formulation (8) is
50 % X + 75 % Xop + 75 % X3, + 50 x X4 < 100

and the cut formulation (11) generated a cut of
90 % Xie + 75 % Xoe + 75 % X3, + 50 * Xy + 75 % X5, < 100

It is trivial to show that these cuts are getting tighter and tighter!

6 Implementation

The problem was solved using the ECL{PS® constraint programming platform [6].
ECLPS® provides interfaces both to CPLEX [7] and to Xpress-MP [8] for solving
MIP problems. The current application comprises either a single MIP problem
for the model presented in Section 3 or for the decomposed models presented in
Sections 4-5 an MIP master problem and, in principle, LP subproblems for each
edge in the network.

The MIP master problem and LP subproblems were run as separate external
solver instances using the ECL!PS® facility to set up multiple external solver
matrices. ECL'PS® enables different instances to be modified and solved at will.
However the implementation does not run - or even set up - subproblems asso-
ciated with edges which do not lie on any path returned by the master problem
since the capacity constraints on these edges cannot, of course, be exceeded.

In the implementation we may choose how many cuts to return to the master
problem after each iteration. One extreme is to run the subproblems individually
and stop as soon as a new cut has been elicited while the other is to run all
subproblems. These choices will respectively result in only one cut or all possible
cuts being added to the master problem at each iteration. The additional cuts
will tend to result in fewer iterations at the cost of more time spent per iteration
on subproblem solution.

Preliminary experiments showed that it was substantially more efficient in
general to run all the subproblems and add all the cuts at every iteration. This
result is unsurprising for the current application since the cost of solving the
master problem far outweighs that for each subproblem. The subproblems for
each edge are LPs involving |F| variables and |orig(F)| + |dest(F)| constraints,
and are solved very quickly. The master problem however is a pure integer prob-
lem involving |F| x |E| variables and |F| x |N| constraints plus any cuts added so
far. The initial master problem constraints are totally unimodular. As cuts are
added in further iterations the unimodularity of the master problem is destroyed
requiring solution by branch-and-bound search.

The ECL!PS® interface enables the user to solve a single problem instance
using different optimisation functions. In the current application, the subproblem
associated with each edge and each iteration has the same constraints. The
difference lies only in the optimisation function. Therefore, only one subproblem
needs to be set up when the algorithm is initialized: our implementation uses the
same problem instance for each subproblem, simply running it with a different
optimisation function for each edge.

Accordingly, in our ECL/PS® implementation, the decomposition model was
set up using two different problem instances, one for the master problem and
one for all the subproblems. In the following ECL?PS® code, these instances are
named master and sub. First we create the master problem and the subproblem
template:

:- eplex_instance(master). Al
:— eplex_instance(sub). %2
diversions (Xfe_Array) :- 3
% Multicommodity flow constraints written here ha
master:eplex_solver_setup(min(sum(Xfe_Array))), %5
% Subproblem constraints written here %6
sub:eplex_solver_setup(max (sum(Qfe_Array))), YA
iterate (Xfe_Array, Qfe_Array). %8

At lines 1 and 2 a master and subproblem solver instance are declared. They will
later be filled with linear (and integer) constraints. Line 3 names the procedure
that the user can invoke to solve the problem.

The problem constraints are entered next. These constraints are problem-
instance-specific. Typically they are automatically generated from a data file
holding the details of the network.

Line 5 sets up the master problem, reading in the constraints added previ-
ously, and posting a default optimisation function (minimize the total number
of edges used in all the diversions).

The problem-instance-specific edge capacity constraints are now entered.
Then the subproblem is set up at line 7, again with a default optimisation
function. Finally at line 8 the iteration procedure is invoked.

We now write down the code which controls the iteration.

iterate(Xfe_Array, Qfe_Array) :- %9
master:eplex_solve(Cost), %10
master:eplex_get (typed_solution,Xfe_Values), w11
% Find ’Edges’ used in paths %12
(foreach(E,Edges), %13

% Collect violated capacity constraints into ’Cutlist’ %14
do %15
% Build optimisation expression ’Expr’ %16
sub:eplex_probe (max (Expr) ,SubCost), %17
(SubCost > cap(E) -> Y% Create cut %18
)
)’
(foreach(Cut, CutList) %19
do %20
master:Cut % Add cut w21
)’

% If Cutlist is empty, succeed, otherwise iterate again %22

At each iteration, the program solves the master problem (line 10), extracts the
solution (values of all the Xy, variables), (line 11), finds which edges are on
diversions (code not given) and then builds, for each edge (line 13), an optimisa-
tion function expression for the subproblem (code not given). The subproblem
is solved (line 17), and if the maximal solution exceeds the capacity of the edge
(line 18), a constraint is created.

As a result of solving the subproblem for each edge, a set of constraints are
collected. Each constraint (line 19) is then added to the master problem (line
21).

If no constraints were collected (line 22), this means that no edge had its
capacity exceeded, even in the worst case. Consequently the iteration terminates.
If any constraints were added to the master problem, however, the iteration is
repeated, with the newly tightened master problem.

The ECLPS® language and implementation makes this decomposition very
easy to state and to solve. ECL’PS® also supports many other solvers and hy-
bridisation techniques. A description of the ECL’PS® Benders Decomposition
library, for example, is available in [9].

Table 1. The Experimental Evaluation Result

Network [Flows|Obj MIP D(naive) D(0) D(e)
(Nodes,Edges) cpu (Vars, Cstrs) cpu (MP) cpu (MP) | cpu (MP)
a (38, 172) | 40 [116] 12.45 (25k,20k) 1.83 (1) 138 (1) | 212 (3)

54 |132| 18.77 (33k,26k) 4.05 (8) 3.38 (5) 3.52 (5)
b (38,178) | 54 |132| 18.90 (35k,27k) 4.27 (8) 3.39 (4) 3.85 (5)
¢ (38, 256) | 140 |328] 108.97 (122k,91k) 16.07 (3) 13.63 (5) | 14.15 (b)
126 {226 TO (198k,146k) 710.47 (129) | 35.77 (14) | 29.08 (18)
d (50, 464) [152 [318] TO (236k,173k) | 10060.64 (757) | 48.16 (12) | 72.56 (17)
178 {410| TO (274k,200k) TO 517.60 (29) | 783.94 (40)
286 |546] TO (435k,317k) TO 459.61 (50) | 99.98 (17)
e (50, 464) [350 [714] TO (s28k,383k) TO 339.16 (21) | 314.58 (19)
418 [890| TO (626k,453k) TO 4033.98 (64)[2404.82 (43)
f (208, 676) | 28 |Fail| TO (73k.60k) | 2673.38 (130) | 79.66 (16) | 76.63 (15)
28 [256] TO (73k,60k) | 13350.71 (186) | 252.44 (23) | 706.21 (44)
g (208, 698) | 28 | 76 | 257.64 (75k.62k) 20.83 (1) 20.90 (1) | 20.76 (1)
h (208, 952) | 44 |108| 361.84 (156k,123k) 50.79 (1) 50.69 (1) | 52.87 (3)
i (208, 1186) | 774 |Fail| OOM (2910k,2153k)| 2635.59 (22) | 702.59 (3) | 748.17 (3)
88 |Fail| 27.55 (223k,177k) 28.59 (1) 28.28 (1) 28.39 (1)
j (212, 734) | 104 |Fail| 33.06 (261k,207k) TO 58.49 (4) 56.73 (3)
106 [338| TO (266k,210k) TO 4602.80 (31)(7317.42 (40)
154 |Fail| TO (380k,300k) TO 95.33 (5) 82.70 (2)
142 |Fail| 71.22 (729k,565k) 185.76 (6) 139.47 (1) | 140.31 (1)
k (365, 1526)| 154 |Fail| OOM (784k,606k) TO 293.98 (4) | 292.20 (3)
178 [422] OOM (900k,694k) |46930.15 (1572)] 310.90 (12) | 314.11 (12)

e=1.0e"°

cpu = seconds on Intel(R) Pentium(R) 4 CPU 2.00GHz

MP = number of iterations

OOM = Out of memory on Intel(R) Pentium(R) 4 with 1 Gig of main memory
TO = Timed out after 72000 seconds

Fail = Problem Unsatisfiable

7 Results and Discussion

ECL!PS® implementations of the models described in Sections 3-5 were run
on a number of test instances on road networks of differing sizes, the smallest
involving 38 junctions and 172 road segments and the largest 365 junctions and
1526 road segments. Our data is industrial and cannot be published in detail.
For each road network the choice of blocked junctions with different in- and out-
degrees results in problem instances having different numbers of flows to divert.

For each test instance the first 3 columns of Table 1 show each example
road network with the number of nodes (junctions) and edges (road segments),
the number of flows to reroute and optimal objective value (or Fail if no feasible
solution exists). The remaining 4 columns show solution time for the four models
with additionally the total number of variables and number of constraints in

the original MIP model and the number of master problem iterations for the
decomposed models.

While there is some variation in the difficulty of individual instances for the
different methods, the decomposed models outperform the MIP by at least an
order of magnitude on average. It is striking how poorly MIP scales for this
problem: while the MIP is able to solve only 9 of the instances within reasonable
limits on execution time and memory usage, even the initial naive decomposition
solves all but 8 instances within these limits, and the improved decomposed
models solve all instances within a relatively small number of master problem
iterations and relatively short time periods.

MIP focuses on integer inconsistencies which do not necessarily correlate
closely with the real causes of inconsistency (i.e. overflow on an edge). CP enables
us to solve a problem relaxation with whatever scalable solver is available (e.g.
LP, or in the current master problem, MIP), and then to select the inconsisten-
cies/bottlenecks at the problem level rather than at the encoded linear/integer
level. This yields a much more problem-focused search heuristic.

This is reflected in the results obtained: all instances solvable by the MIP
approach required only a few master problem iterations in the decomposed ap-
proach. In particular the 3 infeasible instances in data sets j and k for which
MIP outperforms the decomposed approach are very over-constrained. Conse-
quently they require little search in the MIP and few iterations in the decom-
posed models to prove infeasibility. Similarly the 6 feasible instances in data sets
a, b, ¢, g and h are relatively loosely constrained and easily soluble by all meth-
ods. Even here however the combination of smaller component problem size and
more problem-focused search in the decomposed approach yield order of magni-
tude improvements. Conversely the remaining instances which are neither very
loosely constrained nor very over-constrained are very difficult for both the MIP
approach and the naive decomposition due to the looseness of the cuts provided,
but much more amenable to solution by the problem-focused tight cuts of the
improved decomposition approaches.

Although this may suggest that MIP may be preferable for problems display-
ing certain characteristics, it is precisely those problems which are feasible but
tightly constrained or infeasible but only slightly over-constrained that are most
interesting in practice.

8 Conclusion

The diversion problem is very awkward in that the constraints involve a sub-
sidiary optimisation function. The problem can be expressed as a single MIP,
using the KKT condition to transform the embedded optimisation function into
a set of constraints. Nevertheless the resulting MIP problem is very large and
scales poorly.

A much better approach is presented by use of the decomposition strategy.
In particular, tight cuts are created to improve the efficiency and scalability. The

experimental evaluation shows that decomposition can solve much larger scale
problem instances.

References

1. Nemhauser, G. L., Wolsey, L. A.: Integer and Combinatorial Optimization, John
Wiley & Sons, New York. (1988)

2. Jain, V., Grossmann, L.E.: Algorithms for Hybrid MILP/CP Models for a Class of
Optimisation Problems. INFORMS Journal on Computing. 13 (2001) 258-276

3. Thorsteinsson, E.S.: Branch-and-Check: A Hybrid Framework Integrating Mixed
Integer Programming and Constraint Logic Programming. In T. Walsh, editor,
Principles and Practice of Constraint Programming — CP 2001, Springer. (2001)
16-30

4. Benders, J.F.: Partitioning Procedures for Solving Mixed-Variables Programming
Problems. Numerische Mathematik. 4 (1962) 238-252

5. Hooker, J.N., Ottosson, G.: Logic-Based Benders Decomposition. Mathematical
Programming. 96 (2003) 33-60

6. Cheadle, A. M., Harvey, W., Sadler, A., Schimpf, J., Shen, K., Wallace, M.:
ECL'PS®. Technical Report 03-1, IC-Parc, Imperial College London, (2003)

7. ILOG: ILOG CPLEX 6.5 User’s Manual, http://www.cplex.com (1999)

8. Dash Optimization: Dash Optimization Xpress-MP 14.21 User’'s Manual,
http://www.dashoptimization.com (2003)

9. Eremin, A., Wallace, M.: Hybrid Benders Decomposition Algorithms in Constraint
Logic Programming. In T. Walsh, editor, Principles and Practice of Constraint
Programming — CP 2001, Springer. (2001) 1-15

