
Problem Deomposition for TraÆ DiversionsQuanshi Xia1, Andrew Eremin1, and Mark Wallae21 IC-Par, Imperial College London, London SW7 2AZ, UKfq.xia, a.ereming�imperial.a.uk2 Shool of Business Systems, Monash University, Clayton, Vi 3800, Australiamark.wallae�infoteh.monash.edu.auAbstrat. When a major road traÆ intersetion is bloked, vehilesshould be diverted from the inoming roads in suh a way as to avoidthe roads on the diversions from also beoming over-ongested. Assumingdi�erent diversions may use partly the same roads, the hallenge is tosatisfy the following traÆ ow onstraint: ensure that even in the worstase senario, the diversions an aommodate the same volume of traÆas the bloked intersetion.The number of diversions inreases quadratially with the number ofroads at the intersetion. Moreover any road may be used by any subsetof the diversions - thus the number of worst ases an grow exponentiallywith the number of diversions.This paper investigates two di�erent approahes to the problem, de-sribes their implementation on the hybrid MIP/CP software platformECLiPSe, and presents benhmark results on a set of test ases.1 IntrodutionCities are beoming more ongested, but lukily road management tehnology -sensing, signs, lights et. - is improving dramatially. We now have the oppor-tunity to apply planning and optimisation tehniques to road management toredue ongestion and optimise journey times.The problem of diversions takled in this paper is an arti�ial one, in thatsome of the assumptions do not hold on the ground. However the problem ap-pears in the ontext of a larger system for traÆ management, and its solutionis in pratial use today.The problem fouses on planning diversions to get around a bloked juntionor interhange, where a number of routes meet eah other. Assuming no infor-mation about the destinations of vehiles on the road, the aim is to ensure thatevery inoming route is linked to every outgoing route by a diversion.However the requirement is also to ensure that whatever traÆ might havebeen owing through the juntion, the diversion routes are suÆiently major toope with them. For the purposes of this problem, we ignore any traÆ thathappens to be using the diversion roads for other journeys, that would not havepassed through the bloked juntion.The problem is sienti�ally interesting beause, until all the diversions havebeen spei�ed, it is not possible to tell what is the maximum possible traÆ owthat ould be generated along any given road on a diversion.



Let us illustrate this with an example: The juntion j has three inoming
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cf, ceFig. 1. A Simple Juntionroads, from a, b and  and three outgoing, to d, e and f. Eah road has a grade,whih determines the amount of traÆ it an arry. These amounts are 5 for ajand jd, 10 for bj and je and 20 for j and jf .The diversion f from  to f learly needs to be able to arry a traÆ quantityof 20. Assume that this diversion shares a road kl with the diversion bf fromb to f. The total traÆ on both diversions, in the worst ase, is still only 20beause the diverted routes both used the road jf , whih has a apaity of 20.However if the diversion e from  to e also uses the road kl, then in theworst ase the traÆ over kl goes up to 30. This ase arises when there is a owof 10 from b to j, a ow of 20 from  to j, a ow of 10 from j to e, and anotherow of 20 from j to f. This means that there may potentially be end-to-end owsof 10 from b to f, from  to e and from  to f.The total number of diversions that must be set up in this ase is 9, a diver-sion from eah inoming origin to eah outgoing destination. In general, then,the number of diversions grows quadratially in the size of the juntion. More-over any subset of these diversions may interset, so the number of worst asesenarios to be alulated is potentially exponential in the number of diversions!The �nal aspet of the problem is to �nd atual routes for all the diversions,whih satisfy all the worst ase senarios. Given all the above possibilities, agenerate and test approah may need to explore a huge number of routes.In this paper we present several approahes to solving the problem. The �rstis a global integer/linear model, whih an solve smaller problem instanes butgrows in memory usage and exeution time for larger problem instanes whihlimits its salability. The next three are inreasingly sophistiated versions of aproblem deomposition. The eÆient handling of the master and subproblems,and addition of new rows to the master problem are supported by the ECLiPSeonstraint programming system. The most sophistiated model solves all thebenhmark problem instanes with less than 50 iterations.



2 Problem ModelThe road network is broken down into juntions, and road segments onnetingthem. Eah diversion is mapped to a path from the origin to the destination,avoiding the bloked juntion. To model the blok, we simply drop the juntionand its onneted roads from the network.The hallenge is to model the apaity onstraints on eah road segment ineah path in the network. For eah road segment, the sum of the traÆ owson all the routes whose diversions pass through that road segment must beaommodated. The road segment is over-ongested if, in the worst ase, thissum exeeds the apaity of the road segment.In this paper we shall write onstants in lower ase (e.g. e, edge), we shall writevariables starting with an upper ase letter (e.g. Q, Quantity), variable arrays aresubsripted (e.g. with a single subsript, Qe, or with multiple subsripts Qfe),we shall write funtions using brakets (e.g. dest(f)). We use bold identi�ers todenote sets (e.g. E). For example, to say that edge e belongs to the set of edgesE, we write e 2 E. Set-valued variables and funtions are also written in boldfont.We formalism the problem in terms of a network, with edges representingroad segments, and nodes representing juntions.The network omprises a set of edges, E and a set of nodes, N. Eah edgee 2 E has a apaity ap(e). Allowing for one-way traÆ, we assoiate a diretionwith eah edge (two way roads are therefore represented by two edges, one ineah diretion). The edge from origin o into the juntion has apaity oap(o)and the edge leaving the juntion and entering the destination d has apaitydap(d).For eah node n there is a set of edges IN(n) entering n and a set of edgesOUT(n) leaving n.The set of traÆ ows to be diverted is F. Eah ow f 2 F has an originorig(f), a destination dest(f) and a maximum ow quantity quan(f).quan(f) is limited by the size of the roads of the diverted ow, into thejuntion from the origin and out from the juntion to the destination. Thus,quan(f) = minfoap(orig(f)); dap(dest(f))g.The diversion for the ow f is a path DIVf joining its origin orig(f) to itsdestination dest(f). (Assuming no yles, we model the path as a set of edges,thus DIVf is a set-valued variable.)The awkward onstraints are the apaity onstraints. For this purpose weeliit the worst ase for eah edge, using an optimisation funtion.Consider the total ow diverted through an edge e: for eah ow f there isa non-negative ow quantity Qfe � quan(f) diverted through e. For all ows fthat are not diverted through the edge e this quantity is 0, while for all owsin the set of ows diverted through an edge e, Fe = ff : e 2 DIVfg, there is anon-negative ow quantity.The total diverted owDQe through the edge e is thereforeDQe =Pf2Fe Qfe.Clearly it must be within the edge apaity: ap(e) � DQe.



The maximum total diverted ow through an edge is in general less thanthe sum of the maxima, quan(f) of all the individual ows. Indeed the maxi-mum quantity of the sum of all the ows whih have the same origin o is on-strained by oap(o) � Pf :orig(f)=oQfe. Similarly for destination d: dap(d) �Pf :dest(f)=dQfe.The worst ase for apaity onstraint on edge e is when DQe is maximized,by hanging the ows through the original juntion. The resulting onstraint isap(e) � maxQfePf2Fe Qfe.3 Formulation as a MIP ProblemFor the MIP model binary (0=1) variables Xfe and ontinuous variables Qfe areintrodued. For eah ow f and edge e, Xfe = 1 if and only if ow f is divertedthrough edge e. Thus, DIVf = fe : Xfe = 1gThe problem is to hoose diversions (by setting the values of the variablesXfe) suh that all the worst ase apaity onstraints are satis�ed. We introduean optimisation expression: minXfePf2FPe2EXfe, whih preludes yles inany diversion sine optimisation would set the ow through any yle to zeroand minimizes the total diversion path length.minXfe Xf2FXe2EXfe
st:
8>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>:
8f 2 F : 8>>>>>><>>>>>>:8n 2 N n forig(f); dest(f)g : Xe2IN(n)Xfe = Xe2OUT(n)Xfen = orig(f) : Xe2OUT(n)Xfe = 1n = dest(f) : Xe2IN(n)Xfe = 18e 2 E : ap(e) �8>>>>>><>>>>>>:maxQfe Xf2FXfe �Qfest: 8>><>>:8o 2 orig(F) : oap(o) � Xf :orig(f)=oQfe8d 2 dest(F) : dap(d) � Xf :dest(f)=dQfeXfe 2 f0; 1g; quan(f) � Qfe � 0

(1)
The embedded optimisation for eah edge e an be linearized by using theKarush-Kuhn-Tuker ondition [1℄. First we dualise it, introduing dual variablesDoe and Ddeap(e) �8>><>>: minDoe;Dde Xo2orig(F) oap(o) �Doe + Xd2dest(F) dap(d) �Ddest: �8f 2 F; o = orig(f); d = dest(f) : Doe +Dde � XfeDoe 2 f0; 1g; Dde 2 f0; 1g (2)Note that the upper bounds on the variablesQfe are impliit from the origin anddestination onstraints and variable non-negativity; in forming the dual problem



we have dropped these redundant bounds. Further sine the oeÆients of thevariables Doe, Dde in the ost funtion to be minimized in the dual are stritlypositive and the variables non-negative an upper bound of 1 an be deduedfor the value of all dual variables in any dual optimal solution, and thus in anyfeasible solution to the original problem, from the dual onstraints and the upperbounds of Xfe. Moreover sine the onstraints of (2) are totally unimodular anybasi feasible solution and hene any basi optimal feasible solution is integral,and Doe, Dde redue to binary variables.We introdue slak variables SQoe and SQde for the onstraints in the primal,and dual slak variables SDfe in the dual. We an now replae the embeddedmaximization problem for eah edge e by the following onstraints:8>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>:
ap(e) �Xf2FQfe8o 2 orig(F) : oap(o) = Xf :orig(f)=oQfe + SQoe8d 2 dest(F) : dap(d) = Xf :dest(f)=dQfe + SQde8f 2 F; o = orig(f); d = dest(f) : Doe +Dde � SDfe = Xfe8f 2 F : Qfe � SDfe = 08o 2 orig(F) : SQoe �Doe = 08d 2 dest(F) : SQde �Dde = 0) omplementarityXfe 2 f0; 1g; Doe 2 f0; 1g; Dde 2 f0; 1g; SDfe 2 f0; 1gquan(f) � Qfe � 0; oap(o) � SQoe � 0; dap(d) � SQde � 0

(3)
Sine Doe; Dde; SDfe are binary (0/1) variables, the omplementarity on-straints an be linearized to obtain the mixed integer linear programming modelwhih an be solved by MIP solvers:minXfe Xf2FXe2EXfe
st:
8>>>>>>>>>>>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>>>>>>>>>>>:

8f 2 F : 8>>>>>><>>>>>>:8n 2 N n forig(f); dest(f)g : Xe2IN(n)Xfe = Xe2OUT(n)Xfen = orig(f) : Xe2OUT(n)Xfe = 1n = dest(f) : Xe2IN(n)Xfe = 1
8e 2 E : 8>>>>>>>>>>>>><>>>>>>>>>>>>>:

ap(e) �Xf2FQfe8o 2 orig(F) : oap(o) = Xf :orig(f)=oQfe + SQoe8d 2 dest(F) : dap(d) = Xf :dest(f)=dQfe + SQde8f 2 F; o = orig(f); d = dest(f) : Doe +Dde � SDfe = Xfe8f 2 F : quan(f)(1� SDfe)�Qfe � 08o 2 orig(F) : oap(o)(1�Doe)� SQoe � 08d 2 dest(F) : dap(d)(1�Dde)� SQde � 0Xfe 2 f0; 1g; Doe 2 f0; 1g; Dde 2 f0; 1g; SDfe 2 f0; 1gquan(f) � Qfe � 0; oap(o) � SQoe � 0; dap(d) � SQde � 0
(4)



The resulting performane is summarized in Table 1 under the olumn ofMIP.4 Formalization Using DeompositionMost real resoure optimisation problems involve di�erent kinds of onstraints,whih are best handled by di�erent kinds of algorithms. Our traÆ diversionsproblem an be deomposed into parts whih are best handled by di�erent on-straint solvers.Both di�erent problem deompositions and the use of di�erent solvers forthe resulting omponents were tried on this problem. For reasons of spae, wepresent just one deomposition, into a master problem and a set of (similar)subproblems. The master problem is a pure integer linear programming whih isbest handled by a MIP solver. The subproblems are very simple linear programsand well-suited to a linear solver, although they ould equally be solved by CPas in [2, 3℄. In our approah, CP provides the modelling language and the gluewhih enables the solvers to ommuniate, though not the solvers themselves.4.1 Informal Desription of the DeompositionThe original problem (1) an be treated instead by deomposing it into a multi-ommodity ow master problem, and a maximization subproblem for eah edgein the network.The master problem simply assigns a path to eah ow. Initially these pathsare independent. However as a result of solving the subproblems new onstraintsare, later, added to the master problem whih prelude ertain ombinations ofows from being routed through the same edge.Eah subproblem takes as an input the path assigned to eah ow by thelatest solution of the master problem. If the edge assoiated with the subproblemis e, the relevant ows Fe are those whose paths are routed through edge e. Thesubproblem then maximizes the sum of the ows in Fe. If this maximum sumexeeds the apaity of the edge, then a new onstraint is reated and passedbak to the master problem preluding any assignment whih routes all the owsin Fe through the edge e. Although the uts added to the master problem areformed di�erently the priniple behind this approah is losely related to thatof lassi Benders deomposition [4℄ or its logi-based extension [5℄.4.2 Model Spei�ationThe formalization of this deomposed model uses the same binary variables Xfeas the MIP model. Eah time the master problem is solved it assigns values (0or 1) to all these binary variables. For the assignment to Xfe returned by thesolution of the kth master problem, we write xkfe.The subproblems in the urrent model are linear maximization problemsof the kind that typially ours in prodution planning, whih use the sameontinuous variables Qfe as the original problem formulation in Setion 2 above.



Aordingly the kth subproblem assoiated with edge e is simply:maxQfe Xf2Fxkfe �Qfest: 8>>>><>>>>:8o 2 orig(F) : oap(o) � Xf :orig(f)=oQfe8d 2 dest(F) : dap(d) � Xf :dest(f)=dQfequan(f) � Qfe � 0 (5)The solution to the kth subproblem assoiated with edge e, is a set of owquantities, whih we an write as qkfe for eah ow f .Suppose the subproblem assoiated with edge e indeed returns a maximumsum of ows whih exeeds ap(e), i.e. Pf2F qkfe > ap(e). Then the onstraintpassed to the (k + 1)th master problem from this subproblem isXf2Fxkfe � (1�Xfe) � 1 (6)This onstraint ensures that at least one of the ows previously routed throughedge e will no longer be routed through e. Therefore, it simply rules out theprevious assignment and those assignments with previous assignment as thesubset [2℄.The kth master problem has the form:minXfe Xf2FXe2EXfe
st: 8>>>>>>>>>>>><>>>>>>>>>>>>:

8f 2 F : 8>>>>>><>>>>>>:8n 2 N n forig(f); dest(f)g : Xe2IN(n)Xfe = Xe2OUT(n)Xfen = orig(f) : Xe2OUT(n)Xfe = 1n = dest(f) : Xe2IN(n)Xfe = 1for ertain edges e and iterations j < k : Xf2Fxjfe � (1�Xfe) � 1Xfe 2 f0; 1g
(7)

This model an be solved by ompleting a branh and bound searh at everyiteration of the master problem, in order to return the shortest feasible paths,satisfying all the uts returned from earlier subproblems. If only feasible, ratherthan shortest, diversions are required, optimality of the master problem solutionis not neessary, and the master problem solution an be stopped as soon as aninteger feasible solution is found. However, the path onstraints, as they stand,admit non-optimal solutions in whih there might be yli sub-paths in (or evendisjoint from) the path. Whilst it is not inorret to admit suh irrelevant ylisub-paths, in fat suh yles an easily be eliminated by a pre-proessing stepbetween master and subproblem solution sine the path produed by removing



yles from a feasible solution to the kth master problem remains feasible. Suh apre-proessing step would make the diversion problem be solved more eÆiently.After the urrent master problem returns a feasible solution, it is then hekedby running one or more subproblems, assoiated with di�erent edges. Naturally ifnone of the subproblems produed a maximum ow whih exeeded the apaityof its edge, then the master problem solution is indeed a solution to the originaldiversion problem. In this ase the algorithm sueeds. If, on the other hand,after a ertain number of iterations, the master problem has no feasible solutionthen the original diversion problem is unsatis�able. There is no way of assigningdiversions to ows that have the apaity to ope with the worst ase situation.The experimental evaluation of this algorithm is given in Table 1 under theolumn of D(naive).5 An Enhaned DeompositionUnder ertain irumstanes the previous deomposition leads to a very largenumber of iterations of the master problem, with many uts added during theiterations. The result is that the master problem beomes bigger and more dif-�ult to solve. Moreover, the master problem has to be solved by branh andbound searh at eah of a large number of iterations. This has a major impaton run times, as shown in olumn D(naive) of the experiments in Table 1.5.1 Generating Fewer CutsA ut that only removes the previous assignment is easy to add, but typiallynot very strong: a di�erent ut has to be added for eah assignment that is ruledout. This may require a very large number of uts. Instead, for the diversionproblem, one ould redue the number of uts by onsidering the ow quantitiesof the diverted ows whose diversion is routed by the kth master problem solutionthrough the relevant edge.Now instead of posting the ut (6) whih simply rules out the previous as-signment of diversions to edge e, we an expliitly use the ow quantities andreturn the onstraint Xf2F qkfe �Xfe � ap(e) (8)Using this set of uts, the kth master problem then has the form:minXfe Xf2FXe2EXfe
st: 8>>>>>>>>>>>><>>>>>>>>>>>>:

8f 2 F : 8>>>>>><>>>>>>:8n 2 N n forig(f); dest(f)g : Xe2IN(n)Xfe = Xe2OUT(n)Xfen = orig(f) : Xe2OUT(n)Xfe = 1n = dest(f) : Xe2IN(n)Xfe = 1for ertain edges e and iterations j < k : Xf2F qjfe �Xfe � ap(e)Xfe 2 f0; 1g
(9)



The resulting performane is summarized in Table 1 under the olumn of D(0).5.2 Generating Tighter CutsThe optimisation funtion in (5) gives zero weight to any ows f =2 Fe, for whihxkfe = 0. For any optimal subproblem solution with qkfe > 0 for some f =2 Fethere exists an equivalent optimal solution with qkfe = 0. Thus the ow quantitiesqkfe (8 f =2 Fe) in optimal solutions to the subproblem may be zero rather thannon-zero. The ut (8) thus may only onstrain variables Xfe for whih xkfe = 1.Instead, for the diversion problem, one ould redue the number of uts byonsidering the ow quantities of all the diverted ows, not just the ones whosediversion is routed by the kth master problem solution through the relevant edge.To extrat the tightest ut from this subproblem, we therefore hange theoptimisation funtion so as to �rst optimise the ow through the relevant edge,and then, for any other ows whih are still free to be non-zero, to maximizethose ows too. This is ahieved by simply adding a small multiplier � to theother ows in the optimisation funtion:maxQfe Xf2F(xkfe + �) �Qfest: 8>>>><>>>>:8o 2 orig(F) : oap(o) � Xf :orig(f)=oQfe8d 2 dest(F) : dap(d) � Xf :dest(f)=dQfequan(f) � Qfe � 0 (10)Now all the variables Qfe will take their maximum possible values (denoted as~qkfe), ensuring that (8) expresses as tight a ut as possible.Xf2F ~qkfe �Xfe � ap(e) (11)This ut not only onstrains variablesXfe for whih xkfe = 1, but also onstrainsthe value of Xfe for other ows f whih may not have used this edge in the kthsubproblem.Aordingly the kth master problem then has the form:minXfe Xf2FXe2EXfe
st: 8>>>>>>>>>>>><>>>>>>>>>>>>:

8f 2 F : 8>>>>>><>>>>>>:8n 2 N n forig(f); dest(f)g : Xe2IN(n)Xfe = Xe2OUT(n)Xfen = orig(f) : Xe2OUT(n)Xfe = 1n = dest(f) : Xe2IN(n)Xfe = 1for ertain edges e and iterations j < k : Xf2F ~qjfe �Xfe � ap(e)Xfe 2 f0; 1g
(12)



The experimental results on the enhaned deomposition model are given inTable 1 under the olumn of D(�), where � = 1:0e�5.5.3 Comparison of Cuts TightnessThe 3 di�erent ut generation formulations, (6),(8) and (11) have been presented.The tightness for these uts, generated by di�erent ut formulations are di�erenttoo. For simple example, supposed that the assignment to Xfe returned by thesolution of the kth master problem as[xk1e; xk2e; xk3e; xk4e; xk5e℄ = [1; 1; 1; 0; 0℄The ow quantities Qfe returned by the kth subproblem (5) solution as[qk1e; qk2e; qk3e; qk4e; qk5e℄ = [50; 75; 75; 50; 0℄and one returned by the solution of the kth subproblem (10) as[~qk1e; ~qk2e; ~qk3e; ~qk4e; ~qk5e℄ = [50; 75; 75; 50; 75℄Notie that qk4e an also take 0 as optimal subproblem (5) solution beausexk4e = 0.By using of the ut generation formulation (6) we will obtain a utX1e +X2e +X3e � 2and the ut generated by the ut formulation (8) is50 �X1e + 75 �X2e + 75 �X3e + 50 �X4e � 100and the ut formulation (11) generated a ut of50 �X1e + 75 �X2e + 75 �X3e + 50 �X4e + 75 �X5e � 100It is trivial to show that these uts are getting tighter and tighter!6 ImplementationThe problem was solved using the ECLiPSe onstraint programming platform [6℄.ECLiPSe provides interfaes both to CPLEX [7℄ and to Xpress-MP [8℄ for solvingMIP problems. The urrent appliation omprises either a single MIP problemfor the model presented in Setion 3 or for the deomposed models presented inSetions 4{5 an MIP master problem and, in priniple, LP subproblems for eahedge in the network.The MIP master problem and LP subproblems were run as separate externalsolver instanes using the ECLiPSe faility to set up multiple external solvermatries. ECLiPSe enables di�erent instanes to be modi�ed and solved at will.However the implementation does not run - or even set up - subproblems asso-iated with edges whih do not lie on any path returned by the master problemsine the apaity onstraints on these edges annot, of ourse, be exeeded.



In the implementation we may hoose how many uts to return to the masterproblem after eah iteration. One extreme is to run the subproblems individuallyand stop as soon as a new ut has been eliited while the other is to run allsubproblems. These hoies will respetively result in only one ut or all possibleuts being added to the master problem at eah iteration. The additional utswill tend to result in fewer iterations at the ost of more time spent per iterationon subproblem solution.Preliminary experiments showed that it was substantially more eÆient ingeneral to run all the subproblems and add all the uts at every iteration. Thisresult is unsurprising for the urrent appliation sine the ost of solving themaster problem far outweighs that for eah subproblem. The subproblems foreah edge are LPs involving jFj variables and jorig(F)j+ jdest(F)j onstraints,and are solved very quikly. The master problem however is a pure integer prob-lem involving jFj�jEj variables and jFj�jNj onstraints plus any uts added sofar. The initial master problem onstraints are totally unimodular. As uts areadded in further iterations the unimodularity of the master problem is destroyedrequiring solution by branh-and-bound searh.The ECLiPSe interfae enables the user to solve a single problem instaneusing di�erent optimisation funtions. In the urrent appliation, the subproblemassoiated with eah edge and eah iteration has the same onstraints. Thedi�erene lies only in the optimisation funtion. Therefore, only one subproblemneeds to be set up when the algorithm is initialized: our implementation uses thesame problem instane for eah subproblem, simply running it with a di�erentoptimisation funtion for eah edge.Aordingly, in our ECLiPSe implementation, the deomposition model wasset up using two di�erent problem instanes, one for the master problem andone for all the subproblems. In the following ECLiPSe ode, these instanes arenamed master and sub. First we reate the master problem and the subproblemtemplate::- eplex_instane(master). %1:- eplex_instane(sub). %2diversions(Xfe_Array) :- %3% Multiommodity flow onstraints written here %4master:eplex_solver_setup(min(sum(Xfe_Array))), %5% Subproblem onstraints written here %6sub:eplex_solver_setup(max(sum(Qfe_Array))), %7iterate(Xfe_Array, Qfe_Array). %8At lines 1 and 2 a master and subproblem solver instane are delared. They willlater be �lled with linear (and integer) onstraints. Line 3 names the proedurethat the user an invoke to solve the problem.



The problem onstraints are entered next. These onstraints are problem-instane-spei�. Typially they are automatially generated from a data �leholding the details of the network.Line 5 sets up the master problem, reading in the onstraints added previ-ously, and posting a default optimisation funtion (minimize the total numberof edges used in all the diversions).The problem-instane-spei� edge apaity onstraints are now entered.Then the subproblem is set up at line 7, again with a default optimisationfuntion. Finally at line 8 the iteration proedure is invoked.We now write down the ode whih ontrols the iteration.iterate(Xfe_Array, Qfe_Array) :- %9master:eplex_solve(Cost), %10master:eplex_get(typed_solution,Xfe_Values), %11% Find 'Edges' used in paths %12( foreah(E,Edges), %13% Collet violated apaity onstraints into 'CutList' %14do %15% Build optimisation expression 'Expr' %16sub:eplex_probe(max(Expr),SubCost), %17( SubCost > ap(E) -> % Create ut %18)),( foreah(Cut, CutList) %19do %20master:Cut % Add ut %21),% If CutList is empty, sueed, otherwise iterate again %22At eah iteration, the program solves the master problem (line 10), extrats thesolution (values of all the Xfe variables), (line 11), �nds whih edges are ondiversions (ode not given) and then builds, for eah edge (line 13), an optimisa-tion funtion expression for the subproblem (ode not given). The subproblemis solved (line 17), and if the maximal solution exeeds the apaity of the edge(line 18), a onstraint is reated.As a result of solving the subproblem for eah edge, a set of onstraints areolleted. Eah onstraint (line 19) is then added to the master problem (line21).If no onstraints were olleted (line 22), this means that no edge had itsapaity exeeded, even in the worst ase. Consequently the iteration terminates.If any onstraints were added to the master problem, however, the iteration isrepeated, with the newly tightened master problem.The ECLiPSe language and implementation makes this deomposition veryeasy to state and to solve. ECLiPSe also supports many other solvers and hy-bridisation tehniques. A desription of the ECLiPSe Benders Deompositionlibrary, for example, is available in [9℄.



Table 1. The Experimental Evaluation ResultNetwork Flows Obj MIP D(naive) D(0) D(�)(Nodes,Edges) pu (Vars, Cstrs) pu (MP) pu (MP) pu (MP)a (38, 172) 40 116 12.45 (25k,20k) 1.83 (1) 1.38 (1) 2.12 (3)54 132 18.77 (33k,26k) 4.05 (8) 3.38 (5) 3.52 (5)b (38, 178) 54 132 18.90 (35k,27k) 4.27 (8) 3.39 (4) 3.85 (5) (38, 256) 140 328 108.97 (122k,91k) 16.07 (8) 13.63 (5) 14.15 (5)126 226 TO (198k,146k) 710.47 (129) 35.77 (14) 29.08 (18)d (50, 464) 152 318 TO (236k,173k) 10060.64 (757) 48.16 (12) 72.56 (17)178 410 TO (274k,200k) TO 517.60 (29) 783.94 (40)286 546 TO (435k,317k) TO 459.61 (50) 99.98 (17)e (50, 464) 350 714 TO (528k,383k) TO 339.16 (21) 314.58 (19)418 890 TO (626k,453k) TO 4033.98 (64) 2404.82 (43)f (208, 676) 28 Fail TO (73k,60k) 2673.38 (130) 79.66 (16) 76.63 (15)28 256 TO (73k,60k) 13350.71 (186) 252.44 (23) 706.21 (44)g (208, 698) 28 76 257.64 (75k,62k) 20.83 (1) 20.90 (1) 20.76 (1)h (208, 952) 44 108 361.84 (156k,123k) 50.79 (1) 50.69 (1) 52.87 (3)i (208, 1186) 774 Fail OOM (2910k,2153k) 2635.59 (22) 702.59 (3) 748.17 (3)88 Fail 27.55 (223k,177k) 28.59 (1) 28.28 (1) 28.39 (1)j (212, 734) 104 Fail 33.06 (261k,207k) TO 58.49 (4) 56.73 (3)106 338 TO (266k,210k) TO 4602.80 (31) 7317.42 (40)154 Fail TO (380k,300k) TO 95.33 (5) 82.70 (2)142 Fail 71.22 (729k,565k) 185.76 (6) 139.47 (1) 140.31 (1)k (365, 1526) 154 Fail OOM (784k,606k) TO 293.98 (4) 292.20 (3)178 422 OOM (900k,694k) 46930.15 (1572) 310.90 (12) 314.11 (12)� = 1:0e�5pu = seonds on Intel(R) Pentium(R) 4 CPU 2.00GHzMP = number of iterationsOOM = Out of memory on Intel(R) Pentium(R) 4 with 1 Gig of main memoryTO = Timed out after 72000 seondsFail = Problem Unsatis�able7 Results and DisussionECLiPSe implementations of the models desribed in Setions 3{5 were runon a number of test instanes on road networks of di�ering sizes, the smallestinvolving 38 juntions and 172 road segments and the largest 365 juntions and1526 road segments. Our data is industrial and annot be published in detail.For eah road network the hoie of bloked juntions with di�erent in- and out-degrees results in problem instanes having di�erent numbers of ows to divert.For eah test instane the �rst 3 olumns of Table 1 show eah exampleroad network with the number of nodes (juntions) and edges (road segments),the number of ows to reroute and optimal objetive value (or Fail if no feasiblesolution exists). The remaining 4 olumns show solution time for the four modelswith additionally the total number of variables and number of onstraints in



the original MIP model and the number of master problem iterations for thedeomposed models.While there is some variation in the diÆulty of individual instanes for thedi�erent methods, the deomposed models outperform the MIP by at least anorder of magnitude on average. It is striking how poorly MIP sales for thisproblem: while the MIP is able to solve only 9 of the instanes within reasonablelimits on exeution time and memory usage, even the initial naive deompositionsolves all but 8 instanes within these limits, and the improved deomposedmodels solve all instanes within a relatively small number of master problemiterations and relatively short time periods.MIP fouses on integer inonsistenies whih do not neessarily orrelatelosely with the real auses of inonsisteny (i.e. overow on an edge). CP enablesus to solve a problem relaxation with whatever salable solver is available (e.g.LP, or in the urrent master problem, MIP), and then to selet the inonsisten-ies/bottleneks at the problem level rather than at the enoded linear/integerlevel. This yields a muh more problem-foused searh heuristi.This is reeted in the results obtained: all instanes solvable by the MIPapproah required only a few master problem iterations in the deomposed ap-proah. In partiular the 3 infeasible instanes in data sets j and k for whihMIP outperforms the deomposed approah are very over-onstrained. Conse-quently they require little searh in the MIP and few iterations in the deom-posed models to prove infeasibility. Similarly the 6 feasible instanes in data setsa, b, , g and h are relatively loosely onstrained and easily soluble by all meth-ods. Even here however the ombination of smaller omponent problem size andmore problem-foused searh in the deomposed approah yield order of magni-tude improvements. Conversely the remaining instanes whih are neither veryloosely onstrained nor very over-onstrained are very diÆult for both the MIPapproah and the naive deomposition due to the looseness of the uts provided,but muh more amenable to solution by the problem-foused tight uts of theimproved deomposition approahes.Although this may suggest that MIP may be preferable for problems display-ing ertain harateristis, it is preisely those problems whih are feasible buttightly onstrained or infeasible but only slightly over-onstrained that are mostinteresting in pratie.8 ConlusionThe diversion problem is very awkward in that the onstraints involve a sub-sidiary optimisation funtion. The problem an be expressed as a single MIP,using the KKT ondition to transform the embedded optimisation funtion intoa set of onstraints. Nevertheless the resulting MIP problem is very large andsales poorly.A muh better approah is presented by use of the deomposition strategy.In partiular, tight uts are reated to improve the eÆieny and salability. The



experimental evaluation shows that deomposition an solve muh larger saleproblem instanes.Referenes1. Nemhauser, G. L., Wolsey, L. A.: Integer and Combinatorial Optimization, JohnWiley & Sons, New York. (1988)2. Jain, V., Grossmann, I.E.: Algorithms for Hybrid MILP/CP Models for a Class ofOptimisation Problems. INFORMS Journal on Computing. 13 (2001) 258{2763. Thorsteinsson, E.S.: Branh-and-Chek: A Hybrid Framework Integrating MixedInteger Programming and Constraint Logi Programming. In T. Walsh, editor,Priniples and Pratie of Constraint Programming { CP 2001, Springer. (2001)16{304. Benders, J.F.: Partitioning Proedures for Solving Mixed-Variables ProgrammingProblems. Numerishe Mathematik. 4 (1962) 238{2525. Hooker, J.N., Ottosson, G.: Logi-Based Benders Deomposition. MathematialProgramming. 96 (2003) 33{606. Cheadle, A. M., Harvey, W., Sadler, A., Shimpf, J., Shen, K., Wallae, M.:ECLiPSe. Tehnial Report 03-1, IC-Par, Imperial College London, (2003)7. ILOG: ILOG CPLEX 6.5 User's Manual, http://www.plex.om (1999)8. Dash Optimization: Dash Optimization Xpress{MP 14.21 User's Manual,http://www.dashoptimization.om (2003)9. Eremin, A., Wallae, M.: Hybrid Benders Deomposition Algorithms in ConstraintLogi Programming. In T. Walsh, editor, Priniples and Pratie of ConstraintProgramming { CP 2001, Springer. (2001) 1{15


