
technical report ECRC{92{1
Generalised Constraint Propagation Overthe CLP SchemeThierry Le ProvostMark Wallace

EUROPEAN COMPUTER-INDUSTRY RESEARCH CENTREECRC GMBH, ARABELLASTR. 17 D-8000 M�UNCHEN 81, GERMANY - TEL +49 89/926 99 0 - FAX 926 99 170 - TLX 521 6910

cEuropean Computer-Industry Research Centre, February 1993Neither the authors of this report nor the European Computer-Industry ResearchCentre GmbH, Munich, Germany, make any warranty, express or implied, or assumeany legal liability for the accuracy, completeness or usefulness of any information,apparatus, product or process disclosed, or represent that its use would not in-fringe privately owned rights. Permission to copy in whole or in part is grantedfor non-pro�t educational and research purposes, provided that all such whole orpartial copies include the following: a notice that such copying is by the permissionof the European Computer-Industry Research Centre GmbH, Munich, Germany;an acknowledgement of the authors and individual contributors to the work; allapplicable portions of this copyright notice. Copying, reproducing or republishingfor any other purpose shall require a license with payment of fee to the EuropeanComputer-Industry Research Centre, GmbH,Munich, Germany. All rights reserved.
About this paper:This paper appears in the Journal of Logic Programming, 1993

ii

AbstractConstraint logic programming is often described as logic programming with uni�cation re-placed by constraint solving over a computation domain. There is another, very di�erent,CLP paradigm based on constraint satisfaction, where program-de�ned goals can be treated asconstraints and handled using propagation. This paper proposes a generalisation of propaga-tion, which enables it to be applied on arbitrary computation domains, revealing that the twoparadigms of CLP are orthogonal, and can be freely combined. The main idea behind gener-alised propagation is to use whatever constraints are available over the computation domain toexpress restrictions on problem variables. Generalised propagation on a goal G requires thatthe system extracts a constraint approximating all the answers to G. The paper introduces ageneric algorithm for generalised propagation called topological branch and bound which avoidsenumerating all the answers to G. Generalised propagation over the Herbrand universe has beenimplemented in a system called Propia, and we describe its behaviour on some applications.

iii

1 Introduction1.1 The CLP SchemeConstraint logic programming is often described as logic programming with uni�cation replaced by con-straint solving over a computation domain. This is captured in a theoretical framework called the CLPscheme [JL87]. A CLP (X) program comprises rules of the formh c1; : : : cn; b1; : : : bmwhere the ci are constraints over the domainX and the bj are (user-de�ned or built-in) logic programminggoals. During computation when goals are unfolded using program clauses, the constraints in their bodiesare collected up and tested for consistency. In this paper we shall often refer to constraints in the CLP (X)framework as basic constraints. One point to note is that the basic constraint predicates are built-intothe system, and cannot be de�ned by program clauses. A second point is that the consistency checkcovers all the basic constraints which have been collected up during the computation (which distinguishesconstraints from ordinary built-in predicates [Mah87]). This check must, in theory, be e�ective.1.2 CSP in Logic ProgrammingThere is another, very di�erent, CLP paradigm which is based on constraint satisfaction techniquesdating back to 1965 [GB65, Fik70, Mon74]. In the constraint satisfaction problem (CSP) paradigmthe constraints are problem-speci�c, and de�ned by sets of tuples. When CSP is embedded into logicprogramming, a constraint can be de�ned in the program as a set of facts, or even as a set of rules[Van89]. We shall often refer to constraints in the CSP framework as \propagation constraints".For solving CSP problems in traditional logic programming systems, backtrack search is used. The aimis to perform relevant \tests" as soon as possible after instantiating a variable. Dynamic computationrules, such as freeze [Col85] and delay [Nai86, MAC+89] can be used to determine which goal to evaluatenext. However even such dynamic rules can only postpone evaluation until the propagation constraintsare partially or fully instantiated. Evaluating partially instantiated propagation constraints will generatevalues for variables, usually creating undesirable branches in the search tree. Waiting till the constraintis ground before evaluating, is to use it as an a posteriori test. To summarise, logic programs can onlyuse propagation constraints passively. Our motivation for constraints logic programming is to supportthe active use of constraints [Gal85]. This is provided by techniques developed for solving constraintsatisfaction problems.It should be noted that constraint solving over a computation domain, as described in section 1.1 above,is replaced in this paradigm by constraint propagation over value domains [Fik70, Mon74, Mac77, HE80].Informally constraint propagation operates by looking ahead at yet unsolved goals to see what locallyconsistent valuations there remain for individual problem variables. In the CSP framework there is noguarantee that, after a complete propagation sequence, the propagation constraints are globally con-sistent, by contrast with constraint solving for basic constraints in the CLP scheme. However suchpropagation techniques can have a dramatic e�ect in cutting down the size of the search space. Evidenceof the practical e�ectiveness of constraints propagation in logic programming is given in [DSV90].1.3 Restrictions on Propagation in Logic ProgrammingOne prerequisite for applying CSP techniques is that problem variables should have an associated domainof possible values. Traditionally [Mac77, HE80] this is a �nite domain, though more recently continuousintervals have been studied [Dav87]. Up to now, constraint logic programming systems based on the CSPparadigm (eg CHIP [DVS+88]) have only been de�ned for �nite domain variables. For each problemvariable a �nite domain declaration is required. Each such variable can only take a �nite number ofvalues, and looking ahead is a way of deterministically ruling out certain locally inconsistent values andthus reducing the domains. 1

This restriction has prevented the application of propagation to new computation domains introducedby the CLP scheme and related approaches. In addition propagation as currently de�ned only exploits afraction of the power of its native universe of discourse. For instance it cannot reason on compound terms,thereby enforcing an unnatural and potentially ine�cient encoding of structured data as collections ofconstants.This has meant that the two approaches to integrating constraints into logic programming, as basicconstraints and as propagation constraints, have had to remain quite separate. Even in the CHIP sys-tem [DVS+88] which utilises both types of integration, propagation is excluded from those parts of theprograms involving new computation domains, such as Boolean algebra or linear rational arithmetic.In this paper we alleviate two restrictions. Firstly we lift the restriction to �nite domains, for propagationin logic programming. Secondly we lift the restriction that domains are needed for propagation at all. Inthis second sense, generalised propagation makes a contribution not just to the �eld of CLP, but also tothe general �eld of constraint satisfaction.1.4 Generalised PropagationThis paper proposes a generalisation of propagation, which enables it to be applied on arbitrary computa-tion domains. Generalised propagation can be applied inCLP (X) programs, whatever the domainX. Weshall call GP (X) the system applying generalised propagation in CLP (X). Finite domain propagationin logic programming is just GP (FD).The basic concepts, theoretical foundations, and abstract operational semantics of GP (X) can be de�nedindependently of the computation domain, X. This allows programmers to reason about the e�ciencyof GP (X) in an intuitive and uniform way. This generality carries over to the implementation, wherealgorithms for executing generalised propagation apply across a large range of basic constraint theories.Last but not least, the declarative semantics of CLP (X) programs is preserved in GP (X).The main idea behind GP (X) is to use whatever constraints are available over the computation domainX to express restrictions on problem variables. (Associating �nite domains with variables is one speci�capplication of this concept.) Goals designated as propagation constraints are repeatedly approximatedas closely as possible using these constraints. When no further re�nement of the current resolvent'sapproximation is feasible, a resolution step is performed and propagation starts again.Consider a toy example. The query to be answered is and(X;Y; Z); eqv(X;Y) against the programand(true; true; true) and(true; false; false) and(false; true; false) and(false; false; false) eqv(true; true) eqv(false; false) To use �nite domain propagation we declare that X, Y and Z can each take two possible valuesftrue; falseg. This is their �nite domain. Now propagation on each atomic goal in the query couldbe used to attempt to reduce the possible values for each variable (by eliminating impossible ones).Propagation on and(X;Y; Z) yields no domain reductions, however, because, for each variable, everydomain value appears in some clause for and. Nor does propagation on eqv(X;Y) produce any domainreductions.However generalised propagation can be more successfully applied. We shall assume, for this example, thatthe domain of computation is just the usual one of Prolog (so there is no built-in boolean constraint solver).The constraints built-into the system are just equations, treated as usual by uni�cation. Generalisedpropagation over this domain of computation (which we call GP (HU)) can extract from propagationonly equations between terms.Propagation on and(X;Y; Z) does not, initially, produce any equations, but propagation on eqv(X;Y)does produce the equation X = Y . This information is extracted since it holds for both answers X =true^Y = true and X = false^Y = false to the subquery eqv(X;Y). Now propagation is retried on2

and(X;X;Z) (which is and(X;Y; Z) in the environmentX = Y). This time an equation can be extractedX = Z, which holds of both answers to the subquery. Thus propagation on both atoms in the originalquery yields the equations X = Y ^X = Z which are guaranteed to hold for all answers to the query.Notice that the information thus extracted could not be expressed using variable domains.The practical relevance of generalised propagation has been tested by implementing it in the underlyingconstraint theory of �rst-order terms with syntactic equality [Cla79], which is GP (HU). Programs arejust sets of Prolog rules with annotations identifying the goals to be used for propagation. The languagehas enabled us to write programs which are simple, yet e�cient, without the need to resort to constructswithout a clear declarative semantics such as demons. Applications tackled include a set of propositionalsatis�ability problems collected as a benchmark for theorem provers [MR91], temporal reasoning, anddisjunctive scheduling problems. The performance results have been very encouraging.In the next section we shall describe �nite domain propagation in logic programming, and introducegeneralised propagation with an example. Then in section 3 we shall specify generalised propagation,discussing its logical and operational semantics and introducing a generic algorithm for its implementationover arbitrary computation domains. In section 4 we shall describe an implementation of generalisedpropagation called Propia. In section 5 we shall compare generalised propagation with some relatedapproaches, and we shall conclude in section 6.2 Constraint PropagationIn this section we briey review the motivation of �nite domain propagation in logic programming anddescribe its behaviour with some examples. Then we shall introduce generalised propagation in logicprogramming.2.1 Propagation in Constraint Logic ProgrammingThe idea behind local propagation methods for CSP's is to work on each propagation constraint indepen-dently, and deterministically to extract information about locally consistent assignments. This has leadto various consistency algorithms for networks of constraints, the most widely applicable of these beingarc-consistency [RHZ75, Mon74]. Consistency can be applied as a preliminary to the search steps orinterleaved with them [HE80]. The application of these techniques in logic programming can be relatedback to the enforcement of link consistency in connections graphs [Kow79]. Finite domain propagationin logic programming was accomplished through two complementary extensions [VD86, Van89]� explicit �nite domains of values to allow the expression of range restrictions, together with thecorresponding extension of uni�cation (FD-resolution)� new inference rules, based on looking ahead at \future" computations, to reduce �nite domains ina deterministic wayThe e�ect of looking ahead on a goal is to reduce the domains associated with the variables in the goal, sothat the resulting domains approximate as closely as possible the set of remaining solutions. Applicationof these inference rules is repeated on all propagation constraint goals until no more domain reductionsare possible, forming a propagation sequence. Propagation constraint goals that are satis�ed by anycombination of values in the domains of their arguments can now be dropped.One algorithm for implementing lookahead is to enumerate all combinations of values for the constraint'sarguments and check each combination by calling the goal instantiated with these values. The reduceddomains are then formed by projecting successful combinations onto each argument. CHIP in additionimplements a variety of prede�ned constraint predicates, which e�ciently perform domain reduction byspecialised algorithms. (The drawback of such dedicated algorithms is that they cannot be applied toprogram-de�ned predicates.) An example problem encoded in a CHIP-like syntax follows:3

csp(X1; X2; X3; X4) fX1; X2; X3; X4g :: fa; b; cg;constraint p(X3; X1); [1]constraint p(X2; X3); [2]constraint p(X2; X4); [3]constraint p(X3; X4) [4]p(a; b) p(a; c) p(b; c) The constraint annotations identify goals that must be treated by the new inference rule. Annotationscan be ignored for a declarative reading.For our example problem, the initial propagation sequence is su�cient to produce the only solution. Apossible computation sequence is as follows (though the ordering is immaterial for the �nal result):Goal Result of propagationconstraint p(X3; X1) [1] produces X3 :: fa; bg; X1 :: fb; cgconstraint p(X2; X3 :: fa; bg) [2] produces X2 = a;X3 = bconstraint p(a;X4) [3] produces X4 :: fb; cgconstraint p(b;X4 :: fb; cg) [4] produces X4 = cconstraint p(b;X1 :: fb; cg) [1] produces X1 = cconstraint p(a; b) [2] succeedsconstraint p(a; c) [3] succeedsconstraint p(b; c) [4] succeedsNote that the propagation constraint [1] takes part in two propagation steps before it is solved. In generalconstraints may be involved in any number (> 0) of propagation steps.This example is deliberately very simple. Normally an answer is not obtained by propagation alone. Forexample if we add the fact p(c; a) to the program de�nition of p above, then propagation producesno domain reductions at �rst. If a propagation sequence terminates without producing an answer, thenvariables are instantiated non-deterministically to values in their domains: this can be achieved by anexplicit \labelling" routine (as in CHIP) or by an implicit labelling performed automatically by thesystem.2.2 A Motivating Example of Generalised PropagationWe briey motivate generalised propagation with a simple example. The problem we consider is that ofcompiling crosswords from an empty grid and a lexicon of available words.The problem can be expressed as a logic program by recording the lexicon as a set of facts, and the gridas a rule, thus:w3(a; c; t) w3(a; r; t) : : :w4(a; b; l; e) w4(b; a; k; e) : : :grid([A1; A2; : : : ; Zn]) w5(A1; A2; A3; A4; A5);w4(A3; B3; C3; D3);w3(A5; B5; C5);: : : 4

1 2 3 4 5 6

A

B

C

D

E Figure 2.1: Part of a crossword grid, showing three blank wordsWith this encoding, the search space for the query grid([A1; : : : ; Zn]) for any non-trivial crossword isunfortunately too large for any hope of obtaining a solution without further guidance.The problem suggests itself for �nite domain propagation, where a domain of fa; b; : : : ; zg can be asso-ciated with each variable, and each word in the grid is used as a propagation constraint. Unfortunately�nite domain propagation still does not enable the program to yield a solution within any reasonableelapsed time. One reason for this ine�ciency is that too much time is spent removing letters from thedomains of the di�erent variables without a compensating improvement in the search behaviour. Forexample the removal of rare letters such as x from the domains of the variables provides little useful\pruning" of the search space.Nevertheless �nite domain propagation in logic programming has been applied to the problem of crosswordcompilation [Van89]. A successful CLP program was written in which a domain variable was associatedwith each blank word in the crossword, whose domain was the set of words in the lexicon that could �tthere. The correct choice of words was enforced by constraints on their intersections. The �nite domainsassociated with the variables had around 30 possible words. In fact the total lexicon only had around 150words. The two drawbacks of this solution were that the representation of the problem was unnatural,and it only worked for small lexicons.The problem was tackled using GP (HU). Syntactically the only change necessary to the above programwas to annotate each blank word as a propagation constraint, thus:grid([A1; A2; : : : ; Zn]) constraint w5(A1; A2; A3; A4; A5);constraint w4(A3; B3; C3; D3);constraint w3(A5; B5; C5);: : :Instead of propagating domain reductions, the system propagates equalities. Thus the information thatis produced is positive information, which helps the search converge on a solution, rather than negativeinformation which prunes impossible, but often irrelevant, branches. Most importantly, if the lexicongrows the quality of information produced remains good. For larger domains, by contrast, the valueof negative information is reduced. (We are reminded of the paradox which says that a black raven is- logically - evidence that all cows are purple, since it provides negative evidence of the fact that allnon-purple objects are not cows!)Not only does the GP (HU) program allow the original problem, with a lexicon of 150 words, to be5

1 2 3 4 5 6 7

A

B

C

D

E

F

G Figure 2.2: A blank crossword grid, with four di�cult cornerssolved, it enables the problem to be scaled up to realistic proportions. Using generalised propagation,this program compiles crosswords from a lexicon of 25000 words. A more detailed discussion of thisapplication follows in section 4.1.1 below.2.3 Granularity of Propagation ConstraintsA nice property of constraint logic programming is the �ne level of control it o�ers over problem solving.A propagation constraint goal can be de�ned by rules and therefore can be arbitrarily complex. Asan example consider the following small crossword grid: This can be encoded as a single grid, usingpropagation, as above, on each blank word:grid2([A1; A2; : : : ; G7]) constraint w3(A1; A2; A3);constraint w7(B1; B2; B3; B4; B5; B6; B7);constraint w2(C1; C2);constraint w3(A1; B1; C1);constraint w7(A2; B2; C2; D2; E2; F2; G2);constraint w2(A3; B3);constraint w3(A5; A6; A7);: : :Such an encoding performs propagation at a very �ne level of granularity, enforcing very local consistency.However a more coarse granularity of propagation suggests itself for such a problem: we should check,for each corner of the crossword and the centre, what constraints it imposes on the words which cross theboundaries. The problem can be expressed naturally as �ve subproblems, with propagation performedon each:grid2([A1; A2; : : : ; G7]) constraint topleft([A1; A2; A3; B1; : : : ; B7; C1; C2; D2; : : :; G2]);6

constraint botleft([G1; G2; G3; F1; : : : ; F7; E1; E2;D2; : : :; A2]);constraint centre([B4; C4; D3; : : : ; D6; E4; F4]);: : :Now the system will iterate over solutions to the subproblems and try to extract equations commonto all these solutions. In case the subproblems themselves are hard, it is of course possible to performpropagation within the search for their subsolutions:topleft([A1; : : : ; G2]) constraint w3(A1; A2; A3);constraint w7(B1; : : : ; B7);: : :Clearly it brings nothing to de�ne the whole problem as a single propagation constraint. However thefacility to combine clusters of constraints into a single larger constraint means that propagation can beused to enforce consistency just as local or global as necessary for the problem at hand. The only practicalnecessity is to treat e�ciently constraints involving a number of variables. Generalised propagationprovides a framework where local and global propagation are practical alternatives.3 A Speci�cation of GP (X)3.1 De�nitionsThe language syntax and semantics used in this paper are based on �rst order logic. Atomic formulaeare built from variables, predicate symbols, function symbols and constant symbols. If � is any openformula, then 9� and 8� denote respectively the existential and universal closure of � as usual. We alsointroduce the following syntax: if is an unquanti�ed formula, then 9n � is the existential quanti�cationover all those variables in � which do not occur in . For example 9np(X;Z):X � Y ^Y � Z is the formula9Y:(X � Y ^ Y � Z). This syntax is useful for expressing answers to queries. For example if p(X;Z)were a query, then the above example could denote an answer.The predicate symbols are divided into interpreted predicates and uninterpreted predicates. The functionand constant symbols are divided similarly.For a given computation domainX, the interpreted symbols have a prede�ned interpretation, independentof the programs in which they appear. The = predicate symbol is always an interpreted predicate,interpreted as equality in the underlying domain. Two further predicates which are always interpretedare true and false. Some examples of interpreted function symbols are + and � over numerical domainssuch as the integers.By contrast the semantics of the uninterpreted predicates is dictated by the program. Uninterpretedfunctions and constants have the free interpretation in the underlying domain.An atom containing only interpreted predicates, functions and constants is termed an interpreted con-straint. An atom containing only uninterpreted predicates, functions and constants is termed a useratom. An atom cannot contain both interpreted and uninterpreted symbols.1We admit an additional syntax for atoms constraint A where A is a user atom. This syntax yields anotherkind of constraints called propagation constraints. Unlike interpreted constraints, propagation constraintshave uninterpreted predicates whose semantics are dictated by the program.We now further distinguish two classes of interpreted constraints. These are the basic constraints andapproximation constraints. The conjunction of a set of basic or approximation constraints is also termeda basic or approximation constraint respectively. Constraints of the form V = C where V is a variable1In practice one can admit such atoms (e.g. p(1 + X)) and view them as abbreviations for a conjunction where theequalities are made explicit (e.g. p(Y)^ Y = (1 +X)). 7

and C is a constant are always classed as basic constraints. Similarly true and false are basic constraints.Their interpretation in any computation domain is obvious.Approximation constraints \approximate" basic constraints in the sense that for any approximationconstraint AC there are basic constraints C such that X j= (C ! AC). An example of an approximationconstraint is X :: f1; 2; 3g which states that either X = 1 or X = 2 or X = 3. It approximates each ofthe basic equality constraints X = 1, X = 2 and X = 3. Approximation constraints are a generalisationof Davis' labels [Dav87]. The approximation constraints and the basic constraints need not be disjoint:in other words basic constraints could approximate themselves.A GP (X) program is a set of clauses of the form Head Goal1; : : : ; Goals The head Head is a useratom. The body Goal1; : : : ; Goals is a set of atoms, which may include user atoms and constraints. Aclause with an empty head Goal1; : : : ; Goals is termed a query. The set of clauses whose heads havethe same predicate p are termed the program de�nition of p.An example clause isprofit(Company; P) constraint public(Company),income(Company; I),expenditure(Company;E),P = I � EIt has four atomic goals in its body, of which \constraint public(Company)" is a propagation constraint,\income(Company; I)" and \expenditure(Company;E)" are user atoms, and \P = I � E" is a basicconstraint.3.2 Declarative and Operational Semantics for GP(X)3.2.1 A Framework for Evaluation in GP (X)The framework for evaluation in GP (X) is based on the constraint logic programming scheme of Ja�arand Lassez [JL87, JL86], extended with the concept of propagation agents. An evaluation in GP (X)involves at any time a current goal, a current set of propagation agents, and a current constraint store.Thus the state of an evaluation is represented by a triple < Goal; Agents; Store >.3.2.2 Declarative Semantics for GP(X)We base our semantics on that introduced for the CLP scheme in [JL86]. The computation domain Xprovides an interpretation for the interpreted predicates, functions, and constants. The language LP of aCLP (X) program includes uninterpreted predicates, functions and constants. An interpretation I of LPis based on X if I has the same underlying domain as X, and the same interpretation for the interpretedpredicates, functions and constants.We say an LP formulaF1 X-entails a formulaF2, written F1 j=X F2, to mean that for every interpretationI based on X, if I j= F1 then I j= F2. If an LP formula F is true in every interpretation based on X wewrite j=X F . If a valuation � of the variables makes a formula F true in X, we write X j= F�.Logically a propagation constraint constraint A is equivalent to the user atom A. In fact we shall de�nefor any GP (X) program P and query Q a CLP (X) program clp(P) and query clp(Q) which result byreplacing all propagation constraints \constraintA" by the user atom A. The declarative semantics for Pand Q is, by de�nition, the declarative semantics for clp(P) and clp(Q). Thus the declarative semanticsfor GP (X) programs and queries reduce to the semantics for CLP (X) programs and queries.A clause Head Goal1; : : : ; Goals with free variables X1; : : :Xt as usual denotes the formula8X1; : : :Xt:(Head _:Goal1 _ : : :_:Goals).The meaning of a program is given by the conjunction of its clauses. The denotation of a query Goal1; : : : ; Goals, is the formula :Goal1 _ : : :_ :Goals.8

A solution to a GP (X) query G against a program P is a variable valuation � for which P X-entailsG�. For the purposes of the formalisation of soundness and completeness we use a more general de�nitionof an solution under a constraintDe�nition 1 For a given GP (X) program P , a solution to a query G under a constraint S is anvaluation � for which X j= S� and P j=X G�3.2.3 Operational Semantics for GP(X)We have chosen a transformational semantics for our constraint logic programming system following theapproach of [Sar89] and [HD91].GP(X) States At any point in a GP (X) evaluation, the current state is formalised as a triple< fG1; : : : ; Grg; fA1; : : : ; Asg; fC1; : : : ; Ctg >. The current goal fG1; : : : ; Grg is a set of atoms, whichmay include user atoms and atomic constraints. The current set of propagation agents fA1; : : : ; Asg is aset of user atoms. Finally the constraint store fC1; : : : ; Ctg is a set of interpreted constraints, which mayinclude both basic constraints and approximation constraints.A state < G;A; S > has a logical denotation, which we will often use in reasoning about soundnessand completeness of the operational semantics. The logical denotation of an atomic goal and an atomicconstraint has been discussed in the previous section. The propagation agent Ai has the same denotationas the user atom Ai. The denotation of a set of atomic goals, or agents, or constraints is their logicalconjunction. In the following we sometimes use the symbols G, A and S to refer to sets, and sometimesto logical conjunctions, depending on the context.A derivation via a GP (X) program P can be formalised as sequence of state transitions,< G1; A1; S1 > 7!< G2; A2; S2 > 7! : : : 7!< Gn;An; Sn >., where the possible transitions depend onP . To avoid ambiguity we usually make the program explicit by referring to \P -derivations", and later\P -refutations" and \P -computed answers". A P -derivation starting with the state < G1; A1; S1 > andending in the state < Gn;An; Sn > is written < G1; A1; S1 >=)< Gn;An; Sn >.A query G is evaluated against a GP (X) program by initialising the goal to G,2 the empty constraintstore and an empty set of propagation agents. Thus the initial state is < G; ;; ; >. In general the goal Gmay contain both propagation constraints (such as \constraint public(company)" in the example in sec-tion 3.1 above), basic constraints (such as \P = I�E") and user atoms (such as \income(Company; I)").There are two kinds of terminal state, success states, and failure states. A failure state is a state inwhich the constraint store contains the atom false. As described below, this atom is added wheneverthe constraints in the constraint store S become unsatis�able (i.e. X j= :9S). A success state is onethat has an empty goal and an empty set of propagation agents and whose constraint store is consistent.Thus < ;; ;; S > is a success state whenever S does not contain false. A P -refutation is a P -derivationof the form < G; ;; S1 >=)< ;; ;; S2 >, whose �nal state is a success state. (In practice propagationagents may be present, as long as no propagation on the agents is performed.)State Transitions From certain states several alternative transitions are possible. Thus a GP (X)evaluation involves the search of a tree whose branches correspond to alternative GP (X) derivations.However in this section we concern ourselves purely with the de�nition of individual state transitions.We shall use as an example the integers as a computation domain with basic constraints T1 = T2, andapproximation constraints T3 � T4 and T3 � T4. The terms T3 and T4 are restricted to constants orvariables. Any pair of approximation constraints Ta � Tb ^ Tb � Tc will be abbreviated to Ta � Tb � Tc.Our example program will comprise two predicate de�nitions:2Strictly the goal is the set of atoms in the body of G 9

p1(3; 0) p1(1; 1) p1(2; 3) p2(3; 2) p2(1; 1) p2(3; 4) State Transitions Inherited from CLP(X) As in CLP (X), a user atom p(t1; : : : ; tm) is processedby selecting a clause p(u1; : : : ; um) B1; : : :Bn from the program de�nition of p, (The variables in theclause are renamed so that they are di�erent from the variables occurring in the current state.) The atomp(t1; : : : ; tm) is then replaced in the goal by the set fu1 = t1; : : : ; um = tm;B1 : : :Bng. If the programde�nition of p is empty, then the atom p(t1; : : : ; tm) is replaced in the goal by false. Otherwise, eachclause in the de�nition of p de�nes an alternative transition. The transition can be expressed in thefollowing form (based on [Sar89]):(p(u1; : : : ; um) B1; : : : ; Bn) 2 P< (G [fp(t1; : : : ; tm)g); A; S > 7!< (G [fu1 = t1; : : : ; um = tm;B1; : : :Bng); A; S >and:9X1; : : : ; Xn;B:(p(X1; : : : ; Xm) B) 2 P< (G [fp(t1; : : : ; tm)g); A; S > 7!< (G [ffalseg); A; S >Against our example program, a possible transition is< fp1(X;Y); p2(X;Y)g; ;; ; > 7!< fX = 3; Y = 0; p2(X;Y)g; ;; ; >.As in CLP (X), when a basic constraint is selected it is removed from the current goal and added to theconstraint store using a variant of the tell operation. The tell adds constraints to the constraint storeif they are consistent. The operation tell(C; S) checks the new interpreted constraint C for consistencywith the current store S (X j= 9:(S ^C)), and if consistency is established the constraint store becomesS [C. If consistency is not established (X j= :9:(S ^C)) then the basic constraint false is added to theconstraint store. The resulting state is therefore a failure state.tell(C; S) = � C [S if X j= 9:(S ^ C)ffalseg [S otherwiseThe transition is expressed as follows:< (G [fCg); A; S > 7!< G;A; tell(C; S) >A simple example is the transition< fX = 3; Y = 0; p2(X;Y)g; ;; ;> 7!< fY = 0; p2(X;Y)g; ;; fX = 3g >.To minimise the number of choice points in the evaluation tree in practical systems the previous twotransactions are combined with the test of the constraints in the body, yielding the single transition:(p(u1; : : : ; um) Body) 2 PBody = fc1; : : : ; ckg [fB1; : : : ; BngX j= 9:(S ^ u1 = t1 ^ : : :^ um = tm ^ c1 ^ : : :^ ck)< (G [fp(t1; : : : ; tm)g); A; S > 7!< (G [fB1; : : :Bng; A; (S [fu1 = t1; : : : ; um = tm; c1; : : :ckg) >We will, however, use the individual transactions in the completeness proof in section 3.3.2 below.New GP(X) State Transitions The di�erence from CLP (X) lies in the handling of propagationconstraints. When a propagation constraint constraint Ai is selected, the atom Ai is added to the set ofpropagation agents. The transition is as follows:< (G [fconstraint Aig); A; S > 7!< G; (A [fAig); S >An example is:< fconstraint p1(X;Y); p2(X;Y)g; ;; ; > 7!< fp2(X;Y)g; fp1(X;Y)g; ; >.10

The propagation agents spontaneously and repeatedly cause further state transitions in which new ap-proximation constraints are added, if consistent, to the constraint store. In section 3.4.2 below, we shallformalise an operator prop(Ai; Sold) that extracts from a constraint store Sold and a propagation agentAi an approximation constraint. The extracted constraint is satis�ed by all solutions to the propagationagent with the input constraint store in the following sense. For a GP (X) program P , if � is any solutionto Ai under store Sold , then X j= prop(Ai; Sold)�.It is the spontaneous production of new information, in the form of approximation constraints, thatwe call generalised propagation. Generalised propagation can be seen as an example of the relaxed telloperation of [HD91] which is discussed in more detail in section 5.2, below.For any state < G;A; S > in which Ai is a propagation agent (Ai 2 A), there is a possible state transitioncorresponding to single propagation steps on an agent Ai in each subset Sold of the constraint store S.However if prop(Ai; Sold) is already implied by S then no transition takes place (since the resulting statewould admit all the same transitions as the original state). Otherwise, the transition tell's ACi to theconstraint store S. The transition is as follows:Sold � SAi 2 AX j= :8:(S ! prop(Ai; Sold))< G;A; S > 7!< G;A; tell(prop(Ai; Sold); S) >In our example program prop(p1(X;Y); ;) = (1 � X � 3 ^ 0 � Y � 3) = AC1.Thus there is a transition:< ;; fp1(X;Y); p2(X;Y)g; ; > 7!< ;; fp1(X;Y); p2(X;Y)g; AC1 >.In a sequential implementation, the constraint store Sold used for propagation is the current constraintstore S (i.e. S = Sold). Conversely, suppose the calculation of prop(Ai; Sold) takes place in parallel withsome state transitions. In this case, at the time prop(Ai; Sold) is told back to the constraint store S, thestore may include new constraints (i.e. no longer is S = Sold). Hence the condition Sold � S. We shallgive an example of this in section 3.5.2 below.The �nal transition returns a propagation agent from the set of agents to the current goal. This transitionenables the propagation constraints eventually to be unfolded like ordinary user atoms. The unfolding isnecessary to ensure the soundness of GP (X) computed answers.The transition is as follows: < G; (A [fAig); S > 7!< (G [fAig); A; S >An example is the transition< fp2(X;Y g; fp1(X;Y)g; ; > 7!< fp1(X;Y); p2(X;Y)g; ;; ; >.GP(X) Computed Answers We now de�ne the computed answer returned by a P -refutation.De�nition 2 For a program P , a P -computed answer, to a subquery G with constraint store S0 is9nGS where S is the �nal constraint store in any P -refutation < G; ;; S0 >=)< ;; ;; S >.Formally, no propagation agents can appear in either the initial or the �nal state. However, as notedin section 3.2.3above, propagation agents may be present, as long as no propagation on the agents isperformed.3.3 Soundness and Completeness3.3.1 Soundness of GP(X)Firstly note that constraints are only added to the constraint store using our tell operator. This ensuresthat if the constraint store in any state is not consistent it is false, the state is a failure state, and, byde�nition, no further transitions are possible. 11

For soundness we require that all the computed answers represent correct solutions.De�nition 3 For a GP (X) program P , a computed answer Ans to a query G with constraint storeS0 is sound if every valuation � such that X j= Ans� is a solution to G under constraint 9nGS0.The following lemma follows immediately:Lemma 1 For a GP (X) program P , a computed answer Ans to a query G under constraint S0 issound if and only if X j= 8:(Ans! 9nGS0) and P j=X 8:(Ans! G)The result we shall prove is that for each P -derivation, < G1; A1; S1 >=)< G2; A2; S2 > the �nal statelogically implies the initial state.Lemma 2 For any P -derivation < G1; A1; S1 >=)< G2; A2; S2 >, it is the case thatP j=X 8:(G2 ^A2 ^ S2)! (G1 ^A1 ^ S1).Proof By examining each allowed transition in turn, it is clear that the result holds for P -derivations of length one. Inductively the result follows for derivations of any �nite length.A particular case of this result is when the derivations are in fact complete refutations. In case G1is a query, and 9nG1S1 is a computed answer, there is a P -refutation < G1; ;; S0 >=)< ;; ;; S1 >.Since S1 � S0, the �rst requirement for soundness X j= 8:(9nG1S1 ! 9nG1S0) is satis�ed. Since theP -refutation is sound by the above lemma, P j=X 8:(S1 ! G1), which satis�es the second requirementfor soundness. We have therefore established the following theorem.Theorem 3 For every GP (X) program P , every P -computed answer to any subquery G with anyconstraint store S0 is sound.3.3.2 Completeness of GP(X)In this section we shall not only prove that every correct solution is found by some refutation, but weshall also show that completeness is retained even if the system commits to certain transitions withoutexploring any alternatives. In particular the order of selection of goals is immaterial, and the order,\timing" and number of propagation steps makes no di�erence to the set of reachable success states.Our approach is based on that of Ja�ar and Lassez [JL86] where the computation domain is a prede�nedstructure. Later papers, after [Mah87], specify the domain as a theory and thus obtain a stronger com-pleteness result. However standard domains, such as the Herbrand domain, cannot be de�ned preciselyenough for our needs by a theory, so we have returned to the earlier formalisation.Our completeness requirement is expressed as follows (see [Smo91]):De�nition 4 Over the computation domain X, a set of computed answers R represents a set of solutions�, if, for every solution � 2 �, there is a computed answer r 2 R such that X j= r�.Theorem 4 For any CLP (X) program P , the set of P -computed answers to any query G under withany constraint store S0 represents the set of solutions to G under 9nGS0.Proof For unconstrained queries, the proof is in [JL86], and sketched as part of the proof of the-orem 1 in [Mah87]. The presence of constraints S0 in the initial store only cuts o� derivations12

which yield a computed answer inconsistent with S0 (since in the CLP transitions de�nedabove only the tell operation is a�ected by the current constraint store). Solutions � whichsatisfy such computed answers do not satisfy S0, and therefore they are not solutions to Gunder constraint 9nGS0. Consequently the remaining computed answers indeed represent allthe solutions to G under 9nGS0.As we pointed out in section 3.2.2 above, since the logical denotation of constraint Ai is de�ned to bethe denotation of Ai, the declarative semantics of the program P and goal G are precisely the declarativesemantics of the CLP (X) program clp(P) and goal clp(G) respectively. Consequently the answers to clp(G) against the program clp(P) are precisely the answers to G against P .We now use the completeness of CLP (X) to prove that GP (X) is also complete.Theorem 5 For any GP (X) program P , the set of P -computed answers to any query G with con-straint store S0 represents the set of solutions to G under 9nGS0.

13

Proof For any GP (X) program P , if � is a solution to G under constraint S0, then for theCLP (X) program clp(P), � is a solution to clp(G) under S0. By completeness of CLP (X),the clp(P)-computed answers to clp(G) represent all the solutions. However every clp(P)-refutation of clp(G) can be mapped to a P -refutation of G with the same computedanswer by replacing user atoms with propagation constraints where appropriate, and, whereverthose user goals are selected in the CLP (X) refutation, adding two extra transitions whichadd the atom to the set of propagation agents, and then return it to the user goal. Thus theP -computed answers to G also represent all the solutions.This result is rather trivial. The more interesting question is what happens if the GP (X) evaluationscommits to transitions involving propagation. We must �rstly show that completeness is not lost if weonly admit derivations in which propagation constraints are unfolded last. We must secondly show thatcompleteness is not lost if we only admit derivations in which propagation steps actually take place.We must accordingly show that, by postponing the return of propagation agents to the current goal forunfolding until it is empty, computed answers are not lost. We must then show that no computed answersare lost as a result of propagation.The �rst requirement can be met at once. By modifying the switching lemma of Lloyd [Llo84] to admitconstraints on any computation domain X, we conclude that the order in which goals are unfoldedcannot change a CLP (X) refutation into a failed derivation. Moreover the computed answer returned bythe changed refutation is logically equivalent to the original computed answer. The modi�ed CLP (X)refutation maps to a GP (X) refutation, where the propagation constraints are unfolded last.We now establish two theorems showing that the insertion of extra propagation steps into a GP (X)refutation cannot change its result. The �rst theorem states that the constraint store which includesapproximation constraints added by propagation steps remains logically equivalent to the unexpandedconstraint store. The second theorem states that the number of propagation steps is guaranteed to be�nite. We start by establishing three lemmas.Lemma 6 At any transition in the refutation extended with propagation steps, the constraint store is S[AC where S was the store at this transition in the original refutation, and AC is the set of approximationconstraints added by propagation steps.This lemma is easily proved by induction on the transitions in the refutation.Lemma 7 If the original P -refutation was < G; ;; ; >=)< ;; ;; Sfin >. then for each atom Ai thatappears in any goal in any intermediate state in this P -refutation, P j=X 8:(Sfin ! Ai).This lemma is a simple consequence of lemma 2 above. (In particular it means that each propagationconstraint is a logical consequence of the �nal store.)Lemma 8 If < G; ;; ; >=)< ;; ;; Sfin > is a successful GP (X) refutation without propagation steps;and if < G1; ;; ; >=)< G2; A; S > is a subderivation of it; and if < G1; ;; ; >=)< G2; A; (S [AC) >is the GP (X) subderivation which results from inserting a number of propagation steps into that; thenX j= 9:(S ^AC)Proof Each approximation constraint prop(Ai; Sold) added during the refutation satis�esX j= prop(Ai; Sold)�, for every solution � to Ai with store Sold � S. By lemma 7 above,P j=X 8:(Sfin ! Ai), and Sfin � Sold , therefore X j= Sfin� implies that � is a solution to Ai under Sold . Thus for every valuation � such that X j= Sfin�, also X j= prop(Ai; Sold)�.We conclude thatX j= 8(Sfin ! prop(Ai; Sold)). 14

Since this holds for every approximation constraint prop(Ai; Sold) it also holds for ACwhich is a conjunction of such approximation constraints. Also S � Sfin, and so X j=8:(Sfin ! (S ^ AC)). The consistency of S [AC is now an immediate consequence of theconsistency of Sfin.This lemma shows that the additional approximation constraints cannot give rise to a failure state inthe extended derivation. Thus the addition of a �nite set of propagation steps to a successful refutationyields a new successful refutation. The �nal result says the resulting refutation yields the same computedanswer up to logical equivalence.Theorem 9 If < G; ;; ;>=)< ;; ;; Sfin > is a GP (X) refutation without propagation, and< G; ;; ;>=)< ;; ;; (Sfin [fAC1; : : : ; ACng) > is a GP (X) refutation which di�ers from the �rst onlyby including a number of propagation steps, then X j= Sfin � (Sfin ^Vni=1ACi).Proof Clearly j= Sfin(Sfin ^Vni=1ACi). Taking S = Sfin in the proof of lemma 8 above, weobtain the reverse implication: X j= Sfin ! (Sfin ^Vni=1ACi).If an in�nite number of transitions were inserted into a refutation, the result would no longer be arefutation. In this way the completeness of GP (X) could be threatened if the evaluation \committed"to each propagation step. However the second theorem states that there can never be an in�nite numberof propagation steps.Theorem 10 If < G; ;; ; >=)< ;; ;; Sfin > is a successful GP (X) refutation without propagation steps,the number of propagation steps that could be added to produce extra transitions is �nite.This is guaranteed by a condition on approximation constraints, introduced in the next section, whichensures that any in�nite sequence of propagations would produce an inconsistent constraint store. Inother words an in�nite sequence of propagations could indeed occur in derivations which would havefailed anyway, but not by inserting propagations into a successful refutation.3.4 A Speci�cation of Generalised Propagation3.4.1 Some Conditions on Approximation ConstraintsThe information extracted from a single propagation constraint is informally the best approximation to allits answers. To make this notion formal we �rst introduce a partial ordering on interpreted constraints bylogical implication; that is if A implies B we write A v B. Thus logically stronger constraints are belowlogically weaker constraints in our ordering. Notice that this is an ordering on the logical denotationsof the formulae, not the formulae themselves, thus all logically equivalent constraints are equal. Sinceapproximation constraints are a subclass of the interpreted constraints, this ordering de�nes a suborderingon approximation constraints.We shall now impose a few conditions on the approximation constraints.� They should include true and false.� Over the domain X, every consistent strictly decreasing sequence of approximation constraintswhose free variables belong to a �xed �nite set, should be �nite.The �rst condition merely ensures that every set of interpreted constraints has at least one upper bound(true). The least upper bound can be used to approximate the sets of solutions to a propagation con-straint. Moreover every unsatis�able propagation constraint can be revealed to be so (since approximatedby false). 15

The second condition ensures that successful propagation sequences terminate. If AC1; AC2; : : : arethe approximation constraints added by a sequence of propagation steps, then by our de�nition of atransition, no ACk is logically implied by Vk�1i=1 ACi. Since constraints are closed under conjunction, eachsuch conjunction is itself an approximation constraint, and the sequence of conjunctions is decreasingunder our ordering. The second condition ensures that this sequence stabilises, if it is consistent.In fact every countable set of approximation constraints can be mapped to a decreasing sequence in thesame way. Consequently any such set is either inconsistent, in which case its greatest lower bound isfalse, or else it is consistent in which case the sequence stabilises and we have a greatest lower boundwhich is itself an approximation constraint.Recall that the underlying domain is not necessarily de�ned by a theory. For example the Herbranddomain of logic programming is de�ned by an algebra. Consequently the compactness theorem doesnot apply: there are indeed in�nite sequences which are inconsistent with the Herbrand domain (eg.9Y:X = f(Y), 9Y:X = f(f(Y)), : : :), for which every �nite subsequence is consistent.Similarly over the integers, X � 1; X � 2; : : : is an in�nite sequence which is inconsistent, though every�nite subsequence is consistent. In fact there is no consistent strictly decreasing in�nite sequenceT1i � T2i : i 2 I or T1j � T2j : j 2 J where the T1i,T2i,T1j and T2j are integers or variables froma �xed set of free variables. Thus the class of approximation constraints T1 � T2 and T1 � T2 overthe integers does satisfy our conditions on approximation constraints, since also true � (1 � 1) andfalse � (1 � 2).3.4.2 Information Extracted by a Single Propagation StepWe are now in a position to specify precisely the result of a single propagation step on a constraint.De�nition 5 For a GP (X) program P , the constraint prop(Ai; Sold) extracted by a single propagationstep on a propagation agent Ai with constraint store Sold is the smallest approximation constraint ACi,whose free variables are also free in Ai, and which is satis�ed by all the solutions to Ai under Sold.The intuition behind this de�nition is to extract as much information as possible from the propagationconstraint without excluding any solutions. The restriction that the free variables in the approximationconstraint are also free in the propagation agent is, necessary to avoid potentially in�nite approximationsequences involving more and more variables. Notice that this de�nition depends only on the declarativesemantics of the program and the agent. The result of propagation is independent of the precise programde�nition for the predicate of Ai.For example, consider the result of propagation on the constraint p1(X;Y) de�ned as abovep1(3; 0) p1(1; 1) p1(2; 3) with constraint store fY � 1g. Propagation on p1(X;Y) yields the tightest approximation constraintwhich is implied by bothX = 1^Y = 1 and X = 2^Y = 3. This is 1 � X � 2^1 � Y � 3^X � Y . Thisis a simple example showing the di�erence between approximation constraints and \labels" as describedby Davis [Dav87]. The last atom X � Y cannot be expressed by any label on individual variables.We now show that propagation on a given agent is monotonic in the sense that if there is more informationin the constraint store then more information will be extracted by propagation.Lemma 11 Let Ai be a propagation agent, and S1 and S2 be constraint stores. If S1 v S2 (i.e. S1 ismore constrained than S2), then prop(Ai; S1) v prop(Ai; S2).Proof The condition S1 v S2 implies that j= S1� ! S2� for any valuation �. If � is a solutionto Ai under constraint S1, then P j=X Ai� and X j= S1�. However we immediately concludethat X j= S2�, and so � is also a solution to Ai under S2. Therefore, by de�nition, X j=16

prop(Ai; S2)�. However prop(Ai; S1) is the least approximation constraint satis�ed by everysolution � to Ai under S1, and we can conclude that prop(Ai; S1) v prop(Ai; S2).As an example of this property consider prop(p1(X;Y); Y � 0) and prop(p1(X;Y); Y � 1), where p1 isde�ned as above. Y � 1 is more restrictive that Y � 0, so (Y � 1) < (Y � 0).prop(p1(X;Y); Y � 0) = (1 � X � 3 ^ 0 � Y � 3) = AC1, andprop(p1(X;Y); Y � 1) = (1 � X � 2 ^ 1 � Y � 3 ^X � Y) = AC2.Clearly the tighter constraint store excludes more solutions and allows a tighter approximation constraintto be extracted, and indeed AC2 < AC1.A propagation agent Ai is idle in a state < G;A; S > with Ai 2 A, if no transitions are possible bypropagating on Ai. This can be formalised as:De�nition 6 A propagation agent Ai 2 A is idle in < G;A; S > if for all subsets Sold � S,X j= S ! prop(Ai; Sold)The previous lemma says that Ai is idle in < G;A; S > if (and only if) X j= S ! prop(Ai; S).3.4.3 Propagation SequencesIn this subsection we shall take an initial state < G;A; S0 > and we shall consider what can result froma sequence of propagation steps, assuming no other transitions take place. Thus each state that we shallconsider has the same goal G and the same set of propagation agents A.If every agent Ai 2 A is idle, then no further propagation steps can take place. In our framework apropagation sequence is a derivation < G;A; S0 >=)< G;A; Sfin > comprising solely propagation stepsand in whose �nal state all the propagation agents are idle. In this section we shall show that for anyinitial state < G;A; S0 > all propagation sequences yield, up to logical equivalence, the same �nal state< G;A; Sfin >.To this purpose we �rst de�ne an operator fix which, for any given propagation agent Ai maps constraintstores to constraint stores. fix(Ai; S0) is the �nal store which results from propagating on Ai until it isidle.In fact it can be shown that Ai is idle in S0 ^ prop(Ai; S0):Lemma 12 For any constraint store S0 and propagation agent Ai,if S = (S0 [prop(Ai; S0)) then X j= S ! prop(Ai; S)Proof Let ACi = prop(Ai; S0). ACi is satis�ed by every solution � to Ai under S0. Therefore,for every such �, X j= S0�^ACi�. Thus � is also a solution to Ai under (S0^ACi) = S. But,as shown above, every solution to Ai under S is a solution to Ai under S0 � S. Therefore theresult of propagation on Ai with S remains ACi � S.By monotonicity it then follows that no sequence of propagations on Ai can produce more informationthan prop(Ai; S0). Thus we can de�ne fix(Ai; S0) very simply as S0 ^ prop(Ai; S0).We can now establish three properties of the operator fix for any given agent Ai.Theorem 13 For any propagation agent Ai, fix(Ai) is a monotonic, decreasing and idempotent operatoron constraint stores.Using these properties of fix it is simple to show that for any propagation agents Ai and Aj,X j= fix(Ai; fix(Aj ; S0)) � fix(Aj ; fix(Ai; S0)). 17

Since every propagation sequence is �nite, as shown above, we are sure to reach a state where all theconstraints are idle. The above result shows that sequences of propagations on each agent can be reorderedat will without changing the �nal result. Moreover by monotonicity it follows that the same �nal resultis still obtained however the individual propagation steps on the di�erent agents are interleaved.Theorem 14 For any given initial state < G;A; S >, every propagation sequence produces the same�nal state < G;A; Sfin > up to logical equivalence.An example propagation sequence, using predicates p1 and p2 de�ned as before is:prop(p1(X;Y); ;) = (1 � X � 3 ^ 0 � Y � 3) = AC1.Moreover prop(p2(X;Y); AC1) = (1 � X � 3 ^ 1 � Y � 2 ^ Y � X) = AC2.Finally prop(p1(X;Y); AC2) = (1 � X � 1 ^ 1 � Y � 1) = AC3.These propagations produce the following propagation sequence:< ;; fp1(X;Y); p2(X;Y)g; ; > 7!< ;; fp1(X;Y); p2(X;Y)g; AC1 > 7!< ;; fp1(X;Y); p2(X;Y)g; AC1[AC2 > 7!< ;; fp1(X;Y); p2(X;Y)g; AC1[AC2 [AC3 > :It is interesting to follow di�erent propagation sequences that lead to the same derivation< ;; fp1(X;Y); p2(X;Y)g; ; >=)< ;; fp1(X;Y); p2(X;Y)g; f1 � X � 1; 1 � Y � 1g >.3.5 Aspects of Programming in GP(X)3.5.1 Unfolding Propagation ConstraintsIt was stated in section 3.1 above that logically a propagation agent Ai is equivalent to the user atomAi. However neither a single propagation step nor a whole propagation sequence is guaranteed to extractapproximation constraints logically equivalent to Ai.As much information is extracted as can be expressed using approximation constraints, but in generalthere may remain further information not expressible as approximation constraints. In particular if apair of goals are inconsistent, independent propagation will not necessarily reveal this. Over the integers,approximated as before by � and �, consider the propagation agentr(X;Y) de�ned by the factsr(1; 2) r(2; 3) r(3; 1) The information extracted in fix(r(X;Y); ;) is that X and Y lie between 1 and 3. Now if r is de�ned asabove and s is de�ned by the clausess(1; 3) s(3; 2) s(2; 1) then propagation on the two agents r(X;Y), and s(X;Y) will produce no more than 1 � X � 3; 1 � Y � 3in the �nal constraint store. However the result of the query r(X;Y); s(X;Y) is, of course, failure.This example shows that for soundness of GP (X) it is necessary that evaluation should not terminateuntil the constraints in the constraint store imply the truth of the propagation agents. This is enforcedin our operational semantics by de�ning a success state to be one in which the set of propagation agentsis empty, so that the agents are guaranteed to be returned to the goals and unfolded.In traditional constraint propagation systems, the propagation is complemented by search routines whichnon-deterministically instantiate problem variables to values in their domains. This \labelling" enablesfurther propagation to take place, and eventually ensures that the propagation constraints are satis�ed.The use of propagation agents additionally as goals, treated by unfolding, has the e�ect of adding to theconstraint store the appropriate basic constraints in the domain of computation to satisfy the propagationconstraint. Thus it is an appropriate (and automatic) generalisation of labelling in �nite domains. Inthe crossword program, for example, the labelling is done solely by unfolding the propagation constraintseach time that no further propagation is possible. Nevertheless in general the programmer is also free18

to write his own labelling procedures, and they will be treated before any unfolding of the propagationconstraints is allowed to begin.3.5.2 Parallel Evaluation of Propagation StepsTheorem 14 above frees the user from all concerns about the scheduling of propagation steps. Propagationmay be sequential, in which case each propagation step uses the latest constraint store, or the extractionof information from propagation agents and constraint stores may be performed in parallel. For examplepropagation on two agents p1(X;Y) and p2(X;Y) in the empty store performed sequentially (p1(X;Y)then p2(X;Y)) yields the following two transitions,< ;; fp1(X;Y); p2(X;Y)g; ; > 7!< ;; fp1(X;Y); p2(X;Y)g; (1 � X � 3^ 0 � Y � 3) > 7!< ;; fp1(X;Y); p2(X;Y)g; (1 � X � 3^ 1 � Y � 2 ^ Y � X) > :However if the calculation of prop(p1(X;Y); ;) and prop(p2(X;Y); ;) are performed in parallel, the fol-lowing transitions might take place:< ;; fp1(X;Y); p2(X;Y)g; ; > 7!< ;; fp1(X;Y); p2(X;Y)g; (1 � X � 3^ 0 � Y � 3) > 7!< ;; fp1(X;Y); p2(X;Y)g; (1 � X � 3^ 1 � Y � 3) > :The example shows that concurrent propagation may converge more slowly on the �nal �xpoint. However,it is ultimately guaranteed to converge to the same �xpoint as sequential propagation.If other transitions take place before all the agents are idle, the computed answers remain correct, asshown above, but the search tree may be greater than necessary. (After the two steps above there remaintwo clauses for both p1 and p2 that are consistent with the constraint store.) Notice that \concurrentpropagation" can still be taking place even while unfolding transitions are made.3.6 Termination in GP (X)Termination of the search for answers to a propagation constraint is not guaranteed. Non-terminationdue to unfolding is inherited from CLP (X): in practice the programmer is responsible for ensuring thatunfolding should terminate. Just as any user goal in CLP (X), a propagation constraint in GP (X) canonly be evaluated after the clause in whose body it appears has been unfolded. In this sense GP (X) isno di�erent from CLP (X).There are two di�erences. Firstly all answers to a propagation constraint are generally required insteadof just one as in CLP (X). Of course backtracking will generally imply that many answers to a goal mustbe found in CLP (X) as well. The theoretical problem remains that in CLP (X) every answer lies atthe end of a terminating success branch, whilst the requirement during propagation for all answers to apropagation constraint implies that any in�nite branch in the search tree can cause non-termination ofa propagation step.3Secondly, a propagation constraint may be evaluated and re-evaluated many times in GP (X). Luckilythis does not alter the termination behaviour of the program. The reason is that on later evaluations theconstraint store is logically at least as strong as before. Consequently the later evaluations may bene�tfrom extra pruning of some branches, but no new in�nite branches can arise.Implementations, like ours, that postpone unfolding until all propagation agents are idle, may thereforesacri�ce completeness waiting for a propagation step to terminate. However our framework admitspropagation taking place in parallel with unfolding, and in this case completeness is preserved at the riskof certain branches in the search tree being \cut o�" later than necessary.3But it frequently does not, as we show below in section 3.7.3.19

3.7 Topological Branch and BoundWe use the name \topological branch and bound" as a description of our technique for extracting ap-proximation constraints from a propagation agent. The technique is based on a form of branch andbound search through the answers to the propagation agent, where the bound is just a lower bound inour ordering on approximation constraints.3.7.1 Evaluating Propagation ConstraintsConceptually, the calculation of the information prop(Ai; S) extracted in a propagation step requires� �nding all the computed answers to the goal Ai with store S� �nding the smallest approximation constraint which is an upper bound for the set of computedanswersLemma 15 An approximation constraint ACi is an upper bound on the set of computed answer to aquery G with constraint store S if and only if ACi is satis�ed by all solutions to G under S.Proof If ACi is satis�ed by all solutions to G under S, then by soundness it is an upper boundon the computed answers. If ACi is not satis�ed by some solution �, then by completenessthere is a computed answer Ans such that X j= Ans� and it is not the case that Ans v ACi.Therefore ACi is not an upper bound on the computed answers.Using this result, when calculating prop(Ai; S), the system can use the set of computed answers to Aiwith S. Notice, though, that computed answers are de�ned only for states in which the set of propagationagents is empty. As noted in section 3.2.3 above, we can allow propagations to be present as long as theyare not used to perform propagation steps. Therefore, when computing answers to a propagation agent,the remaining propagation agents are temporarily \suspended".3.7.2 An ExampleTo illustrate the topological branch and bound algorithm we shall use as computation domain the Her-brand universe. The basic constraints are equations T1 = T2, and we shall also use equations as approxi-mation constraints. As an example, using equations as approximation constraints, the best approximationfor the two answers X = a ^ Y = a and X = b ^ Y = b is X = Y .We now describe the calculation of prop(t(X;Y; Z); X = a), using the following program de�nition.t(b; c; d) t(a; b; b) t(a; c; c) t(a;W;W) tt(W)t(a; b; c) t(a; c; d) We assume the predicate tt also has a program de�nition, but we will not need it to perform propagationon t(X;Y; Z)!The initial approximation constraint AC0 is set to false.After each answer Ans to the goal t(X;Y; Z) is retrieved it is �rst checked for consistency with theconstraint store X = a. If Ans^X = a is unsatis�able, then the answer is thrown away. The �rst answeris X = b ^ Y = c ^Z = d. This is indeed inconsistent with X = a and the answer is thrown away.20

If no consistent answers are found, then constraint propagation has detected an inconsistency, and thepropagation sequence terminates producing the approximation constraint false. In our example, however,there are further answers which are consistent with X = a.When a consistent answer Ansi is found it is added to the current best approximation, and the pairfACi; Aig is approximated yielding a new approximation constraint ACi+1. The next consistent answerto t(X;Y) is X = a^Y = b^Z = b, and this is also the next approximation. Call it AC1. The following(consistent) answer to t(X;Y) isX = a^Y = c^Z = c. The best approximation to X = a^Y = b^Z = band X = a ^ Y = c ^ Z = c is X = a ^ Y = Z. Call it AC2.During the search for an answer, basic constraints are added to a local constraint store LS. If atany stage LSi+1 ! ACi, then the local search is abandoned. Search for new answers continues bychoosing other clauses to unfold. After unfolding the next clause, the local constraint store LS3 containsfX = a; Y = W;Z = Wg. Although the refutation is not yet complete, and in fact there may be noconsistent answers to tt(W), X j= 8:(LS3 ! AC2). Consequently it is unnecessary to search further: anyanswer Ans obtained via this clause will be logically tighter than the current approximation AC2, andtherefore AC2 will remain the tightest approximation to AC2 and Ans.Propagation terminates as soon as the approximation constraint ACi is implied by the constraint store,X = a! ACi. In this case no new information could be extracted, and so prop(t(X;Y; Z); X = a) = true.The next clause is t(a; b; c), and yields answer X = a ^ Y = b ^ Z = c. The best approximation to thisanswer and X = a ^ Y = Z is simply X = a. Call it AC3. This is no stronger than the originalconstraint store, and therefore no new information has been extracted by propagation on t(X;Y; Z).Although there are further clauses de�ning t, there is no need to search further, and the calculation ofprop(t(X;Y; Z); X = a) terminates producing the approximation constraint true.Otherwise propagation terminates when there are no further alternative clauses to unfold. Then thecurrent approximation constraint is added to the constraint store. Thus prop(t(X;Y; Z); X = b) producesX = b ^ Y = c ^ Z = d.3.7.3 Decision ProceduresThus for GP (X) three decision procedures are required.� For checking consistency, the system must support an e�ective decision procedure for interpretedconstraints overX (the same procedure is required for CLP (X)). This requires a decision procedureto establish a proof of X j= 8:(Vni=1Ci! false) where the Ci are atomic interpreted constraints.� For extracting approximations, the system must additionally support an e�ective procedure for pro-ducing the smallest approximation constraint which is an upper bound for an answer and a currentapproximation. The approximation AC for an agent Ai must satisfy X j= 8:(9nAiVni=1Ci)! AC,where the Ci are interpreted constraints.� In section 3.2.3 above another e�ective decision procedure was mentioned, to determine if an ap-proximation constraint is a logical consequence of the current store. This is needed again here totest if the current approximation constraint AC is already implied by the local constraint store col-lected on a certain branch of the search tree. The formula to be proved is X j= 8:(Vni=1Ci ! AC),where the Ci are interpreted constraints.3.7.4 Interleaving Answering and ApproximationIn practice the evaluation of propagation constraints interleaves the �nding of individual answers and theirgeneralisation. To make this possible we assume that our procedure for extracting approximations canreturn the smallest approximation constraint which is an upper bound for an answer and an approximationconstraint. We now prove that to approximate a �nite set of computed answers it is possible perform theapproximations pairwise. 21

Lemma 16 If A2 is the best approximation of fD1; D2g and A3 is the best approximation of fA2; D3g,then A3 is the best approximation of fD1; D2; D3g.Proof Call AC the best approximation for D1; D2; D3. Clearly A3 approximatesD1 and D2 andD3, therefore AC � A3. Moreover AC approximates D1; D2, so A2 � AC. ConsequentlyAC approximates A2 and D3, so A3 � AC. Therefore AC � A3.This lemma generalises to �nite sets of answers by induction.Recall that in calculating prop(t(X;Y; Z); X = a) we used pairwise approximations to extract X = a asthe best approximation for the three answers X = a ^ Y = b ^ Z = b and X = a ^ Y = c ^ Z = c andX = a ^ Y = b ^ Z = c.3.7.5 Cutting All Remaining BranchesWe now describe two optimisations which �t naturally into the evaluation of propagation constraints.Both optimisations depend upon the interleaving of answering and approximation. At any point in theevaluation of a propagation constraint the system has available� the constraint store S� the current approximation constraint AC which is the smallest approximation constraint which isan upper bound for the answers found so farThe current approximation constraint can be used just like the current best cost in a branch and boundsearch. However it can also be used, in a way not available in branch and bound, to prune o� all theremaining branches of the search tree.Using the procedure which decides if an approximation constraint is implied by the constraint store S, itis possible to prune the evaluation of a propagation constraint by interleaving the �nding of answers andgenerating new approximation constraints AC; and terminating the computation as soon as X j= S !AC.Recall that we used the interleaving to extract the intermediate approximation AC3 = X = a forprop(t(X;Y; Z); X = a), At this point the current best approximation was already as strong as theoriginal constraint store X = a, and therefore the search for further answers stopped.This optimisation is very important for propagation constraints de�ned by large numbers of clauses. Forsuch constraints it is often easy to �nd a few solutions, but very expensive to �nd them all. Its signi�canceis illustrated by the crossword compilation application described below 4.1.1.3.7.6 Cutting o� the Current BranchWhen exploring a single branch the system collects locally a set of basic constraints extracted during theunfolding of clauses. The conjunction of all the basic constraints extracted along a branch goes to makeup a single answer to the propagation constraint. If this answer is logically stronger than the currentapproximation constraint (which approximates all the answers found so far), then it cannot a�ect the�nal result.Branch and bound search bene�ts from the observation that there is no need to explore to the end a branchthat is already more expensive than the current best branch. In evaluating a propagation constraint thesame observation applies: there is no need to explore further if the local constraints gathered on a branchare already logically stronger than the current approximation constraint.The required decision procedure is the same as that for determining if a propagation agent is idle. Weneed to determine if the current approximation constraint is implied by a set of interpreted constraints.22

Recall that in evaluating prop(t(X;Y; Z); X = a), the current best approximationAC2, at the time whenthe clause t(a;W;W) tt(W) was unfolded, was X = a ^ Y = Z. After unfolding the clause thelocal constraint store LS contained X = a ^ Y = W ^ Z = W . Since X j= 8:LS ! AC2, any furtheranswer Ans along this branch was bound to satisfy Ans! LS ! AC2. Consequently AC2 was also thebest approximation for AC2 and Ans for each such Ans. Since pairwise approximation is equivalent toapproximating all the answers at once, AC2 was guaranteed to remain the next best approximation afteradding all the answers (whether there are any or not!) using this clause.This optimisation proves to be very valuable for propagation constraints de�ned by recursive clauses.This will be illustrated using the member predicate in section 4.2 below.4 Some Instances of GP(X)Two implementations of generalised propagation over the Herbrand universe have been completed. Oneimplementation is in the Elipsys system [DSVX91] which runs on a parallel machine. Using �nite domainsas the approximation language, it has achieved good speedups on disjunctive scheduling programs [PV92]and for temporal reasoning [Lev91].In the paper we describe the other implementation which is embedded in a sequential prolog compilersystem. It is an implementation of generalised propagation over the Herbrand universe GP (HU), and itis called Propia. Propia extracts information about equalities from propagation constraints, and it o�ersa number of approximation languages some of which will be described below. Propia is implemented inSepia [MAC+89] with the help of some special added built-ins.An important requirement for the e�cient implementation of generalised propagation is a sophisticatedcoroutining facility. Sepia has a special built-in delay condition which enables a delayed goal to be wokenas soon as any of its variables are \touched" during uni�cation: this includes the uni�cation of twovariables in the clause as well as further instantiation. The delayed clause can then be redelayed againon the same condition. Such a facility provides the ideal support for propagation agents which need bechecked if and only if any of their variables are \touched" in this way.During the calculation of a single propagation step it is necessary to suspend other propagation agentsand to collect new constraints into a local constraint store. Both these requirements are satis�ed inPropia by simply renaming the variables in the propagation agent Ai to new variables in a copy AAi ofthe agent. Thus no agents are woken when AAi is evaluated, and local answers are expressed as bindingson the new variables in AAi.Of special interest is the implementation of the topological branch and bound. If the propagationconstraint is p(X;Y; Z) the current best approximation is held as a term. Thus the approximationX = a ^ Y = Z is held as the term p(a;W0;W0) (where W0 is a new variable). Similarly answers arerepresented by terms. Thus, for example, p(a; b; c) might represent an answer to the goal p(X;Y; Z).After retrieving an answer the new approximation is obtained by anti-unifying the answer with the previ-ous approximation. The result of anti-unifying p(a; b; c) with p(a;W0;W0), for example, is p(a;W1;W2).Another built-in predicate is used to prune the search as soon as the answer is more constrained thanthe current best approximation. This built-in checks for inequality between two terms. Speci�cally itproves 8nT1(:T1 = T2). Thus if p(X;Y; Z) is the agent being used for propagation, and if p(a;W;W) isthe current best approximation, it checks that 8W::p(X;Y; Z) = p(a;W;W). This built-in delays, andredelays, on the free variables until the goal is a consequence of the current constraints, or contradictsthem. Thus the goal 8W::p(X;Y; Z) = p(a;W;W) delays. However if X;Y and Z become instanti-ated it is woken. The instantiated goal 8W::p(a; b; c) = p(a;W;W) succeeds, but the instantiated goal8W::p(a; b; b) = p(a;W;W) fails (since indeed the terms are equal for W = b).Now each time an answer to AAi is found, and a new best approximation is extracted and it is encodedas a term ACi. If the term ACi is a variant of the original propagation agent Ai, the search terminatesproducing no new information. Otherwise the disequality 8nAAi(:AAi = ACi) is added as a (delayed)goal, and the search restarts. If ACi approximates all the answers to AAi, then the search will fail, sinceall answers will be pruned by the disequality. In this case ACi is indeed the result of propagation on Ai.23

4.0.7 Evaluating Propagation SequencesIn the case of �nite domain propagation, the procedure for performing propagation on a single constraint iscalled REV ISE [MF85]. Essentially the evaluation of a propagation sequence for generalised propagationcan be obtained from the AC-3 algorithm of Mackworth [Mac77] by replacing REV ISE with topologicalbranch and bound.A feature of AC-3 is that after propagating on a constraint C, C is removed from the list of constraintsto be dealt with in the current propagation sequence. C is only added to the list again if some of itsvariables are a�ected by propagation on other constraints. For the correctness of AC-3 it is thereforenecessary that propagation on a single constraint is itself a �xpoint operation, and as we showed abovein section 3.4.3 above, prop(Ai; S) [S = fix(Ai; S) is already a �xpoint. This condition is not satis�edby relaxed tell [HD91], which is an abstraction of generalised propagation (see below 5.2).4.0.8 Propagation as Consistency CheckingVarious alternative approximation languages are available in Propia. The more expressive the approxi-mation language the more information is extracted, but the costlier the propagation.One very simple approximation language has just two approximation constraints: true and false. Wecall this the consistency approximation language. With this language the result of propagation on aconstraint is either nothing (in case an answer was found) or failure (in case none could be found). Thebehaviour of the crossword program with this language is to use each constraint as a continual checkon the choices made so far. This ensures that no inconsistent choices are made, but that no \active"constraint propagation is done.The advantage of using such a trivial approximation language is that in this case topological branch andbound is very e�ective in optimising the evaluation of propagation constraints. Suppose a certain con-straint is being evaluated for propagation. As soon as a single answer is found, the current approximationconstraint (approximating the answers found so far) becomes true. Since true is implied by the currentconstraint store (since it is implied by any constraint store) propagation terminates immediately.Clearly with the trivial approximation language generalised propagation is e�cient and economic in itsbasic operations. Assuming the propagation agents are all de�ned by at relations, as is the normalassumption for constraint propagation problems, then when a set of n variables become instantiatedduring search it su�ces to check once each of the agents involving an a�ected variable. In this contextthe uni�cation problem reduces to a matching problem which has constant cost for each tuple checked.Thus the worst case complexity for consistency checking is e � d where e is the number of problemconstraints and d the number of tuples de�ning the largest constraint.However Propia only checks constraints woken by the newly instantiated variables. In the crosswordapplication (described in the next section), for example, only two constraints are ever woken by theinstantiation of a single letter, however big the crossword. Sepia o�ers indexing on all arguments, ordersthe indices by their e�ectiveness, and in checking a partially instantiated query it uses the most e�ectiveindex amongst those argument that are instantiated; and, of course, the uninstantiated arguments cannotcause consistency to be violated. Consequently, for example, an average propagation step in the crosswordapplication with a 25000 word lexicon takes only ten milliseconds on a Sun4.Consistency checking o�ers an alternative to intelligent backtracking, in this sense. If every user goalis annotated as a propagation constraint, then the propagation prevents any further (irrelevant) choicesbeing made if any other goal is already unsatis�able. This is because the failure is detected immediatelywhen attempting propagation.4.1 GP(Datalog)Datalog is logic programming without functions. The basic constraints in Datalog are equalities, X = cor X = Y where c is a constant and X and Y are variables. There is no termination problem for Datalogqueries, and thus propagation steps can always be made to terminate. Moreover for a propagation24

1 2 3 4 5 6

A

B

C

D

E Figure 4.1: A toy crossword exampleagent with n variables, each propagation step reduces the number of distinct variables by one (either avariable is instantiated to a constant, or two variables are uni�ed). Consequently there is a maximumof n propagation steps on each propagation agent. A consequence is that far less propagation steps areperformed by GP (Datalog) than would be necessary to enforce arc consistency over a suitable domain.Crossword compilation provides evidence for this.4.1.1 Crossword CompilationCrossword compilation is an application of GP (Datalog). We now give a toy crossword compilation toillustrate a GP (Datalog) evaluation. The crossword to be �lled is:The dictionary is encoded as a set of facts:w5(b; r; a; k; e) w4(b; u;m; p) w6(b; e; t; t; e; r) w5(b; l; o; k; e) w4(p; l; a; y) w6(c; a; n; n; o; n) w5(s; t; e; a;m) w4(f; r; e; e) w6(w; e; a; l; t; h) w5(c; r; e; a;m) w4(s; t; o; p) w6(d; e; a; r; t; h) w5(p; a; t; c; h) w5(p; i; t; c; h) The problem is posed as the following query constraint w4(A2; A3; A4; A5);constraint w6(C1; C2; C3; C4;C5;C6);constraint w5(A2; B2; C2; D2; E2);constraintw5(A5; B5; C5; D5; E5)Recall that a GP (X) refutation is a sequence is state transitions, where each state is a triple < G;A; S >comprising the current goal G, set of propagation agents A and constraint store S. For the above query,the refutation starts with an empty set of propagation agents and an empty constraint store. First allthe propagation constraints are moved into the set of propagation agents yielding the new state:25

< ;;f w4(A2; A3; A4; A5);w6(C1; C2; C3; C4;C5;C6);w5(A2; B2; C2; D2; E2);w5(A5; B5; C5; D5; E5) g;; >which has an empty goal, four propagation agents, and an empty constraint store.Next propagation is attempted on all the agents (i.e. the blank words). However no new information iselicited. The �rst agent, corresponding to the blank word w4(A2; A3; A4; A5), is then returned to thegoal. This time it is no longer a propagation constraint, but a user atom. The resulting state is:< fw4(A2; A3; A4; A5)g;fw6(C1; C2; C3; C4;C5;C6);w5(A2;B2; C2; D2; E2); w5(A5;B5; C5; D5;E5)g;; >The atom in the goal is unfolded, using the �rst clause in its program de�nition, yielding:< ;;fw6(C1; C2; C3; C4;C5;C6);w5(A2;B2; C2; D2; E2); w5(A5;B5; C5; D5;E5)g;fA2 = b; A3 = u;A4 = m;A5 = pg >Now propagation is attempted again on all the agents. UsingA5 = p, propagation onw5(p;B5; C5; D5; E5)yields C5 = t ^ D5 = c ^ E5 = h. Using C5 = t, propagation on w6(C1; C2; C3; C4; t) yieldsC2 = e ^ C3 = a ^ C6 = h. Now propagation on w5(b; B2; e;D2; E2) yields false, and the systembacktracks to the unfolding of w4(A2; A3; A4; A5).The choices \play" and \free" are similarly proved inconsistent by propagation, so �nally the evaluationreaches the state:< ;;fw6(C1; C2; C3; C4;C5;C6);w5(A2;B2; C2; D2; E2); w5(A5;B5; C5; D5;E5)g;fA2 = s; A3 = t; A4 = o;A5 = pg >Propagation yields, as before, C5 = t ^D5 = c ^E5 = h^C2 = e^C3 = a^C6 = h. Now propagationon w5(s; B2; e;D2; E2) yields B2 = t ^D2 = a ^E2 = m. The crossword is completely �lled except forthree letters. The state is as follows:< ;;fw6(C1; C2; C3; C4;C5;C6);w5(A2;B2; C2; D2; E2); w5(A5;B5; C5; D5;E5)g;fA2 = s; A3 = t; A4 = o;A5 = p;B2 = t; C2 = e;D2 = a;E2 = m;C5 = t;D5 = c; E5 = h;C3 = a;C6 = hg >The propagation agents are now, one by one, returned to the goal and unfolded. The constraint storeprecludes all choices except ones that lead to a solution. Thus the four solutions are found without furtherbacktracking.In real crossword grids, with real dictionaries, very little propagation is possible until the system startsto guess words that instantiate the second or third letter in an intersecting word. In these early stagesthe calculation of propagation steps quickly terminates because the tightest approximation soon becomestrue.As the crossword �lls up, the propagation begins to produce information which ensures no bad choicescan be made later. At this point propagation sequences begin to grow in length, as information extractedfrom one constraint enables further information to be extracted from others.To sum up, little work is invested in generalised propagation by the system until it actually starts to beuseful. Evidence for the naturally good behaviour of generalised propagation on crossword compilation isthis. The crossword program sketched above is perfectly naive. In fact a meta-program has been writtenwhich takes any crossword drawn as a grid and generates such a program automatically. Yet generalisedpropagation applied to the resulting program happens to yield a crossword compilation algorithm verysimilar to one developed specially for crosswords and described in [Ber87]. On a Sun4 workstation, witha 25000 word lexicon, a crossword grid from the International Herald Tribune can be compiled by Propiain 90 seconds. 26

4.1.2 Equalities Between VariablesFor the crossword application above, the only useful information concerns values for variables (expressedas an equality between a variable and a constant). In this section we shortly demonstrate the usefulnessof extracting information about equalities between variables. Applications where such information isimportant include those involving boolean variables, such as circuit design, analysis and testing, andpropositional satis�ability problems.Such applications involve complex boolean functions describing the behaviour of, for example, circuitcomponents which are already analysed. Each such function can be used immediately as a propagationconstraint. Let us choose the very simple \and-gate", which appeared in section 1.4 above, to illustratethe following discussion. Its behaviour can be described using four clauses:and(true; true; true) and(true; false; false) and(false; true; false) and(false; false; false) The approximation language admits any equality as an atomic approximation constraint. In a programwhere constraint and(X,Y,Z) appears as a goal, the following information can be extracted:Constraint store Information extractedEmpty NothingX = false Z = falseX = true Z = YY = false Z = falseY = true Z = XZ = true X = true ^ Y = trueX = Y Z = XEven though boolean variables have �nite (2-element) domains, �nite domain propagation cannot elicitany information in case, for example, the constraint store has X = true. In this case both Y and Zcould take either value true or false. For real problems in the applications listed above, the extractionof information of the form Z = Y is essential for performance reasons.To obtain such a behaviour on these applications in CHIP [SD90, SD87b, SD87a, Sim88, SP89] it wasnecessary to use a form of guarded clause called \demons". The demon clauses de�ning the and predicateexplicitly use the constraints in the \Constraint Store" column above as guards. Each demon remainsidle, until the current constraint store logically implies its guard. At this point the clause is immediatelyselected and unfolded. However no choice point appears in the evaluation tree: the system commits tothe selected demon clause and the other clauses are excluded. Expressed using an extended clause syntax,with a vertical bar to separate the guard from the clause body, the and demons are:and(X;Y; Z) X = falsejZ = falseand(X;Y; Z) X = truejZ = Y: : :Whilst the demons for and are built-in in CHIP, for complex boolean functions the CHIP programmer isrequired to generate a set of demons for himself. To encode a set of demons for a propagation constraintthe programmer must consider all cases and generate each demon body by, e�ectively, performing thepropagation in their head. Propagation constraints like and can often be encoded into demons. However,experiments have shown that the number of distinct demons required for even moderately complexboolean functions can often be over ten thousand.The relationship between generalised propagation and committed choice languages will be discussed inmore detail below.4.2 GP(HU)In the last section we examined applications run using Propia which did not use functors.In fact all practical Propia programs use functors. We �rst consider some programs which use functors,27

but whose propagation steps yield only bindings between variables and other variables or constants.A propositional satis�ability problem is often expressed as a set of clauses,(X _ Y _ :Z) ^ (:X _ :Y) ^ (X _ Z) ^ : : :.The idea is to obtain an assignment of t or f to all the propositional variables so as to satisfy everyclause. Such a problem can be expressed in logic programming as a query: pclause([+X;+Y;�Z]); pclause([�X;�Y]); pclause([+X;+Z]); :::with the following de�nition of pclause:pclause([+tj]) pclause([�f j]) pclause([jT]) pclause(T)There is no restriction on the size of a clause, so the list in the argument of pclause may be arbitrarilylong. However atoms of the form pclause(List) can perfectly well be used as propagation constraints, andused for pruning the search for a solution to satis�ablity problems. For example propagation on the goalpclause([+X]) immediately produces the answer X = t, and similarly pclause([�X]) produces X = f .Thus generalised propagation immediately assigns values to variables appearing in singleton clauses,which is a technique used by specialised programs for solving propositional satis�ability problems.Given a �xed set of clauses, with a �xed bound on the number of variables in a clause, it is possibleto use CHIP's demons to perform similar propagation. Though in this case the \calculation of the bestapproximation" for each agent and constraint store has already been done by the programmer, it isinteresting to record that Propia when applied to a benchmark of propositional satis�ability problems[MR91], had execution times on the same hardware similar to that obtained using CHIP's demons. Thisreects the performance of the Sepia engine and the e�ciency of the topological branch and boundalgorithm.We now consider what happens when functors appear in the approximation constraints. The informationextracted remains information about equalities between terms. However the answers to a query maynow contain local variables. For example the �rst answer to the query member(1; Y) given the usualde�nition of membermember(X; [XjT]) member(X; [HjT]) member(X;T)is 9T:Y = [1jT]. Theoretically we can eliminate such local variables in approximation constraints by ad-mitting functions functor(Atom), arity(Atom) and arg(Position;Atom) as approximation constraints,where functor(f(X;Y)) = f , arity(f(X;Y)) = 2 and arg(1; f(X;Y)) = X. The above answer couldnow be expressed as functor(Y) = dot ^ arity(Y) = 2 ^ arg(1; Y) = 1. However we use a shorthandwhich is to admit the symbol in answers. Thus we write Y = [1j].Using these approximation constraints we wish to show that in�nite decreasing consistent sequence are�nite. For a given depth of function embedding there are only �nitely many equalities in a given �xedset of free variables which can be used to approximate a propagation agent. Subsequently, to achievea tighter approximation it is necessary to use a deeper embedding of functions. An in�nite sequence ofapproximations therefore will include terms of greater and greater depth. Since terms of in�nite depthdo not denote elements of HU , such in�nite sequences cannot be consistent (see also section 3.4.1 above).In many applications it is of interest to detect the success or failure of membership as soon as possible,instead of just using member as a check. Yet even this is a serious problem (see for example [Nai86]).For example even if the tail of the list is known most control regimes require the check to delay until thehead of the list either equals or fails to unify with the �rst argument.Generalised propagation can be applied to any member propagation constraint without fear of non-termination. The information extracted from \constraint member(M; [E1; : : : ; EnjTail])" can be sum-marised as follows.� If Tail is empty, then{ M becomes equal to the most speci�c generalisation of M1; : : : ;Mn where Mi is the mostgeneral uni�er of M and Ei. If none of the Ei unify with M , the result is false.{ Ei becomes equal to the most general uni�er of Ei andM if Ei is the only element that uni�eswith M . Otherwise there are no resulting constraints on Ei.28

� If Tail is a variable, then{ There are no resulting constraints on M{ There are no resulting constraints on any Ei{ If none of the Ei unify with M , then Tail = [j]The e�ect of the topological branch and bound in pruning the search for the in�nite set of answers whichreturn bindings for the tail is essential to ensure termination.It is very instructive to try and construct ways of expressing the same propagation using guarded clauses!Our experience shows that generalised propagation can safely be used for Horn clause programs withfunction symbols. Moreover we have been experimenting with generalised propagation in a databasecontext, with favourable early results [BPM92]. The application to GP (HU) means that generalisedpropagation can also be applied to database relations with compound attribute values.5 Generalised Propagation and Other ApproachesThere are many overlaps with other work and in this paper it is not possible to include a full comparisonin every case. We have tried to consider more closely related research which is particularly interestingand inuential. However even in the short list considered here, there are many points on which ourcomparison could be greatly expanded.5.1 Most Speci�c Logic ProgramsThe instance GP (HU) of generalised propagation extracts information from propagation constraintswhich is precisely the most speci�c generalisation described in [MNL88]. In this earlier work, the mostspeci�c generalisation of a set of possible solutions was calculated in advance of execution, so as totransform a program statically into one which was more e�cient and had other better properties. Var-ious algorithms have been proposed for calculating most speci�c logic programs, some using bottom-upevaluation and others breadth-�rst.By contrast generalised propagation is performed at runtime. This presents new challenges since it mustbe e�ciently implemented, and there may be di�erent tradeo�s between the precision of the approxima-tion language (i.e. the amount of information extracted) and the cost of propagation. The topologicalbranch and bound procedure, based on a pruned top-down evaluation, can be e�ciently implemented andmakes practicable the extraction of most speci�c generalisations, or other approximations, at runtime.The most speci�c generalisation of a program captures as much information as can be captured once,at compile time, and then nothing more is possible. Generalised propagation also o�ers more di�erentpossibilities for optimisation since the ow of information through the program may depend on datasupplied at runtime. For example given the propagation agents and(X;Y 1; Z1); or(X;Y 2; Z2), if X isinstantiated to t, then propagation yields Z2 = t, however if X is instantiated to f then propagationyields information about Z1 instead! Finally generalised propagation o�ers the possibility to interleavepropagation and search, and a propagation agent may be involved in many di�erent propagation sequencesduring a single derivation.5.2 Relaxed TellIn [HD91] an operational semantics for constraint logic programming is introduced which o�ers an opera-tion called relaxed tell. The relaxed tell operation extracts from a non-basic constraint an approximation.The operation requires two functions, a relaxation function and an approximation function which dependson the relaxation function. 29

A relaxation function r maps the constraint store S to an approximation r(S) satisfying j= S ! r(S).CHIP uses such a relaxation function in its treatment of arithmetic constraints over �nite domains. A�nite domain for a variable V , such as f1; 2; 4g can be approximated by its end points, 1 � V � 4.An approximation function ap (given a relaxation function r) maps a non-basic constraint C and astore S to an approximation ap(S;C) satisfying (r(S) ^ C) ! ap(S;C). CHIP also uses approximationfunctions in its treatment of arithmetic constraints over �nite domains. For example the linear constraint1+V 1 = V 2 is handled by using the equations to reduce the upper bounds and increase the lower boundsof the variable domains so that the equation is satis�ed by the new bounds. Thus if V 1 2 f1; 3g andV 2 2 f2; 3g, the result of approximation on the above equation is 1 � V 1 � 2 and 2 � V 2 � 3.The requirement on the approximation function in the relaxed tell framework is that it must approximatethe constraint C, whereas in the framework of generalised propagation the result approximates all theanswers to the constraint. This di�erence arises because relaxed tell is designed for non-basic built-inconstraints such as arithmetic ones. For generalised propagation any user goal can be annotated as aconstraint. In this case there is a clear de�nition of an answer to the constraint, but the logical semanticsof the constraint itself is more di�cult to pin down. The logical semantics for program clauses does notlicense any negative consequences. However in this case no pruning information could be extracted frompropagation constraints! For our purposes it would therefore be necessary to use some form of minimalmodel semantics for constraint logic programs, with all the restrictions this entails [JL87].Apart from the restriction to built-in constraints, relaxed tell is an abstraction of generalised propagation.The inclusion of a relaxation function makes it strictly more powerful than generalised propagation, whose\relaxation function" is just the identity function. The disadvantage of using a relaxation function isthat propagation on a single constraint cannot be guaranteed to yield a �xpoint. In fact the example ofapproximation above has this property. If the result of propagation is added to the constraint store theresulting store now has a di�erent relaxation 1 � V 1 � 1, which enables further useful propagation tobe performed on the same constraint. This means that the e�cient AC-3 algorithm no longer producescomplete propagation sequences.15.3 Guarded Clauses and Concurrent Constraint Logic ProgrammingIt is not possible in this paper to make a comparison of generalised propagation with the di�erentlanguages in these frameworks. At an abstract level propagation constraints can be seen as deterministicprocessing agents which communicate with the constraint store using relaxed tell. More concretely it isinteresting to specify precisely what communications take place in terms of ask and tell, and how thisbehaviour reects the declarative semantics of the constraint.We can therefore attempt to encode the behaviour of a propagation constraint as a set of de�nitionsusing committed choice, guarded clauses. Let us take �nite domain propagation as an example and useask X 2 fC1; : : : ; Cng to ask if the current constraint store implies that (X = C1) _ : : : _ (X = Cn),and tell X 2 fC1; : : : ; Cng to tell this formula to the constraint store. For constraint p(X;Y), where p isde�ned asp(1; 2) p(2; 1) p(3; 1) we could express �nite domain propagation thus:constraint p(X;Y) true j tell X 2 f1; 2; 3g; tell Y 2 f1; 2g; constraint p1(X;Y)constraint p1(X;Y) ask X 2 f2; 3g j tell Y = 1constraint p1(X;Y) ask X = 1 j tell Y = 2constraint p1(X;Y) ask X = 2 j tell Y = 1constraint p1(X;Y) ask X = 3 j tell Y = 1constraint p1(X;Y) ask Y = 1 j tell X 2 f2; 3gconstraint p1(X;Y) ask Y = 2 j tell X = 1This encoding is similar to that used for the and demons (see section 4.1.2 above).1In CHIP, which uses AC-3, it is therefore sometimes necessary to state constraints twice!30

The main drawback of using such an encoding is the huge number of clauses necessary to capture eachinteresting propagation. We hypothesise that if conjunctions of basic constraints are admitted in theguard, the number of guarded clauses can rise exponentially with the number of clauses needed to expressthe propagation constraint.A second drawback of guarded clauses is, paradoxically, their great expressive power. For example it ispossible to express the merge operation using guarded clauses, although this operation has no logicalsemantics. In general it is not possible to give a declarative semantics for a set of guarded clauses, andthus it is not possible to state the e�ect of a program except in terms of the operational behaviour of itsclauses.There is a \logical subset" of guarded clause programs that have a logical semantics. It is possible to statewhen a set of \logical" guarded clauses is sound with respect to a logic program speci�cation as in [Smo91].However even for such logically sound guarded clauses there remains the question of completeness. Thereseems no simple way to determine when the behaviour of a set of clauses is equivalent to the behaviourof generalised propagation. For example it is only possible to con�rm that the encoding of constraintp(X;Y) using guarded clauses above really does extract all possible propagations in all possible constraintstores by performing an exhaustive analysis on constraint stores. The set of interesting constraint storesto be analysed soon grows prohibitively large for non-trivial constraints (see also above section 4.1.2).A form of guarded rules with multiple heads is being investigated at ECRC [Fru92], which provides alanguage for expressing constraint simpli�cation. The rules are called simpli�cation rules. In many casesit would be practical to express certain interesting propagations as simpli�cation rules. The integrationof these simpli�cation rules into our framework would make it possible to encode the results of staticanalysis and partial evaluation of generalised propagation. Consequently the whole range of possibilitieson the continuum between compilation and interpretation of generalised propagation would be availablein one system.5.4 AndorraA relationship has been often pointed out between David Warren's Andorra principle [War88] and thepreference for deterministic computation which underlies constraint propagation. Based on Warren'sextended Andorra model [War90], the languageAKL has been de�ned [HJ90]. In this section we comparegeneralised propagation with AKL.Andorra promotes deterministic computations. The control of how hard to work to �nd subcomputationsthat yield deterministic results has reached a considerable degree of sophistication. However the basicidea is to perform parts of the computation locally and if the result is deterministic to make it availableglobally, adding the resulting constraints to the constraint store. This is similar to extracting resultsfrom propagation constraints.In a local computation in Andorra, nothing is thrown away. This is quite di�erent from constraintpropagation which �nds many answers, extracts \common" information from them all, and then throwsthe answers away again. This can in practice make constraint propagation more expensive than Andorra'sdeterministic promotion, but it also makes it possible to extract more information deterministically thancan be done in Andorra. For example generalised propagation extracts X = f() from the propagationagent p(X) de�ned byp(f(a)) p(f(b)) However the evaluation of p(X) is not deterministic so no information can be extracted in Andorra.A second di�erence has to do with the dependence of information extracted on the precise syntax of theprogram. In Andorra the information that can be extracted from a local computation depends on theprecise clausal de�nitions of the goal predicates involved. For example we could recode p(X) above asp(f(Y)) q(Y)q(a) q(b) to get more information extracted by Andorra from the goal p(X). In constraint propagation the infor-mation extracted is independent of the program syntax. It depends only on the logical semantics of the31

program. Therefore constraint propagation has a more abstract behavioural semantics than deterministicpromotion in Andorra.6 ConclusionThe same word \constraint" has been used to describe two rather di�erent extensions of logic program-ming. In one extension (CLP (X)) \constraints" involve interpreted predicates whose interpretation onthe underlying domain is prede�ned. In the other extension (based on CSP) \constraints" are goals whichare used not for search but for deterministic reduction of the search space. This paper has extracted amore abstract concept which includes both uses of the word constraint.The abstract concept is useful for clarifying our understanding of CLP , but this paper has shown thatit also yields immediate practical bene�ts. A generalisation of propagation has been introduced whichintegrates the constraint behaviour of both extensions. This enables techniques of local consistencyenforcement from CSP to be applied to arbitrary goals in arbitrary CLP (X) programs. The result iscalled GP (X), for \generalised propagation parameterised on the computation domain X".Propagation on a goal G in GP (X) requires that the system extracts a constraint approximating allthe answers to G. The paper has introduced a generic algorithm for generalised propagation whichavoids enumerating all the answers to a propagation constraint. Instead the retrieval of answers isinterleaved with approximation steps, so that an approximation to the answers found so far is alwaysmaintained. This approximation is used to cut branches in the search for answer, in a way similar tobranch and bound. Additionally it is used to cut all the remaining branches in the search tree, when theapproximation becomes too general to be useful. The algorithm has been called topological branch andbound, in section 3.7 above.Generalised propagation o�ers very exible control via the choice of approximation constraints. If only acoarse approximation is o�ered the topological branch and bound drastically prunes the search tree, thusmaking generalised propagation relatively cheap. If a �ner approximation is o�ered, more information isextracted from each propagation constraint, enabling the global search to be more reduced.An implementation (called Propia) of generalised propagation over the Herbrand universe has beendescribed. Experiments with Propia have shown that generalised propagation enables problems to besimply stated and e�ciently solved in a way not possible using either CLP (X) or propagation based onCSP. It has been very rewarding to take pure logic programs as speci�cations and, by simply annotatingcertain goals as propagation constraints, to achieve an e�cient implementation. A very important featureof the resulting programs is their guaranteed correctness with respect to their speci�cation. This canbe contrasted with the encoding of the same problems using demons (a special form of guarded clause),which cannot be validated against the speci�cation since they have no declarative semantics.As to the future, further implementations of generalised propagation are being developed for new com-putation domains, thus expanding the range of problems that can be naturally expressed as GP (X)programs. We are also investigating the notion of propagation constraints as concurrent processingagents. In this view generalised propagation is an interesting special case of concurrent constraint logicprogramming, in which the operational semantics can be dramatically simpli�ed (and for which thereis always an equivalent declarative semantics). Finally, partial evaluation of GP (HU) is already underinvestigation at ECRC, with the results expressed in the form of demons. With the integration of simpli-�cation rules into our system (see section 5.3 above), the potential for optimisation of GP (X) programscan be fully explored.7 AcknowledgementsThis paper has bene�ted from discussions with many researchers both inside and outside of ECRC. Weparticularly wish to thank Andr�e Veron, for his extensive implementation work and experimentation ongeneralised propagation in the Elipsys system. We also thank the reviewers for perceptive and helpfulcomments. Andrei Voronkov gave important feedback on the �nal draft. Our collaborators in the CHIC32

Esprit project (Nr. 5291) have also helped sharpen our ideas. Finally thanks to all the CORE teamat ECRC and to Alexander Herold, for reading many drafts of papers on generalised propagation andhelping to bring out the important issues.Bibliography[Ber87] H. Berghel. Crossword compilation with Horn clauses. The Computer Journal, 30(2):183{188,1987.[BPM92] S. Bressan, T. Le Provost, and O. Monteil. Experiments with set-oriented propagation.Experiments performed at ECRC: report in preparation, 1992.[Cla79] K.L. Clark. Predicate logic as a computational formalism. Technical Report 79/59, ImperialCollege, London, 1979.[Col85] A. Colmerauer. Theoretical Model of Prolog II, pages 3{31. Ablex Publishing Corporation,1985.[Dav87] E. Davis. Constraint propagation with interval labels. Arti�cial Intelligence, 32:281{331,1987.[DSV90] M. Dincbas, H. Simonis, and P. Van Hentenryck. Solving large combinatorial problems inlogic programming. Journal of Logic Programming, 8:74{94, 1990.[DSVX91] M. Dorochevsky, K. Schuermann, A. V�eron, and J. Xu. Constraints Handling, Garbage Col-lection and Execution Model Issues in ElipSys. In A. Beaumont and G. Gupta, editors, Pro-ceedings of the ICLP'91 Pre-Conference Workshop on Parallel Execution of Logic Programs,Paris, June 1991. LNCS 569.[DVS+88] M. Dincbas, P. Van Hentenryck, H. Simonis, A. Aggoun, T. Graf, and F. Berthier. Theconstraint logic programming language CHIP. In Proceedings of the International Conferenceon Fifth Generation Computer Systems (FGCS'88), pages 693{702, Tokyo, Japan, November1988.[Fik70] R.E. Fikes. REF-ARF: A system for solving problems stated as procedures. Arti�cial Intel-ligence, 1:27{120, 1970.[Fru92] T. Fruehwirth. Constraint simpli�cation rules. Technical Report ECRC-92-18, ECRC, July1992.[Gal85] H. Gallaire. Logic programming: further developments. In IEEE Symposium on Logic Pro-gramming, pages 88{99, Boston, July 1985. Invited paper.[GB65] S.W. Golomb and L.D. Baumert. Backtrack programming. Journal of the ACM, 12:516{524,1965.[HD91] P. Van Hentenryck and Y. Deville. Operational semantics of constraint logic programmingover �nite domains. In Proc. PLILP'91, Passau, Germany, Aug 1991.[HE80] R.M. Haralick and G.L. Elliot. Increasing tree search e�ciency for constraint satisfactionproblems. Arti�cial Intelligence, 14:263{314, October 1980.[HJ90] Seif Haridi and Sverker Janson. Kernel Andorra Prolog and its computation model. In Proc.of the 7th Int. Conf. on Logic Programming [ICL90], pages 31{46.[ICL87] Proceedings of the 4th International Conference on Logic Programming, Melbourne, 1987.MIT Press.[ICL88] Proceedings of the 5th International Conference and Symposium on Logic Programming, Seat-tle, 1988. MIT Press.[ICL90] Proceedings of the 7th International Conference on Logic Programming, Jerusalem, Israel,1990. MIT Press. 33

[JL86] J. Ja�ar and J-L. Lassez. Constraint logic programming. Draft Technical Report, MonashUniversity, June 1986.[JL87] J. Ja�ar and J.-L. Lassez. Constraint logic programming. In Proceedings of the FourteenthACM Symposium on Principles of Programming Languages (POPL'87), Munich, FRG, Jan-uary 1987.[Kow79] R. A. Kowalski. Logic for Problem Solving, chapter 8. North-Holland, 1979.[Lev91] J. Lever. Temporal reasoning - a progress report. Presented at the CHIC workshop, ImperialCollege, 1991.[Llo84] J.W. Lloyd. Foundations Of Logic Programming. Springer-Verlag, 1984.[Mac77] A.K. Mackworth. Consistency in networks of relations. Arti�cial Intelligence, 8(1):99{118,1977.[MAC+89] M. Meier, A. Aggoun, D. Chan, P. Dufresne, R. Enders, D. De Villeneuve, A. Herold, P. Kay,B. Perez, E.Van Rossum, and J. Schimpf. Sepia - an extendible prolog system. In G. X.Ritter, editor, Information Processing 89, San Francisco, September 1989. Elsevier SciencePublisher B.V.[Mah87] M. J. Maher. Logic semantics for a class of committed-choice programs. In Proc. of the 4thInt. Conf. on Logic Programming [ICL87], pages 858{876.[MF85] A.K. Mackworth and E.C. Freuder. The complexity of some polynomial network consistencyalgorithms for constraint satisfaction problems. Arti�cial Intelligence, 25:65{74, 1985.[MNL88] K. Marriott, L. Naish, and J.-L. Lassez. Most speci�c logic programs. In Proc. of the 5th Int.Conf. and Symp. on Logic Programming [ICL88], pages 909{923.[Mon74] U. Montanari. Networks of constraints : Fundamental properties and applications to pictureprocessing. Information Science, 7(2):95{132, 1974.[MR91] I. Mitterreiter and F. J. Radermacher. Experiments on the running time behaviour of somealgorithms solving propositional calculus problems. Technical Report Draft, FAW, Ulm, 1991.[NAC90] Proceedings of the 1990 North American Conference on Logic Programming. MIT Press, 1990.[Nai86] L. Naish. Negation and Control in Prolog, volume 238 of Lecture Notes in Computer Science.Springer, 1986. PhD. Thesis, Melbourne Univ.[PV92] T. Le Provost and A. Veron. Boosting an application via constraints prototyping and or-parallelism. Forthcoming ECRC report, 1992.[RHZ75] A. Rosenfeld, A. Hummel, and S.W. Zucker. Scene labelling by relaxation operations. Tech-nical Report TR-379, Computer Science Department, University of Maryland, 1975.[Sar89] V.A. Saraswat. Concurrent Constraint Programming Languages. PhD thesis, Carnegie-MellonUniversity, Pittsburgh, Pa, January 1989.[SD87a] H. Simonis and M. Dincbas. Using an extended prolog for digital circuit design. In IEEEInternational Workshop on AI Applications to CAD Systems for Electronics, pages 165{188,Munich, W.Germany, October 1987.[SD87b] H. Simonis and M. Dincbas. Using logic programming for fault diagnosis in digital circuits.In German Workshop on Arti�cial Intelligence (GWAI-87), pages 139{148, Geseke, W. Ger-many, September 1987.[SD90] H. Simonis and M. Dincbas. Propositional calculus problems in CHIP. In H. Kirchner,editor, Proceedings of the 2nd International Conf on Algebraic and Logic Programming, Nancy,France, October 1990. CRIN and INRIA-Lorraine, Springer Verlag. (to appear).[Sim88] H. Simonis. Test pattern generation with logic programming. In New Aspects of Research forTesting of VLSI Circuits, Ising, W. Germany, March 1988.34

[Smo91] G. Smolka. Residuation and guarded rules for constraint logic programming. TechnicalReport 12, Digital PRL, June 1991.[SP89] H. Simonis and T. Le Provost. Circuit veri�cation in CHIP: Benchmark results. In L.J.M.Claesen, editor, Proceedings of the IFIP TC10/WG10.2/WG10.5 Workshop on Applied For-mal Methods for Correct VLSI Design, Leuven, Belgium, November 1989. IFIP, North Hol-land, Elsevier Science Publishers.[Van89] P. Van Hentenryck. Constraint Satisfaction in Logic Programming. Logic ProgrammingSeries.The MIT Press, 1989.[VD86] P. Van Hentenryck and M. Dincbas. Domains in logic programming. In Proceedings of theFifth National Conference on Arti�cial Intelligence (AAAI'86), Philadelphia, PA, August1986.[War88] D.H.D. Warren. The Andorra Model. Presented at the Gigalips Workshop, Univ. of Manch-ester, 1988.[War90] D.H.D.Warren. The Extended Andorra Model with implicit control. Presented at the ICLP'90workshop on Parallel Logic Programming, Isreal, June 1990.

35

Other Reports Available from ECRC[ECRC{TR{LP-60] Mireille Ducasse and Anna-Maria Emde. Opium 3.1 - User Manual A High-levelDebugging Environment for Prolog. 1991.[ECRC{TR{LP-61] E. Yardeni, T. Fr�uhwirth, and E. Shapiro. Polymorphically Typed Logic Programs.1991.[ECRC{TR{DPS-81] U. Baron, S. Bescos, and S. Delgado. The ElipSys Logic Programming Language.17. 01. 1991.[ECRC{TR{DPS-82] Sergio Delgado, Michel Dorochevsky, and Kees Schuerman. A Shared EnvironmentParallel Logic Programming System On Distributed Memory Architectures. 18. 01. 1991.[ECRC{TR{DPS-83] Andre Veron, Jiyang Xu, and Kees Schuerman. Virtual Memory Support for OR-Parallel Logic Programming Systems. 05. 03. 1991.[ECRC{TR{DPS-85] Michel Dorochevsky. Garbage Collection in the OR-Parallel Logic Programming.15. 03. 1991.[ECRC{TR{DPS-100] Alan Sexton. KCM Kernel Implementation Report. 22. 05. 1991.[ECRC{TR{DPS-103] Michel Dorochevsky. Key Features of a Prolog Module System. 08. 03. 1991.[ECRC{TR{DPS-104] Michel Dorochevsky, Kees Schuerman, and Andre Veron. ElipSys: An IntegratedPlatform for Building Large Decision Support Systems. 29. 01. 1991.[ECRC{TR{DPS-105] Jiyang Xu and Andre Veron. Types and Constraints in the Parallel Logic Pro-gramming System ElipSys. 15. 03. 1991.[ECRC{TR{DPS-107] Olivier Thibault. Design and Evaluation of a Symbolic Processor. 13. 06. 1991.[ECRC{TR{DPS-112] Michel Dorochevsky, Jacques Noy�e, and Olivier Thibault. Has Dedicated Hardwarefor Prolog a Future ? 14. 09. 1991.[ECRC{91{1] Norbert Eisinger and Hans J�urgen Ohlbach. Deduction Systems Based on Resolution. 29.10. 1991.[ECRC{91{2] Michel Kuntz. The Gist of GIUKU: Graphical Interactive Intelligent Utilities for Knowl-edgeable Users of Data Base Systems. 4. 11. 1991.[ECRC{91{3] Michel Kuntz. An Introduction to GIUKU: Graphical Interactive Intelligent Utilities forKnowledgeable Users of Data Base Systems. 4. 11. 1991.[ECRC{91{4] Michel Kuntz. Enhanced Graphical Browsing Techniques for Collections of StructuredData. 4. 11. 1991.[ECRC{91{5] Michel Kuntz. A Graphical Syntax Facility for Knowledge Base Languages. 4. 11. 1991.[ECRC{91{6] Michel Kuntz. A Versatile Browser-Editor for NF2 Relations. 4. 11. 1991.[ECRC{91{7] Norbert Eisinger, Nabiel Elshiewy, and Remo Pareschi. Distributed Arti�cial Intelligence- An Overview. 4. 11. 1991.[ECRC{91{8] Norbert Eisinger. An Approach to Multi-Agent Problem-Solving. 11. 11. 1991.[ECRC{91{9] Klaus H. Ahlers, Michael Fendt, Marc Herrmann, Isabelle Hounieu, and Philippe Marchal.TUBE Implementor's Manual. 21. 11. 1991.[ECRC{91{10] Klaus H. Ahlers, Michael Fendt, Marc Herrmann, Isabelle Hounieu, and Philippe Marchal.TUBE Programmer's Manual. 21. 11. 1991.[ECRC{91{11] Michael Dahmen. A Debugger for Constraints in Prolog. 26. 11. 1991.[ECRC{91{12] Jean-Marc Andreoli and Remo Pareschi. Communication as Fair Distribution of Knowl-edge. 26. 11. 1991. 36

[ECRC{91{13] Jean-Marc Andreoli, Remo Pareschi, and Marc Bourgois. Dynamic Programming asMultiagent Programming. 26. 11. 1991.[ECRC{91{14] Volker K�uchenho�. On the E�cient Computation of the Di�erence Between ConsecutiveDatabase States. 5. 12. 1991.[ECRC{91{15] Sylvie Bescos and Michael Ratcli�e. Secondary Structure Prediction of rRNA MoleculesUsing ElipSys. 16. 12. 1991.[ECRC{91{16] Michael Dahmen. Abstract Debugging of Coroutines and Constraints in Prolog. 30. 12.1991.[ECRC{92{1] Thierry Le Provost and Mark Wallace. Constraint Satisfaction Over the CLP Scheme.30. 1. 1992.[ECRC{92{2] G�erard Comyn, M. Jarke, and Suryanarayana M. Sripada. Proceedings of the 1st Com-pulog Net meeting on Knowledge Bases (CNKBS'92). 30. 1. 1992.[ECRC{92{3] Jesper Larsson Trae� and Steven David Prestwich. Meta-programming for reorderingLiterals in Deductive Databases. 30. 1. 1992.[ECRC{92{4] Beat W�uthrich. Update Realizations Drawn from Knowledge Base Schemas and Executedby Dialog. 4. 2. 1992.[ECRC{92{5] Lone Leth. A New Direction in Functions as Processes. 25. 2. 1992.[ECRC{92{6] Steven David Prestwich. The PADDY Partial Deduction System. 23. 3. 1992.[ECRC{92{7] Andrei Voronkov. Extracting Higher Order Functions from First Order Proofs. 23. 3.1992.[ECRC{92{8] Andrei Voronkov. On Computability by Logic Programs. 23. 3. 1992.[ECRC{92{9] Beat W�uthrich. Towards Probabilistic Knowledge Bases. 02. 4. 1992.[ECRC{92{10] Petra Bayer. Update Propagation for Integrity Checking, Materialized View Maintenanceand Production Rule Triggering. 08. 4. 1992.[ECRC{92{11] Mireille Ducass�e. Abstract views of Prolog executions in Opium. 15. 4. 1992.[ECRC{92{12] Alexandre Lefebvre. Towards an E�cient Evaluation of Recursive Aggregates in DeductiveDatabases. 30. 4. 1992.[ECRC{92{13] Udo W. Lipeck and Rainer Manthey (Hrsg.). Kurzfassungen des 4. GI-Workshops\Grundlagen von Datenbanken", Barsinghausen, 9.-12.6.1992. 12. 05. 1992.[ECRC{92{14] Lone Leth and Bent Thomsen. Some Facile Chemistry. 26. 05. 1992.[ECRC{92{15] Jacques Noy�e (Ed.). Proceedings of the International KCM User Group Meeting,Munich,7 and 8 October 1991. 03. 06. 1992.[ECRC{92{16] Frederick Knabe. A Distributed Protocol for Channel-Based Communication with Choice.10. 06. 1992.[ECRC{92-17] Benoit Baurens, Petra Bayer, Luis Hermosilla, and Andrea Sikeler. Publication Manage-ment: A Requirements Analysis. 03. 07. 1992.[ECRC{92-18] Thom Fr�uhwirth. Constraint Simpli�cation Rules. 28. 07. 1992.[ECRC{92-19] Mark Wallace. Compiling Integrity Checking into Update Procedures. 29. 07. 1992.[ECRC{92-20] Petra Bayer. Data and Knowledge for Medical Applications: A Case Study. 30. 07. 1992.[ECRC{92-21] Michel Dorochevsky and Andr�e V�eron. Binding Techniques and Garbage Collection forOR-Parallel CLP Systems. 11. 08. 1992.37

[ECRC{92-22] Shan-Wen Yan. E�ciently Estimating Relative Grain Size for Logic Programs on Basisof Abstract Interpretation. 25. 08. 1992.[ECRC{92-23] Jean-Marc Andreoli, Paolo Ciancarini, and Remo Pareschi. Interaction Abstract Ma-chines. 25. 08. 1992.[ECRC{92-24] Jean-Marc Andreoli and Remo Pareschi. Associative Communication and its Optimizationvia Abstract Interpretation. 25. 08. 1992.[ECRC{92-25] Jean-Marc Andreoli, Lone Leth, Remo Pareschi, and Bent Thomsen. On the Chemistryof Broadcasting. 25. 08. 1992.[ECRC{92-26] Marc Bourgois, Jean-Marc Andreoli, and Remo Pareschi. Extending Objects with Rules,Composition and Concurrency : the LO Experience. 25. 08. 1992.[ECRC{92-27] Benoit Dageville and Kam-FaiWong. SIM: A C-based SIMulation Package. 28. 09. 1992.[ECRC{92-28] Beat W�uthrich. On the E�cient Distribution-free Learning of Rule Uncertainties andtheir Integration into Probabilistic Knowledge Bases. 29. 09. 1992.[ECRC{92-29] Andrei Voronkov. Logic Programming with Bounded Quanti�ers. 29. 09. 1992.[ECRC{92-30] Eric Monfroy. Gr�obner Bases: Strategies and Applications. 30. 09. 1992.[ECRC{92-31] Eric Monfroy. Speci�cation of Geometrical Constraints. 30. 09. 1992.[ECRC{92-32] Bent Thomsen, Lone Leth, and Alessandro Giacalone. Some Issues in the Semantics ofFacile Distributed Programming. 22. 10. 1992.[ECRC{92-33] Mireille Ducass�e. An Extendable Trace Analyser to Support Automated Debugging. 04.12. 1992.[ECRC{92-34] Jorge Bocca and Luis Hermosilla. A Preliminary Study of the Performance of MegaLog.20. 12. 1992.[ECRC{93{1] Benoit Dageville and Kam-Fai Wong. Supporting Thousands of Threads Using a HybridStack Sharing Scheme. 18. 01. 1993.[ECRC{93{2] Steven Prestwich. ElipSys Programming Tutorial. 18. 01. 1993.[ECRC{93{3] Beat W�uthrich. Learning Probabilistic Rules. 28. 01. 1993.[ECRC{93{4] Eric Monfroy. A Survey of Non-Linear Solvers. 02. 02. 1993.[ECRC{93{5] Thom Fr�uhwirth, Alexander Herold, Volker K�uchenho�, Thierry Le Provost, Pierre Lim,Eric Monfroy, and Mark Wallace. Constraint Logic Programming - An Informal Intro-duction. 02. 02. 1993.
38

