
SEPIA Programming Environment
Miha MeierPhilip KayEmmanuel van RossumEuropean Computer-Industry Researh Centre (ECRC),Arabellastr.17, 8000 Munih 81, West GermanyHugh GrantICL Information Tehnology CentreSouth County Business Park, Dublin, IrelandAbstratWe present the programming environment of the ECRC SEPIA system.SEPIA is an advaned Prolog system that allows integration of various exten-sions whih may go beyond the logi programming paradigm. We desribehere how its features were used to build its environment and what futurework is planned to omplete it.1 IntrodutionSEPIA (Standard ECRC Prolog Integrating Advaned Appliations) [4℄ isa Prolog system developed at ECRC whih serves as a basis for the inte-gration of various extensions into a logi programming system. Its ore is aWAM-based system with a fast inremental ompiler, and a WAM emulator,extended by oroutining, event handling, modules, onstrutive negation andextendible data types.Its arhiteture has been designed so that it allows various extensions tobe integrated into it, among whih are� the onstraint propagation system CHIP [6℄� the objet oriented system PHOCUS [3℄� an interfae to the INGRES database SEDUCE based on the EDUCEsystem [5℄



� a reursive query answering omponent for dedutive DBMS DedGin*[2℄ using the BANG �le system [7℄� a windowing environment KEGIThis paper desribes more in detail the KEGI environment for SEPIAand ongoing and future work on KEGI and SEPIA environment.2 SEPIA EnvironmentThe KEGI (Kernel ECRC Graphi Interfae) system onsists of three parts:� The working environment, whih is a windowing user interfae to theSEPIA system.� The 2D graphi pakage whih is used to generate high quality graphioutput.� An objet-oriented interative graphi system based on ICL PCE [1℄.2.1 BakgroundThe KEGI projet initially investigated the various tools whih were avail-able to provide working environments and interative graphis for Prologsystems. PCE was obtained as being the most readily available and appli-able for doing suh a task. Conventionally PCE runs as a separate proessand an be interfaed to any other proess using a suitable onnetion. Suhonnetions have been made to QuintusTM Prolog, BIM Prolog, C Prologand variants of LeLisp. Also a number of builtin prediates were developedusing the CGI library to ompliment the PCE system and to provide theProlog programming with high quality 2D graphi output.The SEPIA onnetion to PCE was implemented using external predi-ates written in C together with supporting Prolog prediates. However, themethodology adopted was in many respets di�erent to that of the varioussystems mentioned above.Conventionally the onnetion between PCE and the Prolog system issynhronous, any events that our in the PCE windows will be passed toProlog system and queued only when it is expliitly required. This has thedisadvantage that if a user has any interation with an appliation using PCEhe annot interat with the Prolog system via the keyboard or other applia-tions at the same time. Equally if the Prolog system is serviing ommandsfrom the user input then he annot interat with the PCE appliation.Using SEPIA it was possible to overome this handiap. SEPIA hasthe funtionality to handle asynhronous events i.e signal interrupts. Theonnetion between PCE and SEPIA uses a soket, this soket was openedin suh a mode that SEPIA reeives a signal as soon as there is some dataavailable to be read in from the soket. When the user presses on a button,



PCE writes a orresponding message on the soket whih will ause SEPIAto interrupt whatever it was urrently doing and invoke the interrupt handlerto read the ontents of the soket and all the orresponding prediate toservie the button press. A further advantage was gained by the faility ofusing the soket onnetion to run SEPIA remotely and yet still have PCEdisplay graphis on the users loal mahine. By this means PCE was ableto provide graphi failities to the SEPIA programmer.Also, now that we had asynhronous handling of events it was possible toprovide a user environment for SEPIA onstruted using PCE. In this waythe SEPIA environment was built. When SEPIA was invoked and the useralled the goal ?- pe env, the PCE proess was started, the ommuniationsoket was set up and a top level ontrol window was reated that ontaineda number of prede�ned and user de�nable buttons and pulldown menus.Suh buttons were used to all builtin prediates suh as ?- trae, ?- ls and?- env and pulldown menus were used for realling the history of previousalls, displaying the names of Prolog �les, urrent prediates, modules andavaliable libraries. Further windows ould be opened for spei� tasks suhas to edit �les edit windows, show the on-line manual, an interfae to theSEPIA debugger and shell windows. All of these ould be initiated from abutton press on the ontrol window.Furthermore, the system ould be modi�ed by the user by providing astartup �le or as an experiened user he ould modify the environment tosuit his requirements by diretly modifying the Prolog library �le whih wasompiled when the environment was initialised.While very interesting from the theoretial point of view, the KEGI en-vironment built up using the PCE system was not satisfatory from variousreasons:� The interfae was slow and it used up muh memory. This was due tothe fat that an additional PCE layer was put between Prolog and theSunviewTM system.� Sine the PCE system was available only for the SunTM mahines, itwould have been diÆult to port this environment to other mahines,whih is a neessary ondition for ECRC prototypes, as it is sponsoredby three major European ompanies who use di�erent hardware.� The system was not robust enough for ontrolling full user interation.To avoid these restritions the emphasis of the KEGI development washanged. X11 had always been reognised as the future foundation for thesystem as this would guarantee hardware independene. However, at thistime X11 was very muh in its infany. In partiular for users of SEPIAthe system was unstable and laked many tools. Also the X11 toolkits fromAthena, Ardent and HP were very unstable and had not yet reah maturity.It was deided that the SEPIA working environment would be furtherdeveloped using the SunView window libraries. The onnetion to the PCE



system and the CGI library for user interation and programming would alsobe maintained. All systems would be ported to X11 at a later date using theXView toolkit when this was made available and X11 more ommeriallyrobust.2.2 Current StateThe SunView implementation was developed using the many lessons learntfrom the �rst phase of the projet and has now a signi�ant internal userbase.

Figure 1: kegitool window with the on-line manual and editor windowThe urrent features of the KEGI system inlude the following:� Control panel, on line manual, editor windows and an interfae to thedebugger. This is now alled kegitool.� Full asynhronous interation with the PCE system



Figure 2: A 2D demo program in kegitool� CGI 2D graphi outputThe kegitool ontrol panel and SEPIA tty window are ontained in thesame frame. Interation with SEPIA an be made either by the keyboardor by the mouse, button or menu input. Prediate alls are maintained in ahistory menu. Files an be displayed in a pulldown walking menu (in realityall the �les on the whole network an be displayed in this walking menu).Common ations an be arried out on seleted �les suh as ompiling,editing (in whih ase an editor of the user's hoie is started), printing et.Furthermore, the user an selet text from anywhere on the sreen and havethis ompiled automatially. The names of previously ompiled �les, knownmodules, user prediates and available libraries are maintained in furtherpulldown menus for user interation. The user an initiate the debugger,on-line manual, de�ne user buttons and quit or restart exeution of theunderlying SEPIA proess via a number of buttons. Currently kegitool isbeing ported to X11.



Figure 3: A PCE demo programThe PCE system has been extended by the use of a graphi prediatelayer to perform ommon user funtionality. In total there are 62 prediateswhih amongst other things reate warning or alert boxes, load ions andursors, reate and display trees and template windows. Objets an still bereated and manipulated by using the prediates new, send and get. In thisway SEPIA bene�ts from an objet-oriented graphi system. Currently thePCE system is being ported to X11 using the Xview toolkit. It is antiipatedthat users will not have to make any hanges to their Prolog ode to use thenew system.The 2D graphi output library is a olletion of 63 prediates to performhigh speed olour output. This allows users to draw lines, solids text etin many forms and olours. The 2D prediate library has been ported todiretly use the X11 Xlib funtions. Appliations whih were developedusing the CGI implementation did not have to be hanged.The expeted ompletion date for the X11-based SEPIA environment is



Figure 4: PCE on top of X11at the end of 1989.3 Debugging in SEPIAAs mentioned above, SEPIA has no interpreter, even the asserted lauses areompiled, and it is possible to use the onventional debugger on the ompiledode without any restritions. The advantage of suh a sheme is that sinethere is no interpreter, the extensions that modify the Prolog system, e.g.the uni�ation proedure, do not have to modify both the ompiler and theinterpreter, modifying the ompiler is suÆient. The SEPIA inrementalompiler is written in C for eÆieny reasons whih has proven to be a goodhoie as the ompilation speed is by order of magnitude higher than forompilers written in Prolog. This makes the system more user-friendly andspeeds up the development of programs.Another, not less important reason to have a debugger on ompiled ode,



is that the exeution of the debugged ode is muh faster than it is the asewith interpreted programs and it also uses less spae. Here some omparisonsof the speed of ompiled (i.e. not debuggable), debuggable (but with thedebugger swithed o�) and debugged ode (in leap mode) for the naivereverse example on a (loaded) SUN-3/60:System ompiled debuggable debugged slowdownQuintus Prolog 2.0 80k 2.6k 0.7k 114SICStus Prolog 0.3.1 21k 1.3k 0.2k 105SB-Prolog12.3.2 26k 6.7k 0.9k 28Sepia 2.2a 55k 42k 4.7k 11It an be seen that Prolog systems that use an interpreter are very slow inthe debug mode, whereas for a ompiler-only system the slowdown is muhsmaller. Another disadvantage of interpreted programs is the spae on-sumption, whih an be muh higher than for the same ompiled programsand this an in fat prevent debugging large interpreted programs.The KEGI interfae to the debugger onsists of one window whih issplit into several parts: the soure �le window, a ommand button panel, anoutput window and a ontrol window whih ontains a series of buttons foreah port and leashing mode.The SEPIA debugger is a full four-port debugger, but it an displayseveral additional ports:� DELAY and WAKEThe SEPIA debugger supports fully the oroutining features. When aproedure delays, its box is exited through the DELAY port and whenit is woken again, the box is re-entered through the WAKE port. Itis also possible to skip from the DELAY to the orresponding WAKEport.� LEAVEThis port is used to exit a proedure's box after a blok exit (non-loaljump) from the proedure or one of its hildren.� NEXTThis and the remaining ports do not show entering or exiting the boxof a proedure but rather some ations inside it. The NEXT portis traed when a lause fails and the exeution ontinues to the nextlause of the same proedure. This port is missing in the original Byrddebugger and it makes debugging muh easier when it is provided.� CUTThe CUT port is traed for all goals whose alternatives are disarded1We do not onsider here the SB-Prolog's failities for traing ompiled ode as theydo not o�er the funtionality of a full four-port debugger and are not suÆient for sophis-tiated debugging



Figure 5: The debugger window of kegitoolinside a ut. This is a very onvenient way for the programmer to seeif the uts are really neessary.� UNIFYThis port is traed at the end of the head uni�ation so that theresulting bindings an be seen.Apart from the standard leashing, the SEPIA debugger allows more de-tailed �ltering of the traing information, any port and any proedure anbe either printed and the debugger stops there, only printed, or not shownat all. At the debugger prompt the user an issue many ommands, e.g.various skip ommands that allow to omit a part of traing and resume it ata spei�ed plae whih an be e.g. a goal with a spei�ed invoation number,a spei�ed level, intsantiation of a variable et.The debugger allows the user to look not only at the anestor goalsbut also to any other previous goal, i.e. at the whole urrent exeution



tree. We plan to extend this feature with a graphial interfae whih wouldshow the shape of the omplete tree and allow to zoom on its parts usingthe mouse. Currently, when a port is printed in the debugger, the KEGIdebugger interfae shows the de�nition of the orresponding lause in itssoure �le. This feature will be extended by showing preisely the positionof the urrent subgoal in the soure �le.4 Tools for Analysis and Performane Measure-mentSEPIA has a statistis library �le that extends the debugger to measurethe ativity at the proedure level. For every proedure the main ports areounted and they an be displayed in a table:PROCEDURE # MODULE #CALL #EXIT #TRY #CUT #NEXT #FAILis /2 sepia_k 3 3 0 0 0 0write /1 sepia_k 6 6 0 0 0 0move /2 sepia 17 51 17 0 10 7path /4 sepia 17 16 17 0 15 17fail /0 sepia_k 22 0 0 0 0 22! /0 sepia_k 43 43 0 0 0 0opp /2 sepia 51 51 0 0 0 0safe /1 sepia 51 34 51 23 28 17not_member /2 sepia 139 95 123 18 105 44|TOTAL: PROCEDURES: 20 368 320 210 43 158 109This tool an be used both for low-level optimizations of the abstratmahine and for user soure-level optimizations.By loading another system library �le it is possible to produe statistisof the exeuted abstrat instrutions and store or add it into a �le.Referenes[1℄ A.Anjewierden. PCE-Prolog 1.0 referene manual. Tehnial report,University of Amsterdam, Otober 1986. ESPRIT Projet 1098.[2℄ A.Lefebvre and L.Vieille. Bases de donnees dedutives et DedGin*. InProeedings of the AFCET Conferene on Databases, Paris, Deember1988. invited paper.[3℄ P.Dufresne D.Chan and R.Enders. PHOCUS: Prodution rules, hornlauses, objets and ontexts in a uni�ation-based system. In Program-mation en Logique, ates du Seminaire, pages 77{108, Tregastel, Frane,May 1987.[4℄ Miha Meier et al. SEPIA - an extendible Prolog system. In Proeedingsof the 11th World Computer Congress IFIP'89, San Franiso, August1989.



[5℄ J.Boa. Edue: A marriage of onveniene: Prolog and a relationaldbms. In Proeedings of the 3rd Symposium on Logi Programming, pages36{45, Salt Lake City, September 1986.[6℄ M.Dinbas, P.Van Hentenryk, H.Simonis, A.Aggoun, T.Graf, andF.Berthier. The onstraint logi programming language CHIP. In In-ternational Conferene on FGCS 1988, Tokyo, November 1988.[7℄ M.Freeston. The BANG �le: a new kind of grid �le. In SIGMOD '87,San Franiso, 1987.


