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Abstract. The eplex library of the ECLiPSe Constraint Logic Programming
platform allows the integration of Mathematical Programming techniques with
its native Constraint Logic Programming techniques within the same unified
framework. It provides an interface to state-of-the-art Mathematical Program-
ming solvers, and a set of programming primitives that allow ‘hybrid’ techniques
to be easily expressed. This paper presents these facilities, and discusses some
associated implementation issues.

1 Introduction

Constraint Programming (CP) and Mathematical Programming (MP) are two ap-
proaches that have been used to tackle large scale Combinatorial Optimisation prob-
lems. In recent years, there has been significant research effort [19] to combine the two,
exploiting their complementary strengths, to develop ‘hybrid’ algorithms that can tackle
problems that are difficult for either approach alone.

Much of the recent algorithmic research and development work at IC-Parc has been
focused on this hybrid approach. The ECLiPSe Constraint Logic Programming (CLP)
platform is the programming environment used for this development work. As devel-
opers of ECLiPSe, we aim to provide a unified high-level platform for programmers
to explore different approaches to solving their problems. To allow the exploration of
hybrid and MP techniques from a CLP perspective, we developed the eplex library for
ECLiPSe, whose first version was released in 1997 and which has been under continu-
ous development since, mainly driven by application requirements.

In this paper, we present the eplex library in its current form. Our aim is to high-
light the facilities provided which enable the MP/hybrid algorithms to be developed in
ECLiPSe, rather than describing the algorithms themselves. We also assume that the
reader has some familiarity with CLP languages and concepts.

2 Motivation and Objectives

With this work, we pursued the following objectives

– make the convenience of CLP available for modelling MP problems
– make state-of-the-art implementations of MP solvers accessible and provide a uni-

fied interface to them



– provide the means to safely combine standard MP optimisation solvers and
propagation-based CP solvers

While the first two objectives give rise to relatively straightforward engineering tasks,
everyone who wants to smoothly integrate CP and MP faces the dilemma that the stan-
dard solution techniques exhibit quite fundamental differences:

In CP, problems are solved by a combination of propagation (the systematic exclu-
sion of non-solutions from the search space) and search (the heuristic partitioning of the
search space into smaller, more manageable sub-spaces). This principle is very general
and not specific to a particular problem class. It is however aimed at constraint satisfac-
tion, i.e. at finding all solutions that satisfy the constraints. If an objective function is
given, and optimisation is required, then this is usually achieved by applying a bound-
ing method on top of the all-solutions method, i.e. incrementally looking for solutions
that are better than a previously found one.

In MP, we deal with two particular problem classes: linear programming problems
(LP, linear constraints over continuous variables), and (mixed) integer problems (MIP,
where some or all of the variables are required to take integral values).

For LP, we have very good algorithms (simplex and interior point methods) which,
given a constraint system and an additional objective, can find one (of possibly many)
optimal solutions quite efficiently. But unlike constraint propagation techniques, these
algorithms do not compute a representation of a reduced search space, and can therefore
not straightforwardly be integrated into a CP system.

MIP solution techniques are also difficult to integrate with CP, but for a different
reason. Like for general CP, there is no efficient direct algorithm for solving MIPs. MIPs
are therefore solved by a combination of branch-and-bound search with an underlying
LP solver. When integrating with CP, we face the problem of having to merge the CP
and the MIP search. Because the MIP search is usually implemented as a black box,
this is difficult to achieve.

3 Functionality

Like other solvers in ECLiPSe, eplex is implemented in the form of a library. The eplex
library allows MP problems to be modelled in ECLiPSe, and solved (optimised) by an
external MP solver. In terms of solving, we provide two interfaces, a low-level proce-
dural one that is close to the MP solver’s given API, and a safe, logical one that is close
to the concepts used in propagation-based CP solvers. In either case, our interfaces try
to hide as much as possible the differences between the different brands of MP solvers
that we interface to.

3.1 Declarative Modelling
Problems are modelled in the same way as with other ECLiPSe solvers, i.e. by speci-
fying a logic program where some of the predicates represent the constraints to be sat-
isfied. The constraints that eplex supports are equalities and inequalities ($=/2, $>=/2,
$=</2) over linear arithmetic expressions, the integrality constraint (integers/1) and
the bounds constraint ($::/2) which is just a special case of inequalities. They are used
as in the following examples:



:- lib(eplex).

model1([X,Y], X) :-

X $= Y + 1,

integers([X]),

X + Y $>= 4.

model_knapsack(Bools, Weights, Profits, Cap, Profit) :-

Bools $:: 0..1,

integers(Bools),

Bools*Weights $=< Cap, % List*List (dot product)

Bools*Profits $= Profit.

The first example, model1, defines a problem with two variables, one equality, one
inequality and one integrality constraint. The second example, model knapsack, is a
model for a knapsack problem, consisting of the declaration of a list of boolean vari-
ables, and stating a capacity constraint and a profit equation, using the given lists of
item weights and profits.

Note that this modelling code is solver-independent, in particular, it is completely
identical to the modelling code that would be used for ECLiPSe’s interval and finite-
domain propagation solver ic!

3.2 Procedural Solver Interface

Once a problem has been modelled by means of constraints, we want to solve it. We
first present a conventional, procedural interface that is very close to the API provided
by the MP solvers, and not too different from the way an imperative language would
interface to such a solver. In addition to the constraint predicates that are used in the
problem model, we simply provide additional primitives for (i) specifying the objective,
(ii) invoking the solver, and (iii) accessing solution information. The model above can
then be solved using this additional code:

solve :-

model1([X,Y], Cost),

eplex_solver_setup(min(Cost)),

eplex_solve(Opt),

eplex_var_get(X, solution, OptX),

eplex_var_get(Y, solution, OptY),

printf("Solution X=%f, Y=%f at cost %f%n", [OptX,OptY,Opt]).

Setup and solving Solver setup is performed via the eplex solver setup/1, which
initialises the MP solver for this problem. Constraints can be stated before or after
solver setup. In this case, we stated the constraints before solver setup. Operationally,
constraints stated before solver setup are delayed, and during solver setup, the objective
is set, and all constraints stated so far are collected and passed to the solver in one batch.
No solving is performed at this time: this is the job of the separate eplex solve/1
predicate, which invokes the MP solver and either fails (if the problem is infeasible) or
returns the optimal objective value. The point of separating setup and solving function-
alities is to enable repeated re-solving of the problem, usually with a slightly modified



problem. After the initial problem setup, additional constraints and variables can be in-
crementally added to the problem (and indeed be removed on backtracking) in the same
way this would happen with the constraints of a CP solver. Problem modification can
be interleaved with new calls to the solver.

Accessing results Apart from computing the optimal objective, the solver also finds
one set of solution values for the problem variables. These values must be explicitly
retrieved using the eplex var get/3 predicate. This may seem surprising at first -
why are the variables not instantiated to their solution values? There are two reasons:
First, the MP solver delivers only one of possibly many solutions, so it would not be
logically correct to assign this value. In particular, this initial solution may no longer be
feasible once additional constraints are added and the problem is re-solved.

A second problem is that MP solvers are typically implemented using floating-point
arithmetic, making the results subject to rounding errors. This means that with non-
integral variables, the floating-point values that the solver considers a solution will usu-
ally not be suitable to serve as actual variable instantiations. In particular when equality
constraints are involved, passive checking of the constraints with floating-point solu-
tions filled in will usually fail (because we are violating the golden programmer’s rule
of never comparing floating-point values for equality). All non-integral solutions from
an MP solver should therefore always be considered as approximations. A good use for
them is as a labelling heuristics within a search routine.

The eplex var get/3 predicate is also used to retrieve other variable-related solver
information, like the reduced costs, which are useful to do cost-based filtering [12]. Sim-
ilar interface predicates give access to further information from the solver, for instance
dual values for the constraints.

3.3 Logical Integration with CLP

The problem with the procedural interface described above is that the semantics of
the posted constraints is only respected when the programmer explicitly invokes the
eplex solve/1 predicate in the right places of the code.

The programming paradigm of a CP system is however that the constraints ‘take
care of themselves’, i.e. once they have been posted, the system should automatically
make sure that they are not violated. And not only that: much of the power of CP derives
from the data-driven way in which the consequences of changes are propagated through
a constraint network. Each CP constraint is represented by one or more propagators,
which are suspended awaiting specific events (which generally involve changes to the
variables in the constraint) that will trigger their execution.

We now combine the availability of the MP solver with the idea of event-driven ex-
ecution in order to achieve a logically correct implementation of our linear constraints,
to detect inconsistency as soon as possible, and even to propagate information in case of
consistency. We just need to make sure that the solver is automatically invoked when-
ever the corresponding constraint system has changed, more precisely, if it was tight-
ened in a way that invalidates the previously found solution. This may happen through

– the addition of new linear constraints (new_constraint)



– new, tighter variable bounds that exclude the solution value (deviating_bounds)
– instantiation of variables to a value different from its solution value

(deviating_inst)

The eplex library supports all these (and a few more) trigger conditions, which can be
specified as parameters to an extended version of the eplex solver setup predicate.
Note that the laziest trigger condition that still achieves logically correct handling of the
constraints is the deviating_inst-condition: when variables are instantiated to a non-
solution value, the solver is reinvoked. In particular, it is guaranteed that the constraints
will have been checked (and inconsistency detected) once all variables are instantiated.
Additional trigger conditions will make the system more eager: when using all three
conditions above, inconsistency will be detected as soon as possible.

Additionally, the programmer can specify their own triggering conditions based on
the general suspend and resume mechanism of ECLiPSe. The MP solver can thus be
made to trigger only on ‘interesting’ problem changes, reducing unnecessary computa-
tion in case the predefined trigger conditions turn out to trigger too eagerly.

An automatically triggered solver can do more than just detecting inconsistency:
it computes an optimum cost for the current state of the constraint system. Since the
constraints can only get tighter later, this cost can be used as a lower bound (in case
of minimisation) on the cost variable (C in the example code). The MP solver thus
acquires the characteristics of a propagation constraint: it reacts to e.g. bound changes
in its problem variables, and imposes a new bound on its cost variable. It can therefore
take part in propagation sequences, and it can be considered as a compound constraint,
representing the whole MP problem with all its variables.

In a setting where (cheap) interval-propagation constraints are mixed with (expen-
sive) MP-solver constraints, we prioritise the execution such that the expensive con-
straints are only executed once the cheap constraints have reached a fixpoint. That way,
MP solving is done only as many times as absolutely necessary.

Another way in which a solver can perform propagation is by pruning variable
bounds using reduced cost information [12]. This feature is available as a further solver
setup option. Other information from the MP solve can be used to assist the CP solve
more indirectly, e.g. using the solution values for labelling the variables.

3.4 Multiple Subproblems

Since the constraint syntax is identical for different solvers, in a hybrid program it
becomes necessary to specify which solver a constraint is intended for. This is syntacti-
cally solved by prefixing the constraint with the solver name (which is in fact simply an
ECLiPSe module name), e.g. with ic:(X+Y $>= 4) the constraint is posted to the ic
interval CP solver, with eplex:(X+Y $>= 4) the constraint is posted to the eplex MP
solver.

We also wanted to provide the flexibility to group eplex constraints into separate
subproblems that can then be handled as independent subproblems by an MP solver.
This is done through the concept of eplex instances. The constraints are prefixed with
instance names to group them into different subproblems. The following example de-
fines two overlapping subproblems, corresponding to the two declared eplex instances
‘lp’ and ‘mip’:



:- eplex_instance(mip).

:- eplex_instance(lp).

model2([X,Y,Z]) :-

[lp,mip]: (X $= Y + 1),

mip: integers([X]),

[lp,mip]: (X + Y $>= 4).

Each constraint here is posted to one or both solver instances. Note that not only
constraints, but also the solver setup, solve and access predicates can be prefixed by an
instance name in order to make them apply to a particular instance. The solver-prefix is
first-class, i.e. it can be a variable and specified at runtime.

3.5 Branch-and-cut

Using the automatic triggering mechanism, the solving of an eplex problem can be
tightly integrated into the CP system’s constraint propagation and search process. The
most natural example of this is the implementation of a branch-and-cut search. Here,
some of the constraints of the full problem are initially relaxed. Branching is then done
by adding different constraints to the problem on each branch of a search node.

The simplest example of this in MP is the MIP search. It is used to obtain the
optimal integral solution to a problem, where at each node, a relaxed linear problem is
solved, and in each branch constraints are added to push integer variables away from
non-integer solution values. This search can be implemented in ECLiPSe, using eplex
to solve the relaxed problem automatically when required:

example_mip(Vars, Opt) :-

model(Vars, Ints, Obj), % problem specification

eplex_solver_setup(min(Obj), Opt, [], [deviating_bounds]),

bb_min((branch(Ints),eplex_get(cost,Opt)), Opt, _). % (A)

branch(Ints) :-

(

member(X, Ints), %

eplex_var_get(X, solution, Sol), % (B)

abs(Sol - round(Sol)) >= 1e-5 %

->

( X $=< floor(Sol) ; X $>= ceiling(Sol) ), % (C)

branch(Ints)

;

true % integer solution found

).

For this program, we are using two features of ECLiPSe to perform the required search:
Disjunctions ’;’ with automatic depth-first search to explore all alternatives (line C),
and the generic branch-and-bound control procedure bb min to impose cost bounds and
locate an optimal solution (line A).

We use the MP solver only to solve the continuous relaxation of the problem, and
take care of integrality constraints explicitly. At each search node, we select a vari-
able whose value should be integral, but is indeed fractional in the current solution to



the continuous relaxation (lines B). The program then branches by adding (bounds-)
constraints to the problem to push the solution away from the non-integral value (line
C).

The eplex problem is set up with a call to eplex_solver_setup/4, which al-
lows the user to customise the solver setup. The last argument specifies the pre-built
deviating_bounds trigger condition, so the solver is triggered by the exact condition
we need to push the solution value of an integer value away from its fractional value: if
it is fractional and is outside the new bound, the solver would be invoked. By default, if
trigger conditions are specified, then the problem will be solved once immediately after
set up, so that there is a solution available when the solver is triggered. Also, in general,
if a branching decision does not affect the MP problem variables (as specified by the
trigger condition), then the solver is not invoked.

The above example is a very simple implementation of a MIP search and is of course
not competitive with the MIP search built into the MP solver. However, this search
framework can be used to implement more flexible and elaborate search strategies that
cannot be performed by the black-box MP solver alone. Indeed the subproblem solved
at each node can be a MIP or any of the problem types supported by the MP solver.
Examples of this more involved search are probe backtrack search [9] and its generali-
sation [2], which was used to implement a commercial transportation application.

4 Implementation Considerations

4.1 Outline of Implementation

The eplex library is written in both ECLiPSe and C, corresponding to the logical and
low-level interfaces outlined in section 3. Two MP solvers are currently supported: Dash
Optimization’s Xpress-MP [15], and ILOG CPLEX [17]. Because of the differences
between the two solvers’ API and because not all eplex features are directly supported
by both solvers, the C layer contains some solver dependent code. The ECLiPSe layer
is almost completely solver independent.

Each eplex instance is implemented as a problem instance of the MP solver. The
problem instance is created when eplex_solver_setup is called, using the objec-
tive function and any constraints that have been posted to the eplex instance. In this
phase, the main job of the eplex interface is to convert the ECLiPSe modelling level
representation of the problem’s variables and constraints into the form required by the
MP solver, namely a compact row- or column-wise matrix representation. Constraints
posted after initial solver setup are added to the problem instance incrementally.

In terms of data structures, each eplex problem is represented by a problem handle
at the ECLiPSe level. This is simply a Prolog structure storing a reference to the MP
solver instance plus various information associated with the problem, e.g. the solution
values for the variables. The ECLiPSe level variables are linked to the solver by means
of variable attributes (now a feature of several popular Prolog implementations): each
problem variable is given an eplex attribute which refers to the problem handle. If a
variable occurs in more than one eplex instance, a chain of eplex attributes is created,
one for each eplex instance.



The data-driven triggering of the MP solver is implemented using the suspension
(delayed goal) mechanism of ECLiPSe. A ‘demon’ goal which invokes the MP solver
is created, which is woken and executed whenever the specified triggering conditions
are met.

Any changes made to a problem after setup (e.g. adding constraints, changing vari-
able bounds), need to be undone on backtracking to maintain the ‘logical behaviour’ of
the whole system. As far as ECLiPSe level data structures are concerned, this undoing
is automatic. The challenge for the eplex interface is to make changes in the external
MP solver behave in the same way. This is done at the C level with ECLiPSe’s ‘trail
undo’ facility, which allows a C function call to be trailed on forward execution, and
executed when it is untrailed. Several changes are undone this way, the most important
is to restore the original problem matrix after backtracking. As constraints posted after
problem setup are appended to the end of the matrix, the original matrix is restored
simply by resetting the matrix to its former size. It should be noted that for some types
of incremental changes, the use of a time-stamping technique[1] is essential in order to
avoid excessive trailing.

None of the features required to implement the eplex library are specific to ECLiPSe:
an interface to C/C++, suspension, attributed variables, and a ‘trail undo’ facility, are
supported by other CLP systems. It should thus be possible to implement the eplex
library in other CLP languages, although not trivial due to lack of standardisation.

4.2 Overheads of Performing Search in ECLiPSe

A main concern is the efficiency of the common scenario of conducting search in
ECLiPSe while solving multiple subproblems. Can a high-level language like ECLiPSe

efficiently maintain the search-tree needed and can it allow an MP problem to be effi-
ciently modified and solved repeatedly?

An issue is how the successive subproblems are produced. In many cases, the suc-
cessive subproblems are derived from each other with small changes, and eplex will
allow the same MP problem to be incrementally changed and re-solved. This should
be more efficient than the alternative, which is to construct each subproblem afresh for
each solve.

We tried to measure the impact of incremental modifications and maintaining the
search-tree in ECLiPSe by timing various ways of performing MIP, the most common
MP search method. Firstly, we perform the MIP search using the MP solver. Secondly,
we perform the MIP search in ECLiPSe, using the MP solver as a linear solver at each
node, and allowing the problem to be incrementally modified. Thirdly, we perform the
MIP search in ECLiPSe as before, but construct the problem afresh at each node.

The MIP problem used for this study is taken from a set of examples that originated
from MIPLIB [4], a standard MIP benchmark suite.

The results, obtained on a 900MHz Pentium III Linux box with 256M of memory,
running ECLiPSe 5.8 with CPLEX 8.1.1, are presented in Figure 1. For each problem,
its size in terms of number of variables (vars) and constraints (cons) are given. For most
of the problems with the solver MIP and incremental MIP, the solving is repeated 10 to
100 times to get a more accurate timing, and each timing is done 3 times.



Program CPLEX mip ECLiPSe incr. mip ECLiPSe non-incr mip
vars cons nodes node−1 calls node−1 nodes node−1 load

flugpl 18 17 70 0.393 4957 0.339 5221 3.33 1.74
flugplan 18 17 70 0.404 1986 0.393 2187 3.22 1.65
sample2 67 45 75 1.79 353 0.652 345 6.58 4.47
noswot 128 182 1 55.1 1127 1.63 32786 17.0 13.3
bell3a-nonred 133 111 18845 1.19 142583 1.45 162027 14.2 9.44

Fig. 1. Performing MIP search in ECLiPSe

In the table, we give either the number of nodes in the MIP search tree (including
the root node), or (in the incremental case, where there is one solver call per MIP node),
the number of solver calls, and the derived average time spent per node (runtime divided
by the number of nodes) of the search tree. In addition, the last column in the table is
the time needed to load the initial problem once into the MP solver, all timings are in
ms. The problem is constructed and loaded 1000 times, to simulate the construction of
the problem in the non-incremental MIP search.

MIP search-tree size A simple depth-first branch-and-bound search similar to that out-
lined in section 3.5 was used for the ECLiPSe MIP. The MP MIP search benefits from
good branching decisions and other optimisations, and its MIP search-trees are signif-
icantly smaller than ECLiPSe’s. Our interest in this study is not how good the MP’s
MIP strategy is, but in the overheads in performing a search in ECLiPSe. For this, the
time spent on each node of the search-tree is a more accurate reflection of the overheads
associated with implementing the search.

Incremental vs. non-incremental search Even for small problems like the ones tested,
the ECLiPSe incremental MIP search is about 10 times faster per node than the non-
incremental version. Modifying an existing problem is much less costly than construct-
ing the problem anew, as loading the problem is relatively expensive. In addition, the
incremental case is able to ‘warm start’ a problem when the modified problem is re-
solved – the solver will not start solving from scratch, but instead will try to reuse
information from the previous solve.

ECLiPSe search vs. MP search Comparing the incremental search with the MP solver’s
MIP search is somewhat more complicated: the MP’s MIP search is tightly integrated
with its linear solver, and this should result in lower overheads in the solving of each
node, for example, adding the constraints at each node can be done more directly. Fur-
thermore, some optimisations can be done once at the start of the MP solver’s MIP
search, rather than repeatedly at each node, as is the case for the ECLiPSe MIP search.
At each node, the MP MIP search can also take advantage of the knowledge that it is
performing a MIP search, for example by posting extra cuts that would be invalid for
the LP problem and the problem may even be solved more than once per node to drive
it closer to an integer solution. However, the effect of this may be more to reduce the
search-tree size, rather than make the solve at each node faster: the noswot result is a
striking example of this: the MP MIP solves the problem with a single node, but this



solve itself is relatively expensive, even taking into account the cost of loading the prob-
lem. Thus, the time per node comparison presented in the results should be taken with
care.

As the size of the MIP search-tree is so small for many of the MP MIP search, it
is not too meaningful to use the per node time for comparison: the cost of loading the
problem into the solver, and the cost of performing the initial solve, which is likely to
be more expensive because it does not benefit from a warm start, will skew the results
too much. However, for bell3a-nonred, where the search-tree is sufficiently large,
the time per node for the MP MIP and incremental MIP are quite similar, suggesting
that the cost of using ECLiPSe to control the MIP search is not prohibitive.

Impact on real applications This ability to solve multiple problems, and to repeatedly
modify and solve problems has been used to good effect to solve very large problems.
In some applications, over a million subproblems were solved in a single program, e.g.
[7], which performs a complex search and at each node solves a series of subproblems,
including some that have a quadratic objective.

4.3 Memory Considerations

Multiple representation of problem For large problems, the memory required to repre-
sent the MP problem can be significant. Moreover, the problem may be represented in
different forms at the same time during the execution. At the ECLiPSe level, the con-
straints for the problem are initially represented as expressions. When they are added
to the MP solver, they are first converted to a normalised form, and then passed to the
C level to construct the data structures required by the MP solver API. Both the C data
structures and the normalised form are only required temporarily, and the memory used
can be recovered once the constraints have been passed to the MP solver.

If a constraint is required by the MP solver and another ECLiPSe solver, then it has
to be represented in both. If it is only required by the MP solver, then the ECLiPSe

representation can be dropped once it has been passed to the MP solver. This is done
automatically by ECLiPSe if the constraint is posted incrementally to the MP solver
and then not referred to elsewhere in the program.

For most applications, the constraints for eplex are not given statically in the model
code, but are computed from some sort of abstract representation of the problem, e.g. a
graph. This will impose extra memory usage on the program.

MP representation of the problem The MP solver stores the problem in a compact form,
with only the non-zero coefficients of the constraints stored (along with their location in
the problem matrix). In ECLiPSe, the constraint are represented as expressions, which
also normally contain only non-zero coefficients. However, more memory is required
to store the expression as it is designed for ease of manipulation rather than minimise
memory usage. The exact amount of memory required depends on the actual expres-
sions used, but is roughly about 4 to 5 times greater than that of the compact form.



A concrete example We examined Thorsten Winterer’s Swapper program from his the-
sis [24], which is an application to swap aircrafts for scheduled flights. We examine his
single MIP formulation of the problem, and the largest problem instance he used: this
extracted a MIP problem from a graph constructed from the raw flight data, and has
421473 constraints and 145278 variables. As written, the program first constructs all
the constraints, before posting them all to the MP solver in one go.

However, as the constraints are not used elsewhere at the ECLiPSe level, and most
of the constraints can be extracted without looking at the whole graph, they can be
posted to the MP solver immediately. We modified the program to do this, and the peak
memory usage was greatly reduced: from about 400M to 150M. The execution time (to
the point where the problem have been loaded into the MP solver), however, increased
slightly from 102 seconds to 126 seconds (on a Pentium 4 2GHz Linux box with 1G
of memory, running CPLEX 9.0). This is probably due to the increase in memory man-
agement in the solver when the constraints are added to it incrementally.

In summary, while the ECLiPSe representation of the problem is less compact than
the compact matrix representation, it is often not necessary to represent the whole prob-
lem at the ECLiPSe level. In addition, even though the ECLiPSe representation is less
compact, it still avoids representing the non-zero coefficients, and would use far less
memory than a full, non-sparse matrix for the problem, so it is still possible to represent
quite large problems. At IC-Parc, eplex has been used successfully to solve problems
that approach 1 million constraints and variables e.g. [25] (627168 variables, 947967
constraints).

5 Related Work

5.1 Extensions of eplex

In addition to direct use of eplex in applications, eplex is also used at IC-Parc to develop
various hybridisation forms, such as column generation [10], Bender’s decomposition
[11] and Lagrangian relaxation [20]. Of these, column generation is now packaged as
an ECLiPSe library. In addition to the facilities described in this paper, eplex provides
additional low-level support for the colgen library, for example, adding new columns
with non-zero coefficients in existing rows of the matrix.

5.2 CLP Systems that Perform MP Solving

An alternative to providing an interface to an external MP solver is to implement an MP
solver. In this case, it should be possible to achieve much tighter coupling between the
MP solving and the rest of the CLP system, e.g., there may be no need to construct a
separate representation of the problem for the MP solver as in eplex. In fact, this is the
approach taken by many of the earlier CLP systems that have constraint solvers over
the real domain, such as CLP(R) [18], and clp(Q,R) [16], both of which implemented
their own Simplex solvers.

For CLP(R), the solver is used to determine the feasibility of a set of constraints,
rather than finding an optimal. The tighter integration of the solver with the rest of the



CLP system allows the posted constraints to be actively simplified as new constraints
are added. However, this ability to rewrite constraints means more complex backtrack-
ing actions are required to restore the constraints: unlike in eplex, where the problem
matrix can simply be restored to its original size on backtracking. The Q variant of
clp(Q,R) performs all calculations with rational rather than floating point values, avoid-
ing imprecision problems at the cost of increased time and memory. Another difference
with eplex is that both CLP(R) and clp(Q,R) do not provide mechanisms for separating
the constraints into different subproblems that are solved independently.

Performance comparison A motivation for the eplex interface is that an external MP
solver would be more efficient than trying to implement an MP solver directly – consid-
erable effort and specialist knowledge have been devoted to implementing MP solvers
such as CPLEX and Xpress, and it is unlikely that similar effort (and indeed the spe-
cialist knowledge) can be devoted to a single component in a CLP system. To see if
this belief is correct, we compared eplex using both the CPLEX and Xpress MP solvers
against clp(Q,R). clp(Q,R) has a Simplex solver implemented in Prolog with attributed
variables, and can optimise LP and MIP problems. It is available with several CLP sys-
tems, including ECLiPSe. Some effort was spent to implement an efficient Simplex
solver, although the MIP search implementation is still quite a simple one.

Program clpr,eclipse eplex,CPLEX eplex,xpress
lp mip lp mip lp mip

flugpl 0.0087s 2.43s 1.43× 88.4× 1.21× 33.4×
flugplan 0.0089s 0.99s 1.56× 35.0× 1.27× 13.5×
sample2 0.17s 4.31s 12.7× 32.2× 12.7× 29.3×
noswot 2.95s – 78.5× (0.0551s) 67.8× (2.31s)
bell3a-nonred 4.53s 20472s 164× 913× 168× 957×

Fig. 2. Speedup comparison of clp(Q,R) with eplex

Figure 2 shows the speedups of solving the same problems used in the search com-
parison (section 4.2) with eplex (using CPLEX 8.1.1 and Xpress MP 14.27), relative
to the performance of the R solver of clp(Q,R). The results were obtained using a
900MHz Pentium III Linux box running ECLiPSe 5.8. The problems are solved as
both LP (where the integer constraints are dropped) and MIP problems, and the timings
are presented for clp(Q,R) (in seconds) and for the MIP noswot times for CPLEX and
Xpress, as the clp(Q,R) was unable to solve this problem due to stack overflow.

Except for the smallest problems (flugpl and flugplan), eplex with the two MP
solvers was significantly faster than clp(Q,R) running on ECLiPSe: between 1 and 2
orders of magnitudes for the linear problems, and 1 and 3 orders of magnitudes for the
MIP problems.1 In addition, the difference is greater for the larger problems, so the

1 The performance of the ECLiPSe version of clp(Q,R) is quite comparable to that on other
CLP systems. For example, the measured difference in execution time between ECLiPSe and
SICStus Prolog (version 3.11.2) running these problems is at most 25%.



difference would likely even be greater for the type of application problems that have
been tackled using eplex.

In addition to the performance advantages, the external MP solvers offer more op-
tions. For example, both Primal and Dual Simplex and interior point methods are avail-
able for solving problems, and quadratic problems (i.e. problems with quadratic objec-
tives) can be solved.

5.3 Other Ways of Combining CP and MP

Using problem files Instead of interfacing to the callable library of the MP solver, an
alternative would be to generate a file specifying the problem in one of the standard
formats (MPS or LP) that can then be read in and solved by an MP solver. The solution
is written to a file and read back by the user program. This provides a looser coupling
between the CLP language and the MP solver, and is probably easier to implement for
solving individual MP problems. This approach was used initially to interface ECLiPSe

to an MP solver [14], before the development of eplex, and was also used by COSYTEC
to combine CHIP [3] with Xpress MP to solve a part of a train schedule problem.2 How-
ever, it is less flexible than using the callable library. For example, it would be difficult
to repeatedly modify and resolve the same problem, without creating the problem anew
each time, and it would be difficult to achieve tight co-operation between the MP solver
and other solvers in the CLP system.

Other high-level languages combining MP and CP Eplex allows MP and CP problems
to be modelled in a high-level language. In the MP community, the need for a easy-
to-use way of modelling MP problem lead to the development of modelling languages
such as AMPL [13] and GAMS [5]. This in turn lead to the development of OPL [22],
which extended MP modelling languages to model and solve CP problems as well.
However, like other MP modelling languages, OPL lacks the flexibility of a full-blown
programming language, and to allow a problem to be decomposed into subproblems that
are solved separately, a scripting language, OPL Script [23], was introduced. As each
subproblem can be solved by different methods, it does allow some hybrid solving.
Additionally, limited predefined ways of combining CP and MP solving in the same
OPL model is also possible, but as OPL Script is separate from the OPL model, more
programmatic control is not possible within the search specification. In addition, the
only way available to modify a problem and re-solve it is to change the data (constraints)
associated with the OPL model using OPL script, and then re-initialise the model. This
appears to create a new instance of the problem, which can be much more expensive
than incremental changes of the problem, as discussed in section 4.2.

Although OPL/OPL Script is solver independent, it is currently available with ILOG
CPLEX and Solver only.

Xpress-Mosel [8] offers high-level language functionality with Xpress-MP, and
with the announcement of the constraint-base module Xpress-CP, which uses the con-
straint engine of CHIP, similar functionality to OPL is available.

2 Personal communication with Helmut Simonis, 2004.



Combining MP and CP in an imperative language Using a high-level language to
combine CP and MP is not the only possibility. Much existing hybrid research work
is done using C/C++, interfacing to MP solvers such as ILOG CPLEX and CP solvers
such as ILOG Solver. In fact, ILOG provides Concert Technology [17], a common C++
classes and functions for Solver and CPLEX, to aid the writing of such code. With this
approach, the user would not benefit from the high-level ease of programming provided
by a language such as ECLiPSe or OPL, and furthermore, the programs are no longer
solver independent.

5.4 Other Common Solver Interfaces

The MP modelling languages like GAMS and AMPL are both available for use with
different MP solvers. Unlike OPL, however, they do not provide a CP solving compo-
nent.

The Open Solver Interface (OSI) from the COIN-OR project [6, 21] is a uniform
API in C++ for calling MP solvers. This allows solver independent program code to be
written in C++. In 2004, we investigated if eplex can use OSI as the API, rather than
directly the CPLEX and Xpress API, for accessing the MP solvers. This would also give
eplex immediate access to other solvers such as GNU’s GLPK. A prototype eplex-like
interface, implementing the minimal required functionality, was developed. However,
at the time, the OSI API was not flexible enough, particularly for MIP problems, to
replace our existing interface.

6 Conclusion

We believe that eplex provides a very powerful and flexible interface for users to solve
problems with MP and hybridisation techniques within a CLP language. While it is now
implemented for ECLiPSe, it should be possible to adapt it for other CLP languages.

The interface is still evolving to meet the needs of our users. In the short term, we
plan to add support for globally valid constraint pools (‘global cuts’ pools) – once added
to the pool, these constraints will apply to all subsequent solving of the problem, even
after backtracking.

We also plan to support Bender’s Decomposition and Lagrangian Relaxation as
libraries for ECLiPSe, so that the techniques can be used by the general users without
reprogramming these techniques on their own.
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