
SEPIAMi
ha Meier, Abderrahmane Aggoun, David Chan,Pierre Dufresne Reinhard Enders, Dominique Henry de VilleneuveAlexander Herold, Phillip Kay, Bruno Perez,Emmanuel van Rossum and Joa
him S
himpfEuropean Computer-IndustryResear
h Centre GmbHArabellastr. 17D-8000 Muen
hen 81West Germany9 May 1988Abstra
tSEPIA - Standard ECRC Prolog Integrating Advan
ed Ap-pli
ations is a Prolog system whi
h o�ers the 
apability to integratevarious extensions at a relatively low level that guarantees an eÆ
ient im-plementation. Apart from a general 
exibility, SEPIA has several uniquefeatures that support the integration of new extensions whi
h makes itboth suitable for the development of industrial appli
ations and a tool forfurther resear
h. In this arti
le we des
ribe the system itself as well as its
onne
tions to the extensions.1 Introdu
tionThe goal of the SEPIA proje
t is to develop a Prolog system whi
h will bethe 'glass box' des
ribed in [13℄: on one hand it is a 
ompa
t Prolog system
omparable in performan
e to the 
urrent Prolog systems, on the other handit outperforms them in fun
tionality and at the same time it is open to theworld of extensions, allowing them to be integrated at a low and thus eÆ
ientlevel. Among the possible extensions are CHIP, Constraints Handling in Prolog[7℄, sound negation [3℄, a sophisti
ated Prolog debugger [10℄, an obje
t-orientedsystem [6℄ and others.Compared to usual Prolog systems, SEPIA in
ludes several features whi
hin fa
t 
onstitute 'so
kets' for plugging in the extensions: among them are e.g.1



the ability to modify the uni�
ation, to 
hange the default Prolog 
ontrol rule,to handle asyn
hronous events, and others, des
ribed later in this arti
le. Thesefeatures allow the extensions to be integrated into the system.The 
onne
tions to the extensions have partly been tailored to those whi
hare being developed in various resear
h groups at ECRC, but apart from thatwe have tried to design the system to be as 
exible as possible and to in
ludefurther types of 
onne
tions so that even future, not yet spe
i�ed extensionshave a relatively good 
han
e of being able to use SEPIA as an implementationbase.Apart from integrating the extensions, SEPIA allows as well to separate themby means of a module 
on
ept so that problems are avoided whi
h 
ould stemfrom in
ompatible features of some of the extensions.2 General Des
riptionSEPIA is a WAM-based [35℄ system 
ontaining an in
remental 
ompiler, an em-ulator of the abstra
t 
ode and a native 
ode generator. The 
ore system itselfis not just another WAM implementation, it 
ontains many optimizations 
om-pared to the original WAM; the 
onne
tions to the extensions give it yet another
avor - although many of the 'so
kets' for the extensions do not 
onstitute ma-jor di�eren
ies 
ompared to other Prolog systems, they nevertheless in
uen
ealmost every detail of the implementation. This, apart from others, was themain reason to develop a 
ompletely new Prolog system rather than to adaptan existing one. In the SEPIA design we have merely used our experien
e fromthe ECRC-Prolog system [12℄ where we had the possibility to experiment withdelaying me
hanisms by 
ompiling the wait de
larations [21℄, but the systemitself was not 
exible enough to be used as a basis for extensions.Even without the extensions, the system o�ers wider fun
tionality than stan-dard Prolog systems. One of the extra features is the 
oroutining, i.e. the possi-bility to delay the exe
ution of a goal until some spe
i�ed 
onditions are ful�lled.Waking of a suspended goal is triggered by the binding of a variable. The 
ontrol
onstru
ts are delay 
lauses in whi
h the user 
an spe
ify the expli
it 
onditionsunder whi
h the goal should delay, e.g.delay and(X, Y, Z) if var(X), var(Y), X \== Y, Z \== 1.spe
i�es the delaying 
ondition for logi
al 
onjun
tion. Unlike a 
all-based[5℄ or shorthand [25, 26, 17, 30℄ notation in similar systems this gives the userthe possibility to express a more elaborate 
ontrol while keeping the eÆ
ien
ysin
e the delay 
lauses are fully 
ompiled.Another additional feature of SEPIA is the ability to handle events, bothsyn
hronous (errors, ex
eptions) and asyn
hronous (interrupts). If an event israised, the 
orresponding event handler predi
ate is 
alled and this 
all a
tuallyrepla
es the original goal if the event was an error, or it is transparent to it if itwas an interrupt. All the event handlers are user-de�nable from Prolog whi
hgives the user additional power to 
ontrol the system.2



2.1 Run-time SystemThe SEPIA 
ompiler is pro
edure based, ea
h pro
edure is 
ompiled only afterall its 
lauses are known, so that the global 
ontext information 
an be used for
lause 
ompilation. This approa
h makes it possible to generate more 
ompa
t
ode and to use this information for indexing, determina
y dete
tion or shallowba
ktra
king.The abstra
t 
ode generated by the 
ompiler is exe
uted by an emulator.To ease the introdu
tion of new extensions and porting to other ma
hines oneemulator, whi
h 
ontains only the basi
 abstra
t instru
tions (e.g. no hardwareregisters are used for Prolog arguments), has been written in C, another, op-timized emulator is written in 68020 assembler. The �nal system will in
ludeas well a native 
ode generator, the generated 
ode being a mixture of abstra
tinstru
tions and exe
utable 
ode.SEPIA has no interpreter, even the dynami
 (asserted) 
lauses are 
ompiled(in a 
lause-oriented manner), where an interpreter would be needed, e.g. fordebugging, the 
ompiler generates 
ode that 
ontains enough information fora separated debugger. The reason to 
ompile dynami
 
ode is eÆ
ien
y andsimpli
ity - some extensions are heavily based on the exe
ution of dynami
 pro-
edures whi
h therefore has to be fast. Apart from that, in
luding an interpreterwould mean that with new extensions, the interpreter has to be modi�ed, whi
h
ould turn out to be more diÆ
ult than to de�ne new abstra
t instru
tions forthe emulator.Two main issues for SEPIA design were eÆ
ien
y and 
exibility. Despitethe 
onne
tions to the extensions, the system is still very eÆ
ient, sin
e whendesigning it we have been painstakingly 
areful not to slow down the exe
utionof normal Prolog 
ode, so that the speed of SEPIA is 
omparable to 
urrent
ommer
ial systems. For the speed reasons, the 
ompiler has been written in C,whi
h has proven to be a good 
hoi
e, it 
ompiles more than 500 lines/se
. ona SUN-3/250 whi
h is at least 10 times faster than any Prolog 
ompiler writtenin Prolog. Apart from being user-friendly, a fast 
ompiler has yet anotheradvantage - it 
an be used for advan
ed database extensions to store in thedatabase the 
ompiled form of the rules and fa
ts [14℄. We have also taken 
areto keep the system 
exible, adopting always the more general 
hoi
e wheneverpossible, thus leaving enough spa
e to the users to 
ustomize it.SEPIA has been developed on a SUN-3 and ported to VAXes, Apollo, BullSPS ma
hines and Siemens MX-300 and MX-500. Apart from the softwareimplementation, the Computer Ar
hite
ture Group at ECRC is developing ahardware implementation in the Knowledge Crun
hing Ma
hine (KCM) whi
his a sequential Prolog ma
hine with target speed about 650kLips [15, 2℄ andwhi
h will be 
ompatible with the software SEPIA running on general-purposema
hines. 3



2.2 StandardsECRC being a joint resear
h 
entre of ICL, Bull and Siemens, 
ompatibilitywith the existing and future Prolog standards is for SEPIA a ne
essary 
ondi-tion. SEPIA supports the BSI Prolog standard [1, 24℄, whi
h is 
urrently theonly result of standardization a
tivities being pursued in Europe and Ameri
a.Unfortunately, the BSI standard is not 
ompatible with the de fa
to standardof C-Prolog and Quintus Prolog. Moreover, the a
tivities aiming for a Prologstandard (BSI, Afnor, DIN, ISO) still have no �nal and 
omplete results, andit is likely that some parts of the existing drafts will 
hange.These 
onsiderations have led us to adopting a 
exible approa
h when de-signing the a

epted syntax and the semanti
s of the built-in predi
ates. Itis possible to de�ne the 
lass of a 
hara
ter (e.g. symbol, lower
ase, solo), to
hange the syntax of quoted identi�ers et
. so that the a

epted syntax 
anbe 
ustomized to various Prolog diale
ts. Similarly, it is possible to rede�nebuilt-in predi
ates and to de�ne event handlers for ex
eptional 
onditions inthe built-ins, e.g. uninstantiated variable, whi
h in BSI 
auses an instantiationerror, whereas in Quintus Prolog it simply fails. So far we have provided two
ompatibility Prolog modules whi
h are (un)loaded by the predi
ates bsi/0 and
prolog/0 
hoosing the 
orresponding diale
t syntax and semanti
s.3 Conne
tion to ExtensionsSEPIA provides the 
onne
tion to the extensions via several features, some ofthem are for general usage, others are useful only for the extensions.3.1 Prolog WordsThe WAM is a tagged ma
hine, ea
h obje
t is represented by a value and atag. In most of the WAM implementations these �elds are both pa
ked into onema
hine word, the tag o

upies 2 or 3 bits. From the point of view of possibleextensions, there are two main problems with su
h an ar
hite
ture:� the number of types is limited, new types 
an be 
reated only as instan
esof one of the basi
 types, usually stru
ture or box� by reserving some bits in ea
h word the 
ompatibility with external soft-ware is lost, e.g. an integer value passed by an external pro
edure maynot be representable as an integer in the Prolog ma
hineTo support various extensions, the abstra
t ma
hine must have the possibilityto de�ne new types and to handle them eÆ
iently. With the original WAM thiswould be possible only by de�ning them as subtypes of the stru
ture type, i.e.a new type would be represented by a stru
ture tag and a pointer to anotherstru
ture whi
h would 
ontain further tag bits. This would 
onstitute an obvious4



bottlene
k when exe
uting extended programs1, sin
e several additional testsand memory a

esses would be ne
essary for every manipulation of the newtypes.SEPIA uses the full longword (4 bytes) to store the value of ea
h Prolog wordand a 
onse
utive longword for its tag. This of 
ourse in
reases the spa
e re-quirements for the environment, global and 
ontrol sta
k, however the in
reasedfun
tionality promises to outweigh this overhead. 2The tag is divided into several areas, some of whi
h are re
ognized by thesystem and others are de�nable in the extensions. Thus e.g. one bit marksthe tag of any referen
e, one byte is used by the system to re
ognize the basi
non-referen
e types as atom, integer, list et
. New types 
an be either de�nedas extensions of the old ones, i.e. they are treated by the 
ore system as theoriginal type, or as new types whi
h then have to be treated in a spe
ial way,espe
ially in the uni�
ation and they require new abstra
t instru
tions to bede�ned for them.3.2 The Uni�
ationMany of the developed or planned extensions, mainly those of the problem-solving type or obje
t oriented type rely on modi�
ations of the Prolog uni�-
ation. A 
onstraint propagation system, for instan
e, is data driven and ea
htime a 
onstrained variable is bound in the uni�
ation, the propagation me
h-anism should be started. Another example are typed variables - unifying twovariables of di�erent type but with a 
ommon subtype may issue 
reation ofthat subtype and updating the variables 
orrespondingly.The former modi�
ation requires that some a
tion is taken after the uni-�
ation su

eeds (there is no point in starting the 
onstraint propagation ifthe uni�
ation 
ould fail), in the latter the uni�
ation pro
ess itself must bemodi�ed in order to 
ope with extended types.The abstra
t instru
tions that perform the uni�
ation are modi�ed so thatwhen an obje
t of a spe
ial type is en
ountered and the uni�
ation has to 
hangeit, a 
orresponding routine is exe
uted that does all the ne
essary work. Whena variable responsible for suspending some 
alls, for example, is going to bebound, its previous tag is trailed if ne
essary and a referen
e to this variable issaved on a sta
k, so that when the uni�
ation su

eeds, the system 
an a

essthe variable and through it the 
alls that have to be woken.The obje
ts that require spe
ial treatment in the uni�
ation must have adistin
t tag, whi
h is re
ognized by the system. If an obje
t belongs to severalextensions (e.g. a typed variable with some 
onstraints) the tag is marked sothat all the extensions 
an re
ognize it. For new obje
ts whi
h 
an appear in1for instan
e in a 
onstraint propagation system, nearly all of the obje
ts are 
onstrainedvariables2It would be possible to reserve only 2 bytes for the tag, but then it would not be possibleto store an address in it whi
h may well be needed for some extensions.5



the sour
e using the transformation me
hanism from the paragraph 3.3 (or inan asserted 
lause) it is ne
essary to de�ne new abstra
t instru
tions that aregenerated for its o

urren
es.3.3 Sour
e TransformationSome extensions require a spe
ial internal representation of its obje
ts. Witha normal Prolog syntax this might be diÆ
ult be
ause the only available datastru
ture is a 
ompound term of the type f(a, b, ...), whereas extended obje
tsmay need a more stru
tured representation or more information than a sour
e
ompound term 
an provide. For this purpose SEPIA provides the possibilityto 
hange the stru
ture whi
h is built up by the parser or other built-ins [11℄.The user 
an de�ne a fun
tor to be a 'ma
ro' with an asso
iated transformationpredi
ate. Su
h fun
tors are marked and whenever the system 
onstru
ts a termwhose main fun
tor is a marked one, it 
alls the 
orresponding transformationpredi
ate (often it will be an external fun
tion that will 
reate a new datastru
ture with a new tag) and repla
es the sour
e term by the transformed one.This feature is di�erent from the term_expansion/2 predi
ate in Quintus Prologin that it is applied not only when 
onsulting or 
ompiling a �le, but on everyo

asion in
luding the built-ins read/1, fun
tor/3, et
. Another di�eren
e isthat the transformation is applied to subterms as well as the main term andthat their e�e
t may be 
umulative.This approa
h guarantees that the extensions have enough 
exibility for theirsour
e form, for instan
e a typed variable 
an be written as Var:Type althoughits internal representation uses a stru
ture with a spe
ial tag. It would be aswell possible to reserve some fun
tors for the extensions and e.g. when readingthe Prolog sour
e su
h fun
tors would be parsed di�erently. SEPIA solution ismore 
exible, though, the transformation pro
edure 
an be easily rede�ned andit may be lo
al only to some modules.3.4 Event HandlingTo open the system even for very nonstandard appli
ations whi
h rely on pro-
essing in real time3 as well as for appli
ations in the graphi
s or databasedomain we have de
ided to in
lude into SEPIA the possibility of handling asyn-
hronous events. Events of syn
hronous type, like errors in built-in predi
atesor errors when a

essing the operating system are now 
ommon in up to dateProlog systems and if they are 
exible enough to be rede�nable by the user theyin
rease the ergonomy of the system. Even interrupts issued e.g. by pressingthe interrupt key 
an be handled by the WAM-based systems provided thatthey are pro
essed in a syn
hronous way, most often the interrupts are polledso that a 
ag is set and at well de�ned 
he
k points, e.g. at the beginning ofea
h pro
edure, it is tested and the event is pro
essed.3for instan
e writing an operating system, devi
e driver or a booking system6



In SEPIA, due to some extensions of the uni�
ation, we 
an no longer guar-antee that the system arrives soon enough at the point where the interrupt is
he
ked, so that serious real-time appli
ations 
ould not be guaranteed to workproperly.4 The issue was therefore to modify the Prolog ma
hine so that it isable to respond to asyn
hronous events, whi
h means that at any time it mustbe possible to interrupt the exe
ution of the 
urrent goal and to start the ex-e
ution of the event handler whi
h itself 
an be any Prolog pro
edure. At anytime the ma
hine must be able to save enough information (and not too mu
hof it) so that it is able to 
ontinue the exe
ution after the interrupt has beenpro
essed. Moreover, the state of the sta
ks and registers must be su
h that noimportant data is lost. Note for instan
e that this requirement makes the trim-ming in the WAM [35℄ impossible sin
e it relies on the variable size of the topsta
k frame and on the fa
t that the environment sta
k top 
an be 
omputeddynami
ally via some information stored in the 
ode area.There are of 
ourse 
ru
ial elementary operations during whi
h the exe
utionmust not be interrupted, e.g. when inserting a new atom into the di
tionary(symbol table). Sin
e they are very short, only several ma
hine instru
tions, itis possible to disable the interrupts using a semaphore and to pro
ess it laterwhen the 
ru
ial part of the 
ode has been exe
uted. For pushing items onthe sta
k this is normally not ne
essary sin
e this 
an be done in one ma
hineinstru
tion whi
h is not interruptable.From the logi
al point of view, the syn
hronous events repla
e the goal thathas initiated them, whereas the asyn
hronous events are 
ompletely transparentto the normal exe
ution, ex
ept if they perform some side e�e
ts. The systemuses the same ve
tored style (similar to [31℄) for both event types. It is possibleto de�ne any pro
edure to be the event handler for a given event type (e.g. forany of the signals).The possibility to de�ne event handlers makes the system more user friendly,sin
e it 
an be 
ustomized to spe
ial needs. For instan
e, 
alling an unknownpro
edure 
auses an error in the BSI proposal, whereas from the theorem provingpoint of view the 
orre
t a
tion is to fail (a
tually it means that the system hasnot made the pure literal elimination); both of these possibilities 
an be easilya
hieved by de�ning the appropriate event handler.3.5 ModulesSEPIA supports program modules [9℄. A module is generally a 
olle
tion ofsome obje
ts and their interfa
e to other modules. Our basi
 requirements forthe module system were:� Modules should be a stru
turation tool allowing to develop large appli
a-tions.4apart from that, 
ontinuous testing for interrupts slows the system down7



� Modules should avoid name 
lashes by having one name spa
e for ea
hmodule.� Modules should support priva
y. Implementation details and internalstru
tures of a module are hidden to outside.� Module should be transparent to non-modular appli
ations. A Prolog pro-gram written for a 
at prolog system should run without 
hanges, whenput in an unique module.Usually a module 
onsists of pro
edures, but it may as well 
ontain operators,re
orded terms, arrays et
. Pro
edures 
an be lo
al in a module, exported to andimported from another module, or global, i.e. visible in all modules. Visibility
hanges are possible as well as lo
al rede�nition of global pro
edures.Stru
turation of sour
e and obje
t programs into modules might not seemdire
tly relevant to the extensions, however espe
ially in the 
ase of several 
o-existing extensions it is highly desirable as it helps to separate program partswith di�erent syntax and semanti
s. For example, the transformation predi
atefrom 3.3 may be visible only in 
ertain modules, the others may use the fun
torin its sour
e form. Another possibility is to de�ne pure modules whi
h do not
ontain any extra-logi
al predi
ates and whose exe
ution, espe
ially when nega-tion or 
oroutining is used, 
an be more sophisti
ated than in the usual 
ase. Ifsome extensions show up to be in
ompatible with ea
h other, it is still possibleto integrate them into one modular system so that they do not in
uen
e ea
hother.3.6 External Pro
eduresSEPIA 
an interfa
e to any external fun
tion written in C and load it dynam-i
ally if needed, the C fun
tion 
an manipulate Prolog data, or it might be
ompletely independent of Prolog stru
tures. In order to allow fast data ex-
hange between the Prolog system and the external fun
tions, there are arraysof various types available in SEPIA. An external C fun
tion behaves like abuilt-in predi
ate, it 
an su

eed, fail, ba
ktra
k, delay and as well 
all Prologpro
edures. While one 
an argue about the ne
essity of su
h features [27℄, forsome extensions they are unavoidable, e.g. 
onverting the set representation ofa relation to a Prolog tuple representation (a pro
ess similar to the 
lause/2predi
ate).3.7 Memory ManagementFor the extensions and appli
ations of the database type it is ne
essary to havean eÆ
ient memory management system whi
h is able to store and release largeamount of fa
ts and rules and it has to make an eÆ
ient use of the availablememory. In SEPIA, the memory areas di
tionary, pro
edure table and heaps are8



extendible and they are, together with the global sta
k and the trail, garbage
olle
table. The size of the sta
ks 
an be set when SEPIA is invoked. Thegarbage 
olle
tor is going to be written later this year.4 Delayed Goal Exe
utionSEPIA has a built-in me
hanism that supports data driven 
hange of 
ontrolbased on goal suspension. The user 
an spe
ify that a 
all to a pro
edure shouldbe delayed if a 
ondition is ful�lled, waking of these goals is triggered by variablebinding. Su
h a me
hanism 
an be used to delay the exe
ution of a goal untilits arguments are suÆ
iently instantiated, but it 
an also be used to implement
oroutines, this is why we often refer to it as 
oroutining. Ea
h time a variablethat was present in a suspended goal is bound, the 
orresponding suspendedgoal is woken and the delaying 
ondition is tested again. Built-in predi
atesand external fun
tion 
an also delay, but the 
onditions ne
essary for this are
oded dire
tly in the body of the C fun
tion.The me
hanism used in SEPIA is similar to geler [5℄, wait de
larations [25,21℄, IC-Prolog [17℄, bind-hook [4℄, when de
larations [26℄ or 
ommitted-
hoi
elanguages [30, 18℄. but its semanti
s is 
leaner and more powerful. While theother Prolog systems use some sort of shorthand notation to de�ne the 
onditionunder whi
h a 
all to a pro
edure should, or should not delay, SEPIA allows theuser to spe
ify the 
ondition dire
tly, using the normal Prolog notation, whi
hapart from being more readable, in
reases the fun
tionality. SEPIA providesdelay 
lauses whi
h in fa
t are meta
lauses that spe
ify when a 
all has to delay.To spe
ify that a 
all should delay when its argument is a variable or when itis a list whose �rst element is a variable it suÆ
es to writedelay p(X) if var(X).delay p([X|_℄) if var(X).The semanti
s of the delay 
lauses is as follows: when a 
all to a pro
edurewith some delay 
lauses is made, �rst the 
all is mat
hed with the head of the�rst delay 
lause. This mat
hing is not the usual Prolog uni�
ation but only aunidire
tional pattern mat
hing - the variables in the 
all 
annot be bound byit. This is ne
essary in order not to mix the metalevel 
ontrol with the obje
tlevel, similar to [8℄. If the mat
hing su

eeds, the body of the delay 
lause isexe
uted. If all the body subgoals su

eed, the 
all is suspended. Otherwise,or if the head mat
hing fails, the next delay 
lause is tried and if there is none,the 
all 
ontinues normally without suspending.The goals in the body of the delay 
lauses 
an in general be any Prolog goals,however in the 
urrent implementation only the predi
ates var/1, nonground/1and \==/2 as well as external simple predi
ates are supported, but even so theSEPIA 
oroutining system is more powerful than the others mentioned above 5.For example, the MU-Prolog's sound negation predi
ate ~/2 
an be in SEPIAsimply implemented as5the a
tion of wait de
larations 
an be simulated only in
ompletely, delay 
lauses arenot dependent on the order of uni�
ation; anyway, this 'feature', even in wait de
larationsrepresents rather an unwanted side e�e
t 9



delay ~ X if nonground(X).~ X :- not(X).the freeze/2 predi
ate 
an be expressed asdelay freeze(X, _) if var(X).freeze(_, Goal) :- Goal.The semanti
s of the delay 
lauses is also 
learer than is the 
ase for other
omparable 
onstru
ts - by de�ning when the 
all has to delay the user naturallyexpresses the ne
essary 
ondition. If the user spe
i�es when the 
all should notbe delayed, this 
ondition is no longer quite straightforward - if there is no
ondition or if the 
ondition does not mat
h the 
all it would mean that the 
allshould wait forever, whi
h is 
ertainly not the intended semanti
s.The delay 
lauses are 
ompiled similarly to normal 
lauses, ex
ept that forthe head uni�
ation, the mat
hing instru
tions are generated instead of thenormal ones. A delay 
lausedelay p(X) if var(X).is 
ompiled simply as if it werep(X) :- var(X), delay(p(X)).where delay/1 is a system predi
ate that delays its argument.It is very important to mention here the in
uen
e of su
h a 
ontrol 
onstru
ton non logi
al predi
ates, espe
ially on the 
ut. The 
ut relies on a �xed orderof goal exe
ution in that it dis
ards some 
hoi
e points if all goals pre
eding itin the 
lause body have su

eeded. If some of these goals are delayed, or if thehead uni�
ation of the 
lause with the 
ut wakes some nondeterminist
 delayedgoals, the 
ompleteness of the resulting program is lost and there is no 
leanway to save it as long as the 
ut is used.One might be tempted to try to save the 
ompleteness by delaying the 
utor even all the subgoals to the right of the 
ut until all goals pre
eding it havesu

eeded. Unfortunately, this still leaves problems on failure - if a further goalfails before the 
ut was woken, to whi
h 
hoi
e it should ba
ktra
k?p(X) :- a(X, Y), Y = 1.a(X, 0) :- b(X), !.a(1, 1).delay b(X) if var(X).b(1).When 
alling ?- p(1), b/1 does not delay, it su

eeds, the 
ut isexe
uted, Y = 1 fails and the whole query fails. When, on the otherhand, ?- p(X) is 
alled, b/1 delays, therefore the 
ut delays, Y = 1fails, a(1, 1) su

eeds and we get a solution X = 1.As soon as the 
ut is delayed, it is no longer known whether the 
hoi
e point ofits parent 
lause and its left-hand brothers exist or not, hen
e we should suspendthem all and the possibility of subsequent failures propagates it further. SEPIAhandles this 
ase in that in raises an event in the 
ase that some of the goals tothe left of a 
ut were delayed; apart from that, the users are dis
ouraged to usethe 
ut in 
onne
tion with 
oroutining.10



Goals that may be woken by the uni�
ation of a 
lause that 
ontains a 
ut
onstitute another problem - if the woken goal is nondeterministi
, the 
ut isgoing to 
ut its 
hoi
e point whi
h is 
ertainly an unwanted side e�e
t. Fora ne
k
ut, i.e. a 
ut dire
tly following the 
lause ne
k one 
ould try to �rstexe
ute the 
ut and only then to wake the suspended goals, however generallythis strategy is not 
orre
t:b(1) :- !.b(2).?- X > 1, ..., b(X).The built-in 
all X > 1 delays and it should be viewed as a 
onstraintimposed on X; if the 
ut in b/1 is exe
uted before waking this delayed
all, the 
all to b/1 and the whole query fail, although the 
orre
ta
tion would be to fail in the �rst 
lause without 
utting the se
ondone.In the above 
onsiderations we attempted to present the problems of the 
utoperator from another point of view than usual and we strongly believe that theproblems 
oming from the use of a 
ut in a 
oroutining system signal that afterall the 
ut is really not the 
orre
t 
ontrol stru
ture and that in the long termwe have to give it up, or to give up these Prolog extensions. A language withoutimpure 
onstru
ts does not ne
essary have to be less eÆ
ient and 
ertainly notless expressive, as the example of [34℄ shows.5 Abstra
t Ma
hineThe main design prin
iples for the abstra
t ma
hine were:� SEPIA will run on traditional hardware6. This means that it has to takeinto a

ount its limitations, e.g. the number of hardware registers.� Conventional pro
essors have a number of dedi
ated instru
tions that areused for the exe
ution of traditional languages. By making the Prologabstra
t ma
hine 
lose to the exe
ution model of traditional languages itis possible to bene�t from the hardware.� Sin
e the system has to handle asyn
hronous events, espe
ially interrupts,the state of the ma
hine must be 
onsistent at any time, e.g. no infor-mation above the sta
ks top or in global variables 
an be 
onsidered assafe.The Prolog ma
hine must be able to perform eÆ
ient shallow ba
ktra
k-ing, i.e. ba
ktra
king to another 
lause for the failed 
all (as opposed to deepba
ktra
king whi
h requires to sele
t an alternative for a parent 
lause). Sin
eshallow ba
ktra
king is the only way to eÆ
iently express simple if-then-else6of 
ourse, this does not apply to the KCM hardware.11



statements in Prolog, it is an extremely important feature. Experimental re-sults show [16, 36℄ that shallow ba
ktra
king o

urs far more frequently thandeep whi
h 
on�rms its importan
e.A

ording to other measurements [20, 28, 29℄, built-in predi
ates 
onstitutea large fra
tion of the 
alled goals. Most of the built-in predi
ates are written inthe implementation language (e.g. C), and they do not 
hange any importantProlog data, ex
ept for the argument registers. SEPIA therefore introdu
es the
on
ept of simple and regular goals and pro
edures: a simple pro
edure is onethat does not 
hange the state of the ma
hine nor of important registers, doesnot 
reate 
hoi
e points nor overwrite temporary variables Xi or argument reg-isters Ai; usually it means that they are written in C and that they 
annotba
ktra
k or 
all other, non-simple goals. Other pro
edures are regular, usu-ally this in
ludes all pro
edures written in Prolog. SEPIA treats simple goalsdi�erently, they are invoked like C fun
tions and their arguments are pushedon the sta
k. The 
onsequen
e of this fa
t is that most of the built-in 
alls
an be treated as subroutines and so they are, apart from the ability to fail,transparent. Therefore fewer pro
edures need an invo
ation environment frame(namely those that that 
ontain at least one regular goal followed by anothergoal) and more pro
edures 
an perform shallow ba
ktra
king (failure of simplegoals that follow the 
lause ne
k usually 
auses only shallow ba
ktra
king).5.1 DataThe sta
ks in SEPIA are similar to the WAM, however the lo
al sta
k has beensplit into an environment sta
k and a 
ontrol sta
k. The 
ontrol sta
k 
ontains
hoi
e points, event and interrupt frames and other 
ontrol frames. There areseveral advantages of this splitting:� better lo
ality of referen
es on both sta
ks� the 
ontrol sta
k 
an be quite naturally used for the event handling� shallow ba
ktra
king 
an be easily implemented [22℄� immediate memory re
lamation after a 
utThere is no trimming of the environments, partially due to event handlingand partially be
ause it slows down the exe
ution and moves garbage fromthe environment to the global sta
k where it 
an be less easily re
laimed. Theenvironment sta
k is merged with the C exe
ution sta
k. This has some positive
onsequen
es:� over
ow on the environment sta
k need not be tested, the system sends asignal when it over
ows 12



� the Prolog environments have the same stru
ture as C pro
edures andtherefore the generated native 
ode 
an bene�t from the instru
tions forsubroutine 
all, return and frame allo
ation� simple pro
edures are invoked from Prolog in the same way as from C -their arguments are pushed on the environment (and thus system) sta
kand they are 
alled using a subroutine 
all. There is no overhead at allwhen 
alling a C fun
tion.We have already mentioned the in
uen
e of the event handling on the ab-stra
t ma
hine. In order to maintain 
onsisten
y, the system must be able tode
ide whi
h information is important and whi
h not. For the WAM, the mainproblem 
on
erns the temporary variables Xi and argument registers Ai (whi
hare the same). When an interrupt o

urs, the system 
annot de
ide how manytemporary variables store important information and whi
h of them are theimportant ones. Therefore, SEPIA allo
ates all the temporaries on the environ-ment sta
k, pushing them when ne
essary and popping before next regular 
all.There is no exe
ution overhead, sin
e the Xi are normally allo
ated in memoryas well, but on the sta
k they 
an be a

essed via a register. This means thatall temporaries are safe w.r.t. interrupts.A similar problem o

urs with Prolog arguments, but at least they are 
on-se
utive, at any time only the �rst N arguments have some signi�
ant value.At some de�ned points, where this N is known, the system puts a marker intothe N + 1st argument so that when an interrupt o

urs, the interrupt handlerknows how many arguments to save in the interrupt frame.5.2 Instru
tionsThe SEPIA abstra
t instru
tion set is based on the WAM with several di�er-en
es:� The head uni�
ation is 
ompiled di�erently: the sequen
es for the readand write mode are separated, when the mode has to be 
hanged a jumpto the other sequen
e is performed. On a pro
essor with an instru
tion
a
he like the MC68020 the instru
tion 
ow is not broken as often and sothe exe
ution is faster.� There are uni�
ation instru
tions that perform only unidire
tional patternmat
hing, i.e. the variables in the 
all 
annot be bound, otherwise themat
hing fails. These are used for the 
ompilation of delay 
lauses andfor some extensions.� The indexing instru
tions, based on [23℄ re
e
t more the nature of usualProlog programs - most of the pro
edures 
ontain only one type of argu-ments (and variables) and so instead of the instru
tions swit
h_on_termand e.g. swit
h_on_atom only one is ne
essary. Moreover, due to the13



pro
edure-oriented 
ompiler, part of the uni�
ation is made in the index-ing instru
tion so that part of the head 
ode 
an be omitted, for 
ompoundarguments the system 
an dire
tly jump to the read mode sequen
e.� The 
ontrol instru
tions like 
all, allo
ate, pro
eed et
. use the fa
tthat the environment sta
k is identi
al with the ma
hine sta
k and hen
ethey 
an be mapped dire
tly onto ma
hine instru
tions.� Sin
e the arguments of the simple goals are pushed on the environmentsta
k, di�erent puts instru
tions for fet
hing their arguments are used.The instru
tion puts_value dereferen
es its arguments and this simple
hange guarantees that the arguments of the simple 
alls will always bedereferen
ed, and hen
e the often repeated 
ode to dereferen
e the argu-ments at the beginning of ea
h simple pro
edure 
an be omitted and theexe
ution is faster.6 ExtensionsThe 
urrently developed extensions for SEPIA are:� CHIP - Constraints Handling in Prolog [7℄. This is a 
onstraint propaga-tion system with main appli
ation areas operations resear
h and 
ir
uitdesign. It uses �nite domain terms, linear rational terms and booleanterms. First it was implemented in the MU-Prolog [25℄ interpreter and ithas proven to be appli
able even to 
ompli
ated real-life problems.� PHOCUS [6℄ is an expert system kernel whi
h in
ludes obje
ts, typedvariables, forward 
haining me
hanism and multiple worlds. It has beenprototyped in LISP and 
urrently a part of it 
onsisting of obje
ts andtyped variables is being implemented in SEPIA.� Constru
tive negation [3℄ whi
h is a sound negation based on the 
omple-tion of the database.� QoSaQ - A database system whi
h is able to handle re
ursive queries[32, 33℄.� ODE - a sophisti
ated Prolog debugger [10, 19℄Parallel to the SEPIA proje
t, the Knowledge Crun
hing Ma
hine is beingdeveloped at ECRC. It is a Prolog and Lisp hardware ma
hine whi
h 
an be usedas a Prolog 
opro
essor. Apart from the restri
tions due to the 
ommuni
ationwith the host ma
hine, KCM fully supports SEPIA and its extensions.14



7 Con
lusionThe results a
hieved so far in the SEPIA proje
t are promising - the 
ore systemhas been working sin
e the beginning of the year, 
urrently the assembler emu-lator is being tested, later this year the native 
ode generator and the garbage
olle
tor are going to be implemented. The extension with typed variables is ina testing stage as well as the 
oroutining primitives. The CHIP system is goingto be available later this year.SEPIA is not only a new Prolog system, it is a step in a new dire
tion,towards integrating several programming paradigms in one system, all of thembeing understood as an extension of the logi
 programming paradigm. Sin
ethe integration is a
hieved at a low implementation level, no eÆ
ien
y is lost inone or more interpretation level. While up to now Prolog has been used mainlyfor prototyping, SEPIA opens the door to real life appli
ations and we expe
tit to 
ontribute to the su

ess of logi
 programming in the industrial area.A
knowledgementsThanks are due to many people at ECRC for fruitful dis
ussions and valuable
omments 
on
erning the SEPIA design and implementation. Espe
ially wethank to Reinhard Enders for the 
ontinuous valuable 
omments and for theimplementation of the uni�
ation extensions although he was only supposed touse them, to Abderrahmane Aggoun for the implementation of the 
oroutiningand to Abder, Reinhard and David Chan for their work on extensions and their
onne
tions and for their help with debugging the system. Ja
ques Noye hasbeen used as a sour
e of informations about the KCM and about the abstra
tma
hine, he and further members of the KCM team, Bruno Poterie and Mi
helDoro
hevsky have 
ontributed to the design of features that are 
ommon to bothof the systems. Mehmet Din
bas, Mark Walla
e and Herve Gallaire have helpedto 
larify problems that 
on
erned the 
oroutining. Further we thank to JorgeBo

a for initiating the proje
t and bringing in ideas for database extensions, toHerve Gallaire and Alexander Herold for reading and 
ommenting earlier draftsof this paper and to Edward Marks for 
orre
ting the english. Finally, all themembers of ECRC have helped us by providing a stimulating environment andof 
ourse bug reports.Referen
es[1℄ R. S. S
owen A. Dodd, A. J. Mans�eld. Prolog. built-in predi
ates: Draft4.1. Te
hni
al Report PS/230, British Standards Institution, November1987. 15



[2℄ H. Benker, T. Je�re, A. Poehlmann, J. C. Syre, O. Thibault, and G. Wat-zlawik. K
m - fun
tional des
ription. Te
hni
al Report CA-28, ECRC,August 1987.[3℄ David Chan. Constru
tive negation based on the 
ompleted database. InPro
eedings of the 5th Conferen
e and Symposium on Logi
 Programming,Seattle, 1988.[4℄ Takashi Chikayama. Esp referen
e manual. Te
hni
al Report TR-044,ICOT, February 1984.[5℄ Alain Colmerauer. Prolog II manuel de referen
e et modele theorique.Te
hni
al Report ERA CNRS 363, Groupe Intelligen
e Arti�
ielle, Fa
ultedes S
ien
es de Luminy, Mar
h 1982.[6℄ P. Dufresne D. Chan and R. Enders. Pho
us: Produ
tion rules, horn
lauses, obje
ts and 
ontexts in a uni�
ation-based system. In Program-mation en Logique, a
tes du Seminaire, pages 77{108, Tregastel, Fran
e,May 1987.[7℄ Mehmet Din
bas, Pas
al Van Hentenry
k, Helmut Simonis, AbderrahmaneAggoun, and Thomas Graf. Appli
ations of 
hip to industrial and engineer-ing problems. In The First International Conferen
e on Industrial & Engi-neering Appli
ations of Arti�
ial Intelligen
e and Expert Systems IEA/AIE- 88, Tulahoma, Tennessee, June 1988.[8℄ Mehmet Din
bas and Jean-Pierre Le Pape. Meta
ontrol of logi
 programsin metalog. In Pro
eedings of the International Conferen
e on Fifth Gen-eration Computer Systems 1984, pages 361{370, 1984.[9℄ M. Doro
hevsky and D. de Villeneuve. Modularity into sepia. Te
hni
alReport IR-LP-13-07, ECRC, May 1988.[10℄ M. Du
ass�e. Opium+, a meta-debugger for Prolog. In Pro
eedings of theEuropean Conferen
e on Arti�
ial Intelligen
e, Muni
h, August 1988.[11℄ Reinhard Enders. Modi�
ations of the warren ma
hine for types. unpub-lished, 1987.[12℄ Klaus Estenfeld and Mi
ha Meier. E
r
-Prolog user's manual version 1.2.Te
hni
al Report LP-13, ECRC, September 1986.[13℄ H. Gallaire. Boosting logi
 programming. In Pro
eedings of the 4th ICLP,pages 962{988, Melbourne, May 1987.[14℄ P. Pearson J. Bo

a. On Prolog dbms 
onne
tion: A step forward. In Pro-log and Databases: Implementation and Appli
ations, Aberdeen, De
ember1987. 16



[15℄ Jean Claude Syre et al. Ja
ques Noye. I
m3: Design and evaluation of aninferen
e 
run
hing ma
hine. In Database Ma
hines and Knowledge BaseMa
hines, pages 3{16. Kluwer A
ademi
 Publishers, 1987.[16℄ M. Meier K. Estenfeld. Ben
hmarking of Prolog programs for the MU-Prolog interpreter. Te
hni
al Report LP-1, ECRC, February 1985.[17℄ S. Gregory K. L. Clark, F. G.M
Cabe. I
-Prolog language features. In Logi
Programming, ed. Clark and Tarnlund, pages 253{266. A
ademi
 Press,London, Departmemt of Computing, Imperial College, London, 1982.[18℄ Yasunori Kimura and Takashi Chikayama. An abstra
t kl1 ma
hine andits instru
tion set. In Pro
eedings 1987 Symposium on Logi
 Programming,pages 468{477, San Fran
is
o, September 1987.[19℄ A-M. Emde M. Du
asse. An introdu
tion to the ode proje
t. InternalReport IR-LP-31-18, ECRC, Mar
h 1988.[20℄ H. Matsumoto. A stati
 analysis of Prolog programs. Programming SystemGroup Note 24 AIAI/PSG24/85, University of Edinburgh, January 1985.[21℄ Mi
ha Meier. Compilation of wait de
larations. Internal Report IR-LP-1102, ECRC, June 1985.[22℄ Mi
ha Meier. Shallow ba
ktra
king in Prolog programs. Internal ReportIR-LP-1113, ECRC, November 1986.[23℄ Mi
ha Meier. Analysis of Prolog pro
edures for indexing purposes. InICOT, editor, Pro
eedings of the International Conferen
e on Fifth Gener-ation Computer Systems, pages 800{807, Tokyo, November 1988.[24℄ C. Moss. Prolog. syntax: draft 4. Te
hni
al Report PS/234, British Stan-dards Institution, February 1988.[25℄ Lee Naish. An introdu
tion to MU-PROLOG. Te
hni
al Report 82/2,University of Melbourne, 1982.[26℄ Lee Naish. Negation and quanti�ers in NU-Prolog. In Third InternationalConferen
e on Logi
 Programming, pages 624{634, London, July 1986.[27℄ Ri
hard A. O'Keefe. Pra
ti
al Prolog for real programmers. In Pro
eedings1987 Symposium on Logi
 Programming, San Fran
is
o, September 1987.Tutorial Notes 4.[28℄ Mi
hael Rat
li�e and Philippe Robert. The stati
 analysis of Prolog pro-grams. Te
hni
al Report CA-11, ECRC, O
tober 1985.[29℄ Kanae Masuda Rikio Onai, Hajime Shimizu and Moritoshi Aso. Analysisof sequential Prolog programs. J. Logi
 Programming, 3(2):119{141, 1986.17



[30℄ Ehud Shapiro. A subset of 
on
urrent Prolog and its interpreter. Te
hni
alReport TR-003, ICOT, Tokyo, Japan, January 1983.[31℄ Kazuo Taki, Minoru Yokota, Akira Yamamoto, Hiroshi Nishikawa, Shu-ni
hi U
hida, Hiroshi Nakashima, and Akitoshi Mitsuishi. Hardware designand implementation of the personal sequential inferen
e ma
hine (psi). InICOT, editor, Pro
. Int. Conf. Fifth Generation Computer Systems 1984,pages 398{409, 1984.[32℄ Laurent Vieille. Re
ursive axioms in dedu
tive database: thequery/subquery approa
h. In Pro
eedings of the First International Confer-en
e on Expert Database Systems, pages 179{193, Charleston, April 1986.[33℄ Laurent Vieille. From qsq towards qosaq: Global optimizations of re
ursivequeries. In Pro
eedings of the Se
ond International Conferen
e on ExpertDatabase Systems, pages 421{436, Tysons Conrner, Virginia, April 1988.[34℄ P. Voda and B. Yu. Rf-maple: A logi
 programming language with fun
-tions, types and 
on
urren
y. In Pro
eedings of the International Confer-en
e on Fifth Generation Computer Systems, Tokyo, November 1984.[35℄ David H. D. Warren. An abstra
t Prolog instru
tion set. Te
hni
al Note309, SRI, O
tober 1983.[36℄ Akira Yamamoto, Masaki Mitsui, Hiroyuki Toshida, Minoru Yokota, andKatsuto Nakajima. The program 
hara
teristi
s in logi
 programming lan-guage esp. Te
hni
al report, Systems Laboratory, Oki Ele
tri
 Co., Ltd,Tokyo, Japan, 1986.
18


