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Abstract

SEPIA - Standard ECRC Prolog Integrating Advanced Ap-
plications is a Prolog system which offers the capability to integrate
various extensions at a relatively low level that guarantees an efficient im-
plementation. Apart from a general flexibility, SEPIA has several unique
features that support the integration of new extensions which makes it
both suitable for the development of industrial applications and a tool for
further research. In this article we describe the system itself as well as its
connections to the extensions.

1 Introduction

The goal of the SEPIA project i1s to develop a Prolog system which will be
the ’glass box” described in [13]: on one hand it is a compact Prolog system
comparable in performance to the current Prolog systems, on the other hand
it outperforms them in functionality and at the same time it is open to the
world of extensions, allowing them to be integrated at a low and thus efficient
level. Among the possible extensions are CHIP, Constraints Handling in Prolog
[7], sound negation [3], a sophisticated Prolog debugger [10], an object-oriented
system [6] and others.

Compared to usual Prolog systems, SEPIA includes several features which
in fact constitute ’sockets’ for plugging in the extensions: among them are e.g.



the ability to modify the unification, to change the default Prolog control rule,
to handle asynchronous events, and others, described later in this article. These
features allow the extensions to be integrated into the system.

The connections to the extensions have partly been tailored to those which
are being developed in various research groups at ECRC, but apart from that
we have tried to design the system to be as flexible as possible and to include
further types of connections so that even future, not yet specified extensions
have a relatively good chance of being able to use SEPIA as an implementation
base.

Apart from integrating the extensions, SEPIA allows as well to separate them
by means of a module concept so that problems are avoided which could stem
from incompatible features of some of the extensions.

2 General Description

SEPIA is a WAM-based [35] system containing an incremental compiler, an em-
ulator of the abstract code and a native code generator. The core system itself
is not just another WAM implementation, it contains many optimizations com-
pared to the original WAM; the connections to the extensions give it yet another
flavor - although many of the ’sockets’ for the extensions do not constitute ma-
jor differencies compared to other Prolog systems, they nevertheless influence
almost every detail of the implementation. This, apart from others, was the
main reason to develop a completely new Prolog system rather than to adapt
an existing one. In the SEPIA design we have merely used our experience from
the ECRC-Prolog system [12] where we had the possibility to experiment with
delaying mechanisms by compiling the wait declarations [21], but the system
itself was not flexible enough to be used as a basis for extensions.

Even without the extensions, the system offers wider functionality than stan-
dard Prolog systems. One of the extra features is the coroutining, i.e. the possi-
bility to delay the execution of a goal until some specified conditions are fulfilled.
Walking of a suspended goal is triggered by the binding of a variable. The control
constructs are delay clauses in which the user can specify the explicit conditions
under which the goal should delay, e.g.

delay and(X, Y, Z) if var(X), var(Y), X \==Y, Z \== 1.

specifies the delaying condition for logical conjunction. Unlike a call-based
[5] or shorthand [25, 26, 17, 30] notation in similar systems this gives the user
the possibility to express a more elaborate control while keeping the efficiency
since the delay clauses are fully compiled.

Another additional feature of SEPIA is the ability to handle events, both
synchronous (errors, exceptions) and asynchronous (interrupts). If an event is
raised, the corresponding event handler predicate is called and this call actually
replaces the original goal if the event was an error, or it is transparent to it if it
was an interrupt. All the event handlers are user-definable from Prolog which
gives the user additional power to control the system.



2.1 Run-time System

The SEPIA compiler is procedure based, each procedure is compiled only after
all its clauses are known, so that the global context information can be used for
clause compilation. This approach makes it possible to generate more compact
code and to use this information for indexing, determinacy detection or shallow
backtracking.

The abstract code generated by the compiler is executed by an emulator.
To ease the introduction of new extensions and porting to other machines one
emulator, which contains only the basic abstract instructions (e.g. no hardware
registers are used for Prolog arguments), has been written in C, another, op-
timized emulator is written in 68020 assembler. The final system will include
as well a native code generator, the generated code being a mixture of abstract
instructions and executable code.

SEPTA has no interpreter, even the dynamic (asserted) clauses are compiled
(in a clause-oriented manner), where an interpreter would be needed, e.g. for
debugging, the compiler generates code that contains enough information for
a separated debugger. The reason to compile dynamic code is efficiency and
simplicity - some extensions are heavily based on the execution of dynamic pro-
cedures which therefore has to be fast. Apart from that, including an interpreter
would mean that with new extensions, the interpreter has to be modified, which
could turn out to be more difficult than to define new abstract instructions for
the emulator.

Two main issues for SEPTA design were efficiency and flexibility. Despite
the connections to the extensions, the system is still very efficient, since when
designing it we have been painstakingly careful not to slow down the execution
of normal Prolog code, so that the speed of SEPIA is comparable to current
commercial systems. For the speed reasons, the compiler has been written in C,
which has proven to be a good choice, it compiles more than 500 lines/sec. on
a SUN-3/250 which is at least 10 times faster than any Prolog compiler written
in Prolog. Apart from being user-friendly, a fast compiler has yet another
advantage - it can be used for advanced database extensions to store in the
database the compiled form of the rules and facts [14]. We have also taken care
to keep the system flexible, adopting always the more general choice whenever
possible, thus leaving enough space to the users to customize it.

SEPIA has been developed on a SUN-3 and ported to VAXes, Apollo, Bull
SPS machines and Siemens MX-300 and MX-500. Apart from the software
implementation, the Computer Architecture Group at ECRC is developing a
hardware implementation in the Knowledge Crunching Machine (KCM) which
is a sequential Prolog machine with target speed about 650kLips [15, 2] and
which will be compatible with the software SEPIA running on general-purpose
machines.



2.2 Standards

ECRC being a joint research centre of ICL, Bull and Siemens, compatibility
with the existing and future Prolog standards is for SEPIA a necessary condi-
tion. SEPTA supports the BSI Prolog standard [1, 24], which is currently the
only result of standardization activities being pursued in Europe and America.
Unfortunately, the BSI standard is not compatible with the de facto standard
of C-Prolog and Quintus Prolog. Moreover, the activities aiming for a Prolog
standard (BSI, Afnor, DIN, ISO) still have no final and complete results, and
it 1s likely that some parts of the existing drafts will change.

These considerations have led us to adopting a flexible approach when de-
signing the accepted syntax and the semantics of the built-in predicates. Tt
is possible to define the class of a character (e.g. symbol, lowercase, solo), to
change the syntax of quoted identifiers etc. so that the accepted syntax can
be customized to various Prolog dialects. Similarly, it is possible to redefine
built-in predicates and to define event handlers for exceptional conditions in
the built-ins, e.g. uninstantiated variable, which in BSI causes an instantiation
error, whereas in Quintus Prolog it simply fails. So far we have provided two
compatibility Prolog modules which are (un)loaded by the predicates bsi/0 and
cprolog/0 choosing the corresponding dialect syntax and semantics.

3 Connection to Extensions

SEPTA provides the connection to the extensions via several features, some of
them are for general usage, others are useful only for the extensions.

3.1 Prolog Words

The WAM is a tagged machine, each object is represented by a value and a
tag. In most of the WAM implementations these fields are both packed into one
machine word, the tag occupies 2 or 3 bits. From the point of view of possible
extensions, there are two main problems with such an architecture:

e the number of types is limited, new types can be created only as instances
of one of the basic types, usually structure or box

e by reserving some bits in each word the compatibility with external soft-
ware 1s lost, e.g. an integer value passed by an external procedure may
not be representable as an integer in the Prolog machine

To support various extensions, the abstract machine must have the possibility
to define new types and to handle them efficiently. With the original WAM this
would be possible only by defining them as subtypes of the structure type, i.e.
a new type would be represented by a structure tag and a pointer to another
structure which would contain further tag bits. This would constitute an obvious
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bottleneck when executing extended programs”, since several additional tests

and memory accesses would be necessary for every manipulation of the new
types.

SEPTA uses the full longword (4 bytes) to store the value of each Prolog word
and a consecutive longword for its tag. This of course increases the space re-
quirements for the environment, global and control stack, however the increased
functionality promises to outweigh this overhead. 2

The tag is divided into several areas, some of which are recognized by the
system and others are definable in the extensions. Thus e.g. one bit marks
the tag of any reference, one byte is used by the system to recognize the basic
non-reference types as atom, integer, list etc. New types can be either defined
as extensions of the old ones, i.e. they are treated by the core system as the
original type, or as new types which then have to be treated in a special way,
especially in the unification and they require new abstract instructions to be

defined for them.

3.2 The Unification

Many of the developed or planned extensions, mainly those of the problem-
solving type or object oriented type rely on modifications of the Prolog unifi-
cation. A constraint propagation system, for instance, is data driven and each
time a constrained variable is bound in the unification, the propagation mech-
anism should be started. Another example are typed variables - unifying two
variables of different type but with a common subtype may issue creation of
that subtype and updating the variables correspondingly.

The former modification requires that some action is taken after the uni-
fication succeeds (there is no point in starting the constraint propagation if
the unification could fail), in the latter the unification process itself must be
modified in order to cope with extended types.

The abstract instructions that perform the unification are modified so that
when an object of a special type is encountered and the unification has to change
it, a corresponding routine is executed that does all the necessary work. When
a variable responsible for suspending some calls, for example, is going to be
bound, its previous tag is trailed if necessary and a reference to this variable is
saved on a stack, so that when the unification succeeds, the system can access
the variable and through it the calls that have to be woken.

The objects that require special treatment in the unification must have a
distinct tag, which is recognized by the system. If an object belongs to several
extensions (e.g. a typed variable with some constraints) the tag is marked so
that all the extensions can recognize it. For new objects which can appear in

Ifor instance in a constraint propagation system, nearly all of the objects are constrained
variables

2It would be possible to reserve only 2 bytes for the tag, but then it would not be possible
to store an address in it which may well be needed for some extensions.



the source using the transformation mechanism from the paragraph 3.3 (or in
an asserted clause) it is necessary to define new abstract instructions that are
generated for its occurrences.

3.3 Source Transformation

Some extensions require a special internal representation of its objects. With
a normal Prolog syntax this might be difficult because the only available data
structure is a compound term of the type f(a, b, ...), whereas extended objects
may need a more structured representation or more information than a source
compound term can provide. For this purpose SEPIA provides the possibility
to change the structure which is built up by the parser or other built-ins [11].
The user can define a functor to be a 'macro’ with an associated transformation
predicate. Such functors are marked and whenever the system constructs a term
whose main functor is a marked one, it calls the corresponding transformation
predicate (often it will be an external function that will create a new data
structure with a new tag) and replaces the source term by the transformed one.
This feature is different from the term_expansion/2 predicate in Quintus Prolog
in that it is applied not only when consulting or compiling a file, but on every
occasion including the built-ins read/1, functor/3, etc. Another difference is
that the transformation is applied to subterms as well as the main term and
that their effect may be cumulative.

This approach guarantees that the extensions have enough flexibility for their
source form, for instance a typed variable can be written as Var:Type although
its internal representation uses a structure with a special tag. It would be as
well possible to reserve some functors for the extensions and e.g. when reading
the Prolog source such functors would be parsed differently. SEPIA solution is
more flexible, though, the transformation procedure can be easily redefined and
it may be local only to some modules.

3.4 Event Handling

To open the system even for very nonstandard applications which rely on pro-
cessing in real time® as well as for applications in the graphics or database
domain we have decided to include into SEPIA the possibility of handling asyn-
chronous events. Events of synchronous type, like errors in built-in predicates
or errors when accessing the operating system are now common in up to date
Prolog systems and if they are flexible enough to be redefinable by the user they
increase the ergonomy of the system. Even interrupts issued e.g. by pressing
the interrupt key can be handled by the WAM-based systems provided that
they are processed in a synchronous way, most often the interrupts are polled
so that a flag is set and at well defined check points, e.g. at the beginning of
each procedure, it is tested and the event is processed.

3for instance writing an operating system, device driver or a booking system



In SEPIA; due to some extensions of the unification, we can no longer guar-
antee that the system arrives soon enough at the point where the interrupt is
checked, so that serious real-time applications could not be guaranteed to work
properly.* The issue was therefore to modify the Prolog machine so that it is
able to respond to asynchronous events, which means that at any time it must
be possible to interrupt the execution of the current goal and to start the ex-
ecution of the event handler which itself can be any Prolog procedure. At any
time the machine must be able to save enough information (and not too much
of it) so that it is able to continue the execution after the interrupt has been
processed. Moreover, the state of the stacks and registers must be such that no
important data is lost. Note for instance that this requirement makes the ¢rim-
ming in the WAM [35] impossible since it relies on the variable size of the top
stack frame and on the fact that the environment stack top can be computed
dynamically via some information stored in the code area.

There are of course crucial elementary operations during which the execution
must not be interrupted, e.g. when inserting a new atom into the dictionary
(symbol table). Since they are very short, only several machine instructions, it
is possible to disable the interrupts using a semaphore and to process it later
when the crucial part of the code has been executed. For pushing items on
the stack this 1s normally not necessary since this can be done in one machine
instruction which is not interruptable.

From the logical point of view, the synchronous events replace the goal that
has initiated them, whereas the asynchronous events are completely transparent
to the normal execution, except if they perform some side effects. The system
uses the same vectored style (similar to [31]) for both event types. Tt is possible
to define any procedure to be the event handler for a given event type (e.g. for
any of the signals).

The possibility to define event handlers makes the system more user friendly,
since it can be customized to special needs. For instance, calling an unknown
procedure causes an error in the BSI proposal, whereas from the theorem proving
point of view the correct action is to fail (actually it means that the system has
not made the pure literal elimination); both of these possibilities can be easily
achieved by defining the appropriate event handler.

3.5 Modules

SEPIA supports program modules [9]. A module is generally a collection of
some objects and their interface to other modules. Our basic requirements for
the module system were:

e Modules should be a structuration tool allowing to develop large applica-
tions.

4apart from that, continuous testing for interrupts slows the system down



e Modules should avoid name clashes by having one name space for each
module.

e Modules should support privacy. Implementation details and internal
structures of a module are hidden to outside.

e Module should be transparent to non-modular applications. A Prolog pro-
gram written for a flat prolog system should run without changes, when
put in an unique module.

Usually a module consists of procedures, but it may as well contain operators,
recorded terms, arrays etc. Procedures can be local in a module, exported to and
imported from another module, or global, i.e. visible in all modules. Visibility
changes are possible as well as local redefinition of global procedures.

Structuration of source and object programs into modules might not seem
directly relevant to the extensions, however especially in the case of several co-
existing extensions it 1s highly desirable as it helps to separate program parts
with different syntax and semantics. For example, the transformation predicate
from 3.3 may be visible only in certain modules, the others may use the functor
in its source form. Another possibility is to define pure modules which do not
contain any extra-logical predicates and whose execution, especially when nega-
tion or coroutining is used, can be more sophisticated than in the usual case. If
some extensions show up to be incompatible with each other, it is still possible
to integrate them into one modular system so that they do not influence each
other.

3.6 External Procedures

SEPIA can interface to any external function written in C and load it dynam-
ically if needed, the C function can manipulate Prolog data, or it might be
completely independent of Prolog structures. In order to allow fast data ex-
change between the Prolog system and the external functions, there are arrays
of various types available in SEPIA. An external C function behaves like a
built-in predicate, it can succeed, fail, backtrack, delay and as well call Prolog
procedures. While one can argue about the necessity of such features [27], for
some extensions they are unavoidable, e.g. converting the set representation of
a relation to a Prolog tuple representation (a process similar to the clause/2
predicate).

3.7 Memory Management

For the extensions and applications of the database type it is necessary to have
an efficient memory management system which is able to store and release large
amount of facts and rules and it has to make an efficient use of the available
memory. In SEPIA, the memory areas dictionary, procedure table and heaps are



extendible and they are, together with the global stack and the trail, garbage
collectable. The size of the stacks can be set when SEPIA is invoked. The
garbage collector is going to be written later this year.

4 Delayed Goal Execution

SEPIA has a built-in mechanism that supports data driven change of control
based on goal suspension. The user can specify that a call to a procedure should
be delayed if a condition is fulfilled, waking of these goals is triggered by variable
binding. Such a mechanism can be used to delay the execution of a goal until
its arguments are sufficiently instantiated, but it can also be used to implement
coroutines, this 1s why we often refer to it as coroutining. Each time a variable
that was present in a suspended goal is bound, the corresponding suspended
goal is woken and the delaying condition is tested again. Built-in predicates
and external function can also delay, but the conditions necessary for this are
coded directly in the body of the C function.

The mechanism used in SEPIA is similar to geler [5], wait declarations [25,
21], IC-Prolog [17], bind-hook [4], when declarations [26] or committed-choice
languages [30, 18]. but its semantics is cleaner and more powerful. While the
other Prolog systems use some sort of shorthand notation to define the condition
under which a call to a procedure should, or should not delay, SEPTA allows the
user to specify the condition directly, using the normal Prolog notation, which
apart from being more readable, increases the functionality. SEPIA provides
delay clauses which in fact are metaclauses that specify when a call has to delay.
To specify that a call should delay when its argument is a variable or when it
is a list whose first element is a variable it suffices to write

delay p(X) if var(X).

delay p([X|_]) if var(X).

The semantics of the delay clauses 1s as follows: when a call to a procedure
with some delay clauses is made, first the call is matched with the head of the
first delay clause. This matching is not the usual Prolog unification but only a
unidirectional pattern matching - the variables in the call cannot be bound by
it. This 18 necessary in order not to mix the metalevel control with the object
level, similar to [8]. If the matching succeeds, the body of the delay clause is
executed. If all the body subgoals succeed, the call is suspended. Otherwise,
or if the head matching fails, the next delay clause 1s tried and if there is none,

the call continues normally without suspending.

The goals in the body of the delay clauses can in general be any Prolog goals,
however in the current implementation only the predicates var/1, nonground/1
and \==/2 as well as external simple predicates are supported, but even so the
SEPIA coroutining system is more powerful than the others mentioned above °.
For example, the MU-Prolog’s sound negation predicate ~/2 can be in SEPTA

simply implemented as

Sthe action of wait declarations can be simulated only incompletely, delay clauses are
not dependent on the order of unification; anyway, this 'feature’, even in wait declarations
represents rather an unwanted side effect



delay ~ X if nonground(X).

~ X :- not(X).

the freeze/2 predicate can be expressed as

delay freeze(X, _) if var(X).

freeze(_, Goal) :- Goal.

The semantics of the delay clauses is also clearer than is the case for other
comparable constructs - by defining when the call has to delay the user naturally
expresses the necessary condition. If the user specifies when the call should not
be delayed, this condition is no longer quite straightforward - if there is no
condition or if the condition does not match the call it would mean that the call
should wait forever, which is certainly not the intended semantics.

The delay clauses are compiled similarly to normal clauses, except that for
the head unification, the matching instructions are generated instead of the
normal ones. A delay clause

delay p(X) if var(X).

1s compiled simply as if it were

p(X) - var(X), delay(p(X)).

where delay/1 is a system predicate that delays its argument.

It is very important to mention here the influence of such a control construct
on non logical predicates, especially on the cut. The cut relies on a fixed order
of goal execution in that it discards some choice points if all goals preceding it
in the clause body have succeeded. If some of these goals are delayed, or if the
head unification of the clause with the cut wakes some nondeterministc delayed
goals, the completeness of the resulting program is lost and there is no clean

way to save it as long as the cut 1s used.

One might be tempted to try to save the completeness by delaying the cut
or even all the subgoals to the right of the cut until all goals preceding it have
succeeded. Unfortunately, this still leaves problems on failure - if a further goal
fails before the cut was woken, to which choice it should backtrack?

p(X):=-a(X,Y), Y =1.

a(X, 0) :- b(X), !

a(1, 1).

delay b(X) if var(X).

b(1).

When calling ?- p(1), b/1 does not delay, it succeeds, the cut is
executed, Y = 1 fails and the whole query fails. When, on the other
hand, 7- p(X) is called, b/1 delays, therefore the cut delays, Y = 1
fails, a(1, 1) succeeds and we get a solution X = 1.

As soon as the cut is delayed, it is no longer known whether the choice point of
its parent clause and its left-hand brothers exist or not, hence we should suspend
them all and the possibility of subsequent failures propagates it further. SEPTA
handles this case in that in raises an event in the case that some of the goals to
the left of a cut were delayed; apart from that, the users are discouraged to use
the cut in connection with coroutining.

10



Goals that may be woken by the unification of a clause that contains a cut
constitute another problem - if the woken goal is nondeterministic, the cut is
going to cut its choice point which is certainly an unwanted side effect. For
a neckcut, 1.e. a cut directly following the clause neck one could try to first
execute the cut and only then to wake the suspended goals, however generally
this strategy is not correct:

b(1) :- !.

b(2).

7-X > 1, ..., b(X).

The built-in call X ; 1 delays and it should be viewed as a constraint
imposed on X; if the cut in b/1 is executed before waking this delayed
call, the call to b/1 and the whole query fail, although the correct
action would be to fail in the first clause without cutting the second
one.

In the above considerations we attempted to present the problems of the cut
operator from another point of view than usual and we strongly believe that the
problems coming from the use of a cut in a coroutining system signal that after
all the cut is really not the correct control structure and that in the long term
we have to give it up, or to give up these Prolog extensions. A language without
impure constructs does not necessary have to be less efficient and certainly not
less expressive, as the example of [34] shows.

5 Abstract Machine

The main design principles for the abstract machine were:

o SEPIA will run on traditional hardware®. This means that it has to take
into account its limitations, e.g. the number of hardware registers.

e Conventional processors have a number of dedicated instructions that are
used for the execution of traditional languages. By making the Prolog
abstract machine close to the execution model of traditional languages it
is possible to benefit from the hardware.

e Since the system has to handle asynchronous events, especially interrupts,
the state of the machine must be consistent at any time, e.g. no infor-
mation above the stacks top or in global variables can be considered as
safe.

The Prolog machine must be able to perform efficient shallow backtrack-
ing, i.e. backtracking to another clause for the failed call (as opposed to deep
backtracking which requires to select an alternative for a parent clause). Since
shallow backtracking is the only way to efficiently express simple if-then-else

8of course, this does not apply to the KOM hardware.

11



statements in Prolog, it is an extremely important feature. Experimental re-
sults show [16, 36] that shallow backtracking occurs far more frequently than
deep which confirms its importance.

According to other measurements [20, 28, 29], built-in predicates constitute
a large fraction of the called goals. Most of the built-in predicates are written in
the implementation language (e.g. C), and they do not change any important
Prolog data, except for the argument registers. SEPIA therefore introduces the
concept of simple and regular goals and procedures: a simple procedure is one
that does not change the state of the machine nor of important registers, does
not create choice points nor overwrite temporary variables X; or argument reg-
isters A;; usually it means that they are written in C and that they cannot
backtrack or call other, non-simple goals. Other procedures are regular, usu-
ally this includes all procedures written in Prolog. SEPIA treats simple goals
differently, they are invoked like C functions and their arguments are pushed
on the stack. The consequence of this fact is that most of the built-in calls
can be treated as subroutines and so they are, apart from the ability to fail,
transparent. Therefore fewer procedures need an invocation environment frame
(namely those that that contain at least one regular goal followed by another
goal) and more procedures can perform shallow backtracking (failure of simple
goals that follow the clause neck usually causes only shallow backtracking).

5.1 Data

The stacks in SEPTA are similar to the WAM, however the local stack has been
split into an environment stack and a control stack. The control stack contains
choice points, event and interrupt frames and other control frames. There are
several advantages of this splitting:

e better locality of references on both stacks
e the control stack can be quite naturally used for the event handling
e shallow backtracking can be easily implemented [22]

e immediate memory reclamation after a cut

There is no trimming of the environments, partially due to event handling
and partially because 1t slows down the execution and moves garbage from
the environment to the global stack where it can be less easily reclaimed. The
environment stack is merged with the C execution stack. This has some positive
consequences:

e overflow on the environment stack need not be tested, the system sends a
signal when it overflows

12



e the Prolog environments have the same structure as C procedures and
therefore the generated native code can benefit from the instructions for
subroutine call, return and frame allocation

e simple procedures are invoked from Prolog in the same way as from C -
their arguments are pushed on the environment (and thus system) stack
and they are called using a subroutine call. There is no overhead at all
when calling a C function.

We have already mentioned the influence of the event handling on the ab-
stract machine. In order to maintain consistency, the system must be able to
decide which information is important and which not. For the WAM, the main
problem concerns the temporary variables X; and argument registers A; (which
are the same). When an interrupt occurs, the system cannot decide how many
temporary variables store important information and which of them are the
important ones. Therefore, SEPIA allocates all the temporaries on the environ-
ment stack, pushing them when necessary and popping before next regular call.
There is no execution overhead, since the X; are normally allocated in memory
as well, but on the stack they can be accessed via a register. This means that
all temporaries are safe w.r.t. interrupts.

A similar problem occurs with Prolog arguments, but at least they are con-
secutive, at any time only the first N arguments have some significant value.
At some defined points, where this N is known, the system puts a marker into
the N + 1st argument so that when an interrupt occurs, the interrupt handler
knows how many arguments to save in the interrupt frame.

5.2 Instructions

The SEPIA abstract instruction set is based on the WAM with several differ-
ences:

e The head unification is compiled differently: the sequences for the read
and write mode are separated, when the mode has to be changed a jump
to the other sequence is performed. On a processor with an instruction
cache like the MC68020 the instruction flow is not broken as often and so
the execution is faster.

e There are unification instructions that perform only unidirectional pattern
matching, i.e. the variables in the call cannot be bound, otherwise the
matching fails. These are used for the compilation of delay clauses and
for some extensions.

e The indexing instructions, based on [23] reflect more the nature of usual
Prolog programs - most of the procedures contain only one type of argu-
ments (and variables) and so instead of the instructions switch_on_term
and e.g. switch_on_atom only one is necessary. Moreover, due to the

13



procedure-oriented compiler, part of the unification is made in the index-
ing instruction so that part of the head code can be omitted, for compound
arguments the system can directly jump to the read mode sequence.

e The control instructions like call, allocate, proceed etc. use the fact
that the environment stack is identical with the machine stack and hence
they can be mapped directly onto machine instructions.

e Since the arguments of the simple goals are pushed on the environment
stack, different puts instructions for fetching their arguments are used.
The instruction puts_value dereferences its arguments and this simple
change guarantees that the arguments of the simple calls will always be
dereferenced, and hence the often repeated code to dereference the argu-
ments at the beginning of each simple procedure can be omitted and the
execution is faster.

6 Extensions

The currently developed extensions for SEPIA are:

e CHIP - Constraints Handling in Prolog [7]. This is a constraint propaga-
tion system with main application areas operations research and circuit
design. It uses finite domain terms, linear rational terms and boolean
terms. First it was implemented in the MU-Prolog [25] interpreter and it
has proven to be applicable even to complicated real-life problems.

e PHOCUS [6] is an expert system kernel which includes objects, typed
variables, forward chaining mechanism and multiple worlds. It has been
prototyped in LISP and currently a part of it consisting of objects and
typed variables is being implemented in SEPIA.

e Constructive negation [3] which is a sound negation based on the comple-
tion of the database.

e QoSaQ - A database system which is able to handle recursive queries
[32, 33].
e ODE - a sophisticated Prolog debugger [10, 19]

Parallel to the SEPIA project, the Knowledge Crunching Machine is being
developed at ECRC. It is a Prolog and Lisp hardware machine which can be used
as a Prolog coprocessor. Apart from the restrictions due to the communication
with the host machine, KCM fully supports SEPIA and its extensions.
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7 Conclusion

The results achieved so far in the SEPIA project are promising - the core system
has been working since the beginning of the year, currently the assembler emu-
lator is being tested, later this year the native code generator and the garbage
collector are going to be implemented. The extension with typed variables is in
a testing stage as well as the coroutining primitives. The CHIP system is going
to be available later this year.

SEPIA is not only a new Prolog system, it is a step in a new direction,
towards integrating several programming paradigms in one system, all of them
being understood as an extension of the logic programming paradigm. Since
the integration is achieved at a low implementation level, no efficiency is lost in
one or more interpretation level. While up to now Prolog has been used mainly
for prototyping, SEPIA opens the door to real life applications and we expect
it to contribute to the success of logic programming in the industrial area.
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