
Metaterms with Several AttributesPascal BrissetECRCArabellastra�e 17, D-81925 Munich 81, Germanybrisset@ecrc.deAbstractMetastructures and metaterms have been proposed to extend Prolog systems[6, 5]. They enable special purpose uni�cations to be speci�ed. They are usefulto implement for example coroutining and new domains of computation. Inboth cases, information is attached to variables, which then are encoded withmetaterms or metastructures. This information must be taken into accountduring uni�cation.Problems appear when one wants to use metaterms for di�erent issues: howto unify metaterms of di�erent kinds with a single uni�cation handler? Theseproblems especially appear in a modular programming with independent piecesof code, where it is impossible to write a single handler for all uses of metatermshidden in modules. In this paper, we propose a solution where there is only onekind of metaterms which has several facets, each facet serving a special issue.Then each facet is independently uni�ed. This solution has been implementedin the ECRC Prolog system ECLiPSe.Keywords Metaterms, Metastructures, Attributed Variable, Extended Uni�-cation, Modular Programming.1 IntroductionImplementing extensions in a Prolog system at the Prolog level needs to extendthe standard uni�cation. Tools are needed to extend the uni�cation. The twousual examples are coroutining and extension of the domain of computation.In the former case, the implementation of freeze/2, the uni�cation has towake some goals. In the latter case, for example the implementation of �nitedomains, uni�cation has to solve the equations which de�ne the equality in thenew domain.Neumerkel [6] proposes metafunctors which are used to construct metastruc-tures. Then, uni�cation of metastructures is handled by a user-de�ned predicate.Meier [5] proposes another solution he called metaterms. In this solution, it ispossible to attach a term to one variable. When a variable with an attachedterm has to be uni�ed, a user-de�ned predicate is called. Holzbaur roughly givesthe same solution [2]. The two approaches are based on the same low-level data-structure, the attributed variable [4]. With metastrutures, only the attribute isshown at the Prolog level. With metaterms, both the variable and the attributecan be handled.Both metastructures and metaterms exhibit problems when they are usedfor di�erent issues. For example, when metaterms are used to implement corou-tining and the �nite domains, the user predicate which uni�es them has to knowthe data-structure of the delayed goals and the one of the �nite domains.In this paper, we describe the problem and propose a solution to solve it.Examples are given with the ECLiPSe syntax.1

2 Using Metaterms2.1 One ExampleIn his thesis, Holzbaur [1] uses extended uni�cation to implement constraints[3]. He gives a full speci�cation of constraints over �nite domains using metas-tructures. In this scheme he has metafunctors and a speci�c Prolog predicateto unify them.Holzbaur needs two metafunctors. The �rst one, called $dom/2, is used toencode �nite domains. The second one, called $fwd/3, is used to encode thecoroutining: the main argument is a list of delayed goals.When two metastructures are about to be uni�ed, the user-de�ned predicatemeta_meta_unify is called. This predicate has to handle the three cases of com-bining the $dom/2 and $fwd/3 metafunctors ($dom and $dom, $dom and $fwd,$fwd and $fwd). When a $dom/2 term has to be uni�ed with a $fwd/3 term,both are uni�ed to a new term with a new metafunctor domfwd/4. Actually,meta_meta_unify has to handle six cases (three new cases with domfwd).2.2 The ProblemThere are at least three problems from a software engineering point of view inthe Holzbaur's solution:� Metastructures which serve di�erent purposes are mixed: It is confusingto treat �nite domains and delayed goals in the same place.� There is a lot of cases to treat in metastructure uni�cation: It needs alarge piece of code.� Each time a new kind of metastructure is introduced, the uni�cation han-dler has to be modi�ed.These problems come from the fact that there is one single handler. Then,the handler has to know how all the metastructures have to be handled andcombined. With such a solution, it is not possible to extend again an extendeduni�cation: The original aim is lost.2.3 A solutionIf metaterms are di�erent, they have to be uni�ed by di�erent procedures, butthere are problems to combine di�erent kinds of metaterms.We propose to have only one kind of metaterms which has several facets,each facet serving a special issue. We call these facets of the metaterm theattributes. In the Holzbaur's application, there would be two attributes, one forthe domain and one for the delayed goals. A metaterm may have one of the twoattributes or both.For metaterm uni�cation, one user-de�ned predicate is called for each at-tribute. So there is a generic handler which is called when a metaterm is aboutto be uni�ed. This generic handler parses all the attributes and calls a localhandler for each of them. Note that a local handler is called for each potentialattribute even if the concerned attribute is not set 1.Each attribute is independently accessed and uni�ed: this means that wewant to mix independent extensions which do not interact.The solution has the following advantages:� Issues are not mixed: in the Holzbaur's application, waking goals is notmixed with checking if a value belongs to a domain.1It is an arbitrary choice to do the checking in the local handlers and not in the genericone. 2

� There is a limited number of cases for each local handler. It is onlynecessary to check if the attribute is set or not (so three cases for eachlocal handler, no attributes set, one attribute set, two attributes set)� When adding a new attribute, there is no need to modify the existing localhandlers.3 One Handler for Several AttributesIn this section, we give the whole implementation of the proposed solution inthe ECLiPSe system [5]. First, we present the metaterms of the system whichhave a single attribute. Then, we show how to use them to simulate metatermswith several attributes.3.1 Syntax of Metaterms in ECLiPSeMetaterms can be de�ned as the attributed variables of Le Huitouze which arelifted at the Prolog level. A metaterm is written:Variable{Attribute}Hence, a predicate which attaches an attribute to a variable is:attach_attribute(Variable, Attribute) :-Variable = _{Attribute}.Access to the attribute is done using pattern-matching, an ad hoc mechanismlike the === of Neumerkel [6] which does \syntactic uni�cation".As in the solutions proposed by Neumerkel, uni�cation of metaterms leadsto a call to a user-de�ned predicate. The argument of the called goal is a listof pairs: the �rst argument of the pair is the attribute of the metaterm whichis uni�ed with the second argument of the pair (which may also be a metater-m). For example if meta_unify/1 is the predicate attached to the handler ofmetaterm uni�cation, the following uni�cationf(M1{A1}, M2{A2}) = f(1, M3{A3})causes the following callmeta_unify([[A1 | 1], [A2 | M3]])Note that contrary to the proposals of Neumerkel and Holzbaur, the bindingof the metaterm is done before the handler is called.3.2 Attribute DeclarationWe now present the multi attributes solution, implemented on top of the singleattribute metaterms.The user who wants to use metaterms has to declare a name for his ownattribute. For the Holzbaur's example (constraints over �nite domains), wehave the following declarations::- attribute(domain).:- attribute(delay).respectively for the encoding of domains and coroutining.3

3.3 Setting and getting an attributeIn order to have independent attributes in the same metaterm, the data-structure is hidden. This means that the user cannot access directly his attributebut has to ask for it using its name.So we propose two built-in predicates to get and set an attribute:set_attribute(Var, Attr_Name, Attr_Value).get_attribute(Meta, Attr_Name, Attr_Value).set_attribute/3 allows the user to add an attribute to a variable or ametaterm. In the variable case, a metaterm is then created. In the metatermcase, the old attribute is overwritten by the new one. get_attribute/3 allowsthe user to get his attribute from a metaterm.For example, the freeze/2 predicate is written:freeze(X, Goal) :-var(X), !,set_attribute(X, delay, Goal).freeze(_X, Goal) :-Goal.In a metaterm, an attribute which has not been set is a free variable.3.4 Unifying metatermsThe user who uses metaterms (and who declares his own attribute) has to writea handler for this attribute. The user of the attribute x has to de�ne a handlerx_unify/2:x_unify(Attribute, Term)This handler is called each time a metaterm is uni�ed. The �rst argumentis the concerned attribute, the second argument is the term the metaterm hasbeen uni�ed with. This term may be a metaterm.For example, for the coroutining handling, where the attribute is a list ofdelayed goals, we have the following handler:delay_unify(Attr1, Term) :-is_meta(Term), !, % Unification between two metatermsget_attribute(Term, delay, Attr2),delay_delay(Attr1, Attr2, Term).delay_unify(Attr, Term) :-delay_term(Attr, Term)The term is checked to know if it is also a metaterm. If so, its attribute isextracted (get_attribute). Then the delay_delay/3 and delay_term/2 pred-icates are the combine_attributes/2 and verify_attributes/2 of Holzbaur[2]. The di�erence is that the user handler is always called when a metaterm isuni�ed, even if this metaterm does not contain the concerned attribute. So the�rst thing the user handler has to do is to check if the attribute has been set ornot.If we want to wake goals only when the variable is instantiated then we havethe following code:delay_term(Attr, _Term) :-var(Attr), !. % No attributedelay_term(Goals, _Term) :-wake(Goals).delay_delay(Attr1, Attr2, Term) :-var(Attr1) -> Goals1 = [] % No attribute in the first metaterm; Goals1 = Attr1,var(Attr2) -> Goals2 = [] % No attribute in the second metaterm; Goals2 = Attr2, 4

append(Goals1, Goals2, Goals),is_meta(Term) -> set_attribute(Term, delay, Goals); true. % The metaterm has been bound by another handler3.5 Implementation DetailsAn implementation has been done at Prolog level on top of the metaterms ofECLiPSe.Data-Structure The single original attribute of metaterms is a compoundterm (functor attributes). Arguments of this compound term are the dif-ferent attributes. The arity of this compound term is a global variable whichis incremented each time a new attribute is declared. A table maintains theassociation between the attribute names and the corresponding �elds in thecompound term.For example, the following sequence:attribute(delay), attribute(domain), set_attribute(X, domain, [1, 2])gives the following term:X{attributes(_Free, [1, 2])}Access to Attributes The association name-�eld is known as soon as theattribute is declared. Then it is possible to use at compile-time the associationtable for the get and set commands: using a macro mechanism, a name of anattribute is replaced by the associated index in the compound term. Hence,there is no overhead at run-time.For exampleget_attribute(X, domain, Dom)is replaced at compile-time byget_the_attribute(X, A), arg(2, A, Dom)where arg just get the right �eld in the compound term.Generic Handler The handler which is called by the ECLiPSe kernel whena metaterm is uni�ed, is now the generic handler which calls the local handlers.The simplest way to implement is to have a loop over the attributes. In orderto avoid some overheads in the control of the loop, this generic handler is regen-erated and compiled each time a new attribute is declared: the loop is compiledinto the conjunction of calls to the local handlers.4 ConclusionWe have shown that extending uni�cation with metaterms (or metastructure)is not straight-forward as soon as it is necessary to implement independentextensions. A lot of problems are encountered if a single metaterm uni�cationhandler is used for metaterms with several purpose.We have proposed a solution where metaterms have several independent at-tributes where a local handler is dedicated to each attribute. With this solution,information encoded in metaterms which serve di�erent issues is not mixed, andit is possible to add new attributes without changing the existing handlers. Thissolution has been tried in the ECRC Prolog System ECLiPSe to handle �nitedomains and coroutining.Acknowledgement The author wants to thank J. Schimpf, M Meier andM. Wallace for fruitful discussions, M. Ducass�e and C. Gervet for her helpfulcomments. 5

References[1] C. Holzbaur. Speci�cation of constraint based inference mechanisms throughextended uni�cation. Dissertation, University of Vienna, 1990.[2] C. Holzbaur. Metastructures vs. attributed variables in the context of ex-tensible uni�cation. In M. Bruynooghe and M. Wirsing, editors, 4th Int.Work. Programming Languages Implementation and Logic Programming, L-NCS 631. Springer-Verlag, 1992.[3] J. Ja�ar and S. Michaylov. Methodology and implementation of a CLPsystem. In J.L. Lassez, editor, 4th Int. Conf. Logic Programming. MITPress, 1987.[4] S. Le Huitouze. A new data structure for implementing extensions to Prolog.In P. Deransart and J. Ma luszy�nski, editors, 2nd Int. Work. ProgrammingLanguages Implementation and Logic Programming, LNCS 456, pages 136{150. Springer-Verlag, 1990.[5] M. Meier and J. Schimpf. An architecture for Prolog extentions. In E. Lem-ma and P. Mello, editors, Third Int. Workshop on Extensions of Logic Pro-gramming, LNAI 660, pages 319{338. Springer-Verlag, 1992.[6] U. Neumerkel. Extensible uni�cation by metastructures. In M. Bruynooghe,editor, 2nd Workshop on Meta-Programming in Logic Programming, pages352{363, Leuven, Belgium, 1990. K.U. Leuven, Dept. of Computer Science.

6

