Metaterms with Several Attributes

Pascal Brisset

ECRC
Arabellastraie 17, D-81925 Munich 81, Germany

brisset@ecrc.de

Abstract

Metastructures and metaterms have been proposed to extend Prolog systems
[6, 5]. They enable special purpose unifications to be specified. They are useful
to implement for example coroutining and new domains of computation. In
both cases, information is attached to variables, which then are encoded with
metaterms or metastructures. This information must be taken into account
during unification.

Problems appear when one wants to use metaterms for different issues: how
to unify metaterms of different kinds with a single unification handler? These
problems especially appear in a modular programming with independent pieces
of code, where it is impossible to write a single handler for all uses of metaterms
hidden in modules. In this paper, we propose a solution where there is only one
kind of metaterms which has several facets, each facet serving a special issue.
Then each facet is independently unified. This solution has been implemented

in the ECRC Prolog system ECL!PS®.

Keywords Metaterms, Metastructures, Attributed Variable, Extended Unifi-
cation, Modular Programming.

1 Introduction

Implementing extensions in a Prolog system at the Prolog level needs to extend
the standard unification. Tools are needed to extend the unification. The two
usual examples are coroutining and extension of the domain of computation.
In the former case, the implementation of freeze/2, the unification has to
wake some goals. In the latter case, for example the implementation of finite
domains, unification has to solve the equations which define the equality in the
new domain.

Neumerkel [6] proposes metafunctors which are used to construct metastruc-
tures. Then, unification of metastructures is handled by a user-defined predicate.
Meier [5] proposes another solution he called metaterms. In this solution, it is
possible to attach a term to one variable. When a variable with an attached
term has to be unified, a user-defined predicate is called. Holzbaur roughly gives
the same solution [2]. The two approaches are based on the same low-level data-
structure, the attributed variable [4]. With metastrutures, only the attribute is
shown at the Prolog level. With metaterms, both the variable and the attribute
can be handled.

Both metastructures and metaterms exhibit problems when they are used
for different issues. For example, when metaterms are used to implement corou-
tining and the finite domains, the user predicate which unifies them has to know
the data-structure of the delayed goals and the one of the finite domains.

In this paper, we describe the problem and propose a solution to solve it.
Examples are given with the ECL'PS® syntax.

2 Using Metaterms

2.1 One Example

In his thesis, Holzbaur [1] uses extended unification to implement constraints
[3]. He gives a full specification of constraints over finite domains using metas-
tructures. In this scheme he has metafunctors and a specific Prolog predicate
to unify them.

Holzbaur needs two metafunctors. The first one, called $dom/2, 1s used to
encode finite domains. The second one, called $fwd/3, 1s used to encode the
coroutining: the main argument is a list of delayed goals.

When two metastructures are about to be unified, the user-defined predicate
meta_meta_unifyis called. This predicate has to handle the three cases of com-
bining the $dom/2 and $fwd/3 metafunctors ($dom and $dom, $dom and $fwd,
$fwd and $fwd). When a $dom/2 term has to be unified with a $fwd/3 term,
both are unified to a new term with a new metafunctor domfwd/4. Actually,
meta_meta_unify has to handle six cases (three new cases with domfwd).

2.2 The Problem

There are at least three problems from a software engineering point of view in
the Holzbaur’s solution:

e Metastructures which serve different purposes are mixed: It is confusing
to treat finite domains and delayed goals in the same place.

o There 1s a lot of cases to treat in metastructure unification: It needs a
large piece of code.

e Each time a new kind of metastructure is introduced, the unification han-

dler has to be modified.

These problems come from the fact that there is one single handler. Then,
the handler has to know how all the metastructures have to be handled and
combined. With such a solution, it is not possible to extend again an extended
unification: The original aim is lost.

2.3 A solution

If metaterms are different, they have to be unified by different procedures, but
there are problems to combine different kinds of metaterms.

We propose to have only one kind of metaterms which has several facets,
each facet serving a special issue. We call these facets of the metaterm the
attributes. In the Holzbaur’s application, there would be two attributes, one for
the domain and one for the delayed goals. A metaterm may have one of the two
attributes or both.

For metaterm unification, one user-defined predicate is called for each at-
tribute. So there is a generic handler which is called when a metaterm is about
to be unified. This generic handler parses all the attributes and calls a local
handler for each of them. Note that a local handler is called for each potential
attribute even if the concerned attribute is not set '.

Each attribute is independently accessed and unified: this means that we
want to mix independent extensions which do not interact.

The solution has the following advantages:

e Issues are not mixed: in the Holzbaur’s application, waking goals is not
mixed with checking if a value belongs to a domain.

1Tt is an arbitrary choice to do the checking in the local handlers and not in the generic
one.

e There 1s a limited number of cases for each local handler. It is only
necessary to check if the attribute is set or not (so three cases for each
local handler, no attributes set, one attribute set, two attributes set)

e When adding a new attribute, there is no need to modify the existing local
handlers.

3 One Handler for Several Attributes

In this section, we give the whole implementation of the proposed solution in
the ECL!PS® system [5]. First, we present the metaterms of the system which
have a single attribute. Then, we show how to use them to simulate metaterms
with several attributes.

3.1 Syntax of Metaterms in ECL'PS®

Metaterms can be defined as the attributed variables of Le Huitouze which are
lifted at the Prolog level. A metaterm is written:

Variable{Attribute}
Hence, a predicate which attaches an attribute to a variable 1s:

attach_attribute(Variable, Attribute) :-
Variable = _{Attribute}.

Access to the attribute is done using pattern-matching, an ad hoc mechanism
like the === of Neumerkel [6] which does “syntactic unification”.

As in the solutions proposed by Neumerkel, unification of metaterms leads
to a call to a user-defined predicate. The argument of the called goal is a list
of pairs: the first argument of the pair is the attribute of the metaterm which
is unified with the second argument of the pair (which may also be a metater-
m). For example if meta_unify/1 is the predicate attached to the handler of
metaterm unification, the following unification

f(M1{A1}, M2{A2}) = £(1, M3{A3})
causes the following call
meta_unify ([[A1 | 11, [A2 | M311)

Note that contrary to the proposals of Neumerkel and Holzbaur, the binding
of the metaterm is done before the handler is called.

3.2 Attribute Declaration

We now present the multi attributes solution, implemented on top of the single
attribute metaterms.

The user who wants to use metaterms has to declare a name for his own
attribute. For the Holzbaur’s example (constraints over finite domains), we
have the following declarations:

:— attribute(domain).
:— attribute(delay).

respectively for the encoding of domains and coroutining.

3.3 Setting and getting an attribute

In order to have independent attributes in the same metaterm, the data-
structure is hidden. This means that the user cannot access directly his attribute
but has to ask for it using its name.

So we propose two built-in predicates to get and set an attribute:

set_attribute(Var, Attr_Name, Attr_Value).
get_attribute (Meta, Attr_Name, Attr_Value).

set_attribute/3 allows the user to add an attribute to a variable or a
metaterm. In the variable case, a metaterm is then created. In the metaterm
case, the old attribute is overwritten by the new one. get_attribute/3 allows
the user to get his attribute from a metaterm.

For example, the freeze/2 predicate is written:

freeze(X, Goal) :-

var(X), !,

set_attribute(X, delay, Goal).
freeze(_X, Goal) :-

Goal.

In a metaterm, an attribute which has not been set is a free variable.

3.4 Unifying metaterms

The user who uses metaterms (and who declares his own attribute) has to write
a handler for this attribute. The user of the attribute x has to define a handler
x_unify/2:

x_unify(Attribute, Term)

This handler is called each time a metaterm is unified. The first argument
is the concerned attribute, the second argument is the term the metaterm has
been unified with. This term may be a metaterm.

For example, for the coroutining handling, where the attribute is a list of
delayed goals, we have the following handler:

delay_unify(Attrl, Term) :-
is_meta(Term), !, % Unification between two metaterms
get_attribute(Term, delay, Attr2),
delay_delay(Attrl, Attr2, Term).
delay_unify(Attr, Term) :-
delay_term(Attr, Term)

The term is checked to know if it is also a metaterm. If so, its attribute is
extracted (get_attribute). Then the delay_delay/3 and delay_term/2 pred-
icates are the combine_attributes/2 and verify_attributes/2 of Holzbaur
[2]. The difference is that the user handler is always called when a metaterm is
unified, even if this metaterm does not contain the concerned attribute. So the
first thing the user handler has to do is to check if the attribute has been set or
not.

If we want to wake goals only when the variable is instantiated then we have
the following code:

delay_term(Attr, _Term) :-

var (Attr), !. % No attribute
delay_term(Goals, _Term) :-

wake(Goals) .

delay_delay(Attrl, Attr2, Term) :-
var(Attr1l) -> Goalsil = [] % No attribute in the first metaterm
; Goalsl = Attril,
var(Attr2) -> Goals2 = [] % No attribute in the second metaterm
; Goals?2 = Attr2,

append(Goalsl, Goals2, Goals),
is_meta(Term) -> set_attribute(Term, delay, Goals)
; true. % The metaterm has been bound by another handler

3.5 Implementation Details

An implementation has been done at Prolog level on top of the metaterms of

ECL'PS®.

Data-Structure The single original attribute of metaterms is a compound
term (functor attributes). Arguments of this compound term are the dif-
ferent attributes. The arity of this compound term is a global variable which
is incremented each time a new attribute is declared. A table maintains the
association between the attribute names and the corresponding fields in the
compound term.

For example, the following sequence:

attribute(delay), attribute(domain), set_attribute(X, domain, [1, 2])

gives the following term:

X{attributes(_Free, [1, 2])}

Access to Attributes The association name-field is known as soon as the
attribute is declared. Then it is possible to use at compile-time the association
table for the get and set commands: using a macro mechanism, a name of an
attribute is replaced by the associated index in the compound term. Hence,
there 1s no overhead at run-time.

For example

get_attribute (X, domain, Dom)
is replaced at compile-time by
get_the_attribute(X, A), arg(2, A, Dom)

where arg just get the right field in the compound term.

Generic Handler The handler which is called by the ECL'PS® kernel when
a metaterm 1is unified, is now the generic handler which calls the local handlers.
The simplest way to implement is to have a loop over the attributes. In order
to avoid some overheads in the control of the loop, this generic handler is regen-
erated and compiled each time a new attribute is declared: the loop is compiled
into the conjunction of calls to the local handlers.

4 Conclusion

We have shown that extending unification with metaterms (or metastructure)
i1s not straight-forward as soon as it is necessary to implement independent
extensions. A lot of problems are encountered if a single metaterm unification
handler is used for metaterms with several purpose.

We have proposed a solution where metaterms have several independent at-
tributes where a local handler is dedicated to each attribute. With this solution,
information encoded in metaterms which serve different issues is not mixed, and
it is possible to add new attributes without changing the existing handlers. This
solution has been tried in the ECRC Prolog System ECL!PS® to handle finite
domains and coroutining.

Acknowledgement The author wants to thank J. Schimpf, M Meier and
M. Wallace for fruitful discussions; M. Ducassé and C. Gervet for her helpful
comments.

References

(1]

[2]

C. Holzbaur. Specification of constraint based inference mechanisms through
extended unification. Dissertation, University of Vienna, 1990.

C. Holzbaur. Metastructures vs. attributed variables in the context of ex-
tensible unification. In M. Bruynooghe and M. Wirsing, editors, 4th Int.
Work. Programmaing Languages Implementation and Logic Programming, L-

NCS 631. Springer-Verlag, 1992.

J. Jaffar and S. Michaylov. Methodology and implementation of a CLP
system. In J.L. Lassez, editor, fth Int. Conf. Logic Programming. MIT
Press, 1987.

S. Le Huitouze. A new data structure for implementing extensions to Prolog.
In P. Deransart and J. Maluszynski, editors, 2nd Int. Work. Programming
Languages Implementation and Logic Programming, LNCS 456, pages 136—
150. Springer-Verlag, 1990.

M. Meier and J. Schimpf. An architecture for Prolog extentions. In E. Lem-
ma and P. Mello, editors, Third Int. Workshop on FEzxtensions of Logic Pro-
grammaing, LNAI 660, pages 319-338. Springer-Verlag, 1992.

U. Neumerkel. Extensible unification by metastructures. In M. Bruynooghe,
editor, 2nd Workshop on Meta-Programmang in Logic Programming, pages
352-363, Leuven, Belgium, 1990. K.U. Leuven, Dept. of Computer Science.

