
A Hybrid solver for optimal routing of bandwidth-guaranteed tra�cWided Ouaja, Barry RichardsIC-Parc, Imperial College LondonAddress : IC-Parc, Imperial College London, London SW7 2AZ, UKPhone: +44 20759484 59/29, fax: +44 2075948432Email: fwo1,ebrg@icparc.ic.ac.ukAbstractThe dramatic explosion of Internet services requires that tra�c 
ows across the network meet certain QoSparameters while e�ciently utilizing network resources. MPLS, for example, provides the facilities to achieve thisthrough explicit routing. Finding optimal paths for all the tra�c demands which satisfy QoS requirements is anon-trivial task. Indeed, guaranteeing just bandwidth is known to be NP-hard. In this paper we propose a newalgorithm for solving this problem, which is a hybrid that tightly integrates Lagrangian optimization and ConstraintProgramming search. We evaluate its performance on a set of benchmark tests, based on a large commercial back-bone topology. The tests involve demand sets of varying size, mostly between 100 to 600 demands. We comparethe results with those achieved by several other well-known algorithms, some complete and some heuristic. Thisreveals that the hybrid algorithm typically yields the most informative results in the most e�ective way.keywords: Routing, Tra�c Engineering, MPLS, Operations Research, Constraint Programming.1 IntroductionThe dramatic explosion of Internet services requires that tra�c 
ows across the network meet certain QoS parame-ters while e�ciently utilizing network resources. MPLS, for example, provides the facilities to achieve this throughexplicit routing. The task, given a set of tra�c demands, is to �nd a path for each demand such that they jointlyoptimize pre-de�ned criteria and satisfy a number of constraints, such as bandwidth availability [2, 6]. This isreferred to generally as constraint-based routing (CR) [2, 6].CR can be performed either o�-line or on-line [20]. In the on-line case, tra�c demands are placed dynamically,often on a �rst-come-�rst-serve basis. Routes are calculated one-by-one by some appropriate algorithm, e.g.,constrained shortest path �rst (CSPF) [6], shortest-distance path (SDP) [13], widest-shortest path (WSP) [13], orshortest-widest path (SWP) [13, 17]. As individual routes are computed greedily, meeting QoS for future demandscan be a major problem. Some feel that this might be addressed with over-provisioning. Our results show, however,there can be problems even in very well provisioned networks.An alternative strategy is to compute explicit routes for a set of tra�c demands, with a view to optimizingthe global impact of their placement on the network. This can be done in a centralized o�-line manner [18, 20].However, �nding an optimal constrained routing of multiple demands can be di�cult; indeed, the problem is NP-hard with bandwidth as the only resource constraint [7]. This optimization problem, which we refer to as the tra�cplacement (TP) problem, is summarized as follows:� given a network composed of nodes and links, each link with a maximum capacity, a set of tra�c demandsde�ned by their source/destination nodes and required bandwidth values respectively,� �nd a single path for each demand such that all demands are satis�ed, no link capacity is exceeded, whileoptimizing a pre-de�ned objective function.The choice of objective function is crucial, but debatable. Based on a previous evaluation [14], we found thatminimizing the average bandwidth utilization over all links yields the best balance between hop counts and e�cientbandwidth utilization. We shall use this objective function here. The algorithm is, however, applicable to anylinear function.As for the choice of algorithm, a new paradigm is emerging in combinatorial optimization where the aim isto exploit hybridizations of Constraint Programming (CP) and Operations Research (OR) [12]. CP is distinctivein tackling the satisfaction of constraints by using local consistency techniques [16]. It assists search by inferring



new information about the decision variables (e.g., tighter bounds, �xed variables). OR, on the other hand,o�ers powerful special purpose techniques for optimization of certain problem classes (e.g., linear). The respectivestrengths of CP and OR (satisfaction vs optimization) suggest that they can be integrated to create e�cient hybridsolvers for combinatorial optimization. The bene�ts have been seen in various combinatorial problems [12].In this paper, we explore the bene�ts of a CP-OR hybridization for the TP problem. We present a newcomplete hybrid solver which tightly integrates Lagrangian relaxation and CP search. It is designed to proveoptimality/infeasiblity, and since it is complete, it �nds a solution if one exists, and proves infeasibility otherwise.One of its most distinctive features, mainly owing to CP, is that it �nds solutions (to solvable problems) early inthe search. These are often close to the optimum, and Lagrangian relaxation serves to indicate how close. As aresult, it is sometimes not worth seeking the optimal solution, since the �rst one is su�ciently near.The e�ectiveness of the proposed hybrid algorithm is measured in an experimental study, based on a major USbackbone. We generate a large number of di�erent sets of tra�c demands to be placed on the network; these aredesigned to simulate "real" tra�c matrices. We then compare the performance of the hybrid algorithm with severalother algorithms, viz. CPLEX [11] for Mixed Integer Programming (MIP), Wang's method (LPF-RR) [18], andfour shortest path algorithms (CSPF, SDP, WSP, and SWP). The results reveal the bene�t that can be realizedthrough explicit routing.2 Problem FormulationWe model the network as a directed graph G = (V;E), where V and E are the sets of nodes and directed linksrespectively. Bandwidth is modeled as a non-negative number measured in kbps. Each link (i; j) has a capacitybij . For the sake of convenience, and without loss of generality, we assume that the initial load of each link is zero.Let K be the given set of tra�c demands. A demand k 2 K is de�ned by a tuple (sk; tk; dk), where sk, tk, and dkdenote respectively the source node, destination node, and required bandwidth of demand k.For each edge (i; j) and demand k 2 K, we de�ne a variable Xkij to represent the proportion of k's bandwidththat crosses (i; j). Since no 
ow splitting is allowed, each Xkij must take the value zero or one. We formulate theTP problem as an integer linear multicommodity 
ow problem using the following node-arc model (P):z� = min 1jEj Xk2K X(i;j)2E dkbijXkij (1)Xj:(i;j)2EXkij � Xj:(j;i)2EXkji = 8<: 1 i = sk�1 i = tk 8 i 2 V; k 2 K0 i 6= sk; tk (2)Xk2K dkXkij � bij 8(i; j) 2 E (3)0 � Xkij � 1; integer(Xkij) 8 (i; j) 2 E; k 2 K (4)The objective function (1) minimizes the total cost of accommodating all demands across the network (i.e., theaverage link utilization). The 
ow constraints (2) model the 
ow of each demand k 2 K in the network. Thecapacity constraints (3) tie together the demands by restricting the total 
ow Pk2K dkXkij of all demands on eachedge (i; j) to at most bij . In the constraints (4), all variables Xkij are declared as 0-1 decision variables to ensurethat each tra�c demand follows one path.The complicating capacity constraints (3) make the TP problem NP-hard [7]. When relaxed, the problem de-composes into jKj separate shortest path subproblems, that can be e�ciently solved using, e.g., linear programmingor Dijkstra's algorithm [1]. This observation lies at the heart of our approach, which is described next.Related work on integer multicommodity 
ow problems can be found in [4, 5]. They do not, however, considerlarge-scale instances of the size we address.3 Proposed hybrid algorithm3.1 Lagrangian relaxationThe above remarks motivate the choice to apply Lagrangian relaxation [1] (LR) on P by dualizing the capacityconstraints (3) into the objective function with associated vector of nonnegative Lagrangian multipliers �. We referto the resulting problem, P�, as the Lagrangian subproblem of P. For any �xed � � 0, P� decomposes into jKjseparate "easy" shortest-path problems. Its optimal objective value is a lower bound on z�. To obtain the sharpestbound L� along with the optimal multipliers ��, we shall solve the Lagrangian dual problem, using, e.g., subgradient



optimization (SG) [1, 8]. SG is a simple procedure that iteratively updates � and solves the corresponding P�. SGstops when it converges, a speci�ed limit of iterations is reached, or the stepsize becomes su�ciently small. Weimplement an enhanced SG variant similar to the one in [9]. Moreover, we test certain conditions a priori to reducethe number of unnecessary re-routings.Unfortunately, pure LR is generally not su�cient to solve the TP problem. This is due to i) the existence of aduality gap (i.e., z� � L� > 0) and ii) the inconsistency of the relaxed solution.In case (i), since P is an integer problem, a duality gap exists in general [1]. Moreover, because P� has theintegrality property, L� equals the optimal objective value z� of the linear relaxation of P, thus the gap is z��z� [1].As for case (ii), an LR solution is often not primal feasible (wrt P), because it might violate some capacityconstraints. However, it tends to be near-feasible given the fact that LR encapsulates a resource view in theobjective function. We designed e�cient primal heuristics to adjust infeasible solutions into feasible ones.Recent results in [3, 15] show that for continuous problems, a convex combination of all solutions generated bySG can be primal feasible after a �nite number of iterations. In our integer context, if such a solution is found, itprovides an upper bound on z�, thus on L� and hence contributes to better convergence (given that it is crucial forcomputing the stepsize). We exploit this result in our approach.3.2 Hybridization with CPTo close the duality gap and �nd an optimal primal solution, we shall combine LR with Constraint (Logic) Pro-gramming inference within branch-and-bound tree search. The resulting hybrid algorithm is referred to by HLR.It is brie
y described following this general overview of CP inference.3.2.1 Overview of CP inferenceCP inference is supported by a �nite domain constraint solver that relies on e�cient local consistency techniques [16].The constraints accumulated in the CP constraint store communicate with each other through their variable do-mains. Basically, inference on the constraints linking each variable removes domain values which cannot be part ofany solution. The reduction of a variable's domain triggers the examination of other constraints, which in turn mayreduce other domains. This recursive process, called constraint propagation, terminates when no domain can befurther reduced or a domain becomes empty. In the latter case, we know that no solution satisfying the constraintsexists, thus a failure is raised. Propagation is automatically triggered as soon as a constraint is added to the storeor a variable's bound changes. Since all variables in our model are binary, a reduction of a domain's variable resultsin the assignment to the other domain value. Therefore, CP inference can result in �xing some variables to zero orone, which corresponds to forbidding or imposing certain edges for some demands.3.2.2 Algorithm descriptionBefore starting search, we attempt to �nd a feasible placement using CSPF. If no feasible one is found, we setupcutset constraints based on the max-
ow-min-cut theorem [1] with the aim of detecting infeasibility. The minimalcutset is computed for each demand using Ford-Fulkerson max-
ow-min-cut algorithm [1]. The cutset constraintsassert that the aggregate bandwidth of all demands necessarily crossing the same cutset should be no greater thanthe total bandwidth of all links in the cutset. If violated, the problem is proved infeasible and no search is needed.Otherwise, HLR performs a depth-�rst traversal of a binary branch-and-bound search tree. Attached to everytree node are a Lagrangian subproblem P� and a constraint store CS sharing the problem variables; they areincrementally updated during search.At the root node, CS consists of the 
ow and domain constraints ((2), (4)). Propagation of these constraintsforbids for each demand k, links that cannot be part of any path from sk to tk. Analogously, it imposes for everydemand k, links that are contained in any path from sk to tk. Propagation is enhanced by constraining the totalout
ow and in
ow for every node i 2 V and demand k 2 K to be less or equal than one. Indeed, once an edge(i; j) is enforced for a demand k (i.e., Xkij = 1), inference ensures that all other outgoing edges from i and incomingedges to j are forbidden from the kth route (i.e., their corresponding 
ow variables are �xed to 0).At every node, the LR solver operates on the local subproblem by performing a number of SG iterations. Aftereach SG iteration, new constraints based on capacity violations and reduced costs are dynamically discovered andadded to CS. Propagation is then performed on CS to (1) infer new �xed variables or (2) detect a failure. In case(1) the next iteration SG tackles a reduced easier problem, whereas in case (2) the node is pruned immediately; noneed to execute further local SG iterations.The generated constraints based on detected capacity violations are cover cuts [19] which assert that demandscrossing an overloaded link can not simultaneously use that link in any solution. These are propagated and alsodualized in the next-node subproblem to strengthen the relaxation.



satisfied
END nodes exist
END

if i=0 update zSolve Pi�, zi: LR boundxi : LR solutionIf xi primal feasibleupdate x� and zelse apply primal heuristicsand do the sameGenerate new cuts CCutsfig = Cutsfig [ CAdd C to CS, inferenceReduced cost inference

x� optimal
N YN

YYNN Y N Y

Y N
NNY NNYY

Update incumbent x�Initialize B&B treeCutsf0g = []Initialize CSInference triggeredWhile pendingDualize Cutsfi � 1g in Pi�Select deepest node i
Cutset constraints

Y
Prune by inferencePrune by inference

Branching,inferencevoid While SGnot stopped
Infeasible

Pi� infeasible or
x�

Prune by infeasibility/bounding

with cost z

zi � z

CSPF solution feasible

If z = z
Figure 1: Algorithm 
ow chart.As for reduced costs, they are deployed to remove values that can not participate in the optimal solution.Although this technique is widely used within the OR community, typically known as variable �xing, it shows amore substantial bene�t when applied frequently within our CP context. It often results in a large number ofvariables being �xed explicitly or due to propagation.An e�cient primal heuristic is deployed following each SG iteration in an attempt to adjust an LR inconsistentsolution into a feasible one. It basically re-routes, one-by-one, a subset of demands crossing the overloaded links,using an appropriate link metric.When LR optimization stops, a Lagrangian solution is returned. This is a total assignment to all variables. Itmight violate some capacity constraints. Guided by this solution, the algorithm heuristically selects a branchingdecision Xkij = 0 and adds it to P� and CS. On backtracking, the decision is revoked and its negation Xkij = 1 isadded instead. Posting the search decision triggers inference.The main aspect that distinguishes HLR from traditional LR-based branch-and-bound algorithm is constraintpropagation. This overlaps with LR optimization and search. It can �x a potentially large number of variables. Thisaids the LR solver in generating good solutions faster, and assists search since only a reduced number of decisionsneed to be examined. Additionally, propagation can detect inconsistency, and hence leads to early pruning of nodesthat yield no feasible/optimal solution. Consequently, a smaller search tree is explored.A 
ow chart of the algorithm is depicted in Figure 1. Note that search ends without having to explore pendingnodes, when the incumbent cost (z) equals a valid global lower bound (z), here the best LR bound found at theroot.More details of the algorithm can be found in [14].



(a) Test-A (b) Test-BAlg Opt Inf Sol ResolHLR 66.78 24.78 72.78 97.56MIP 72.12 25.98 73.00 98.89LPF-RR 29.67 25.45 45.45 70.90CSPF - - 69.12 69.12SDP - - 69.34 69.34SWP - - 54.12 54.12WSP - - 69.89 69.89
Alg Opt Inf Sol ResolHLR 30.22 7.78 84.77 92.55MIP 35.89 11.89 40.67 52.56LPF-RR 11.22 11.89 33.11 45.00CSPF - - 70.89 70.89SDP - - 83.44 83.44SWP - - 22.67 22.67WSP - - 82.56 82.56Table 1: Results over (a) Test-A and (b) Test-B.4 Experimental studyIn this section we compare the performance of HLR with other algorithms, viz. CPLEX [11], a variant of LPF-RR(adapted to use average link utilization instead of maximum link utilization as the objective function), and fourshortest path algorithms (CSPF, SDP, SWP and WSP). LPF-RR solves the continuous version of the problemusing Simplex then heuristically routes split demands one-by-one. For the shortest-path methods, we shall adoptthe bin-backing heuristic of routing demands in decreasing order of bandwidth size. This is widely felt to be e�ectivein delivering the best results. For CSPF we use a link metric that is inversely proportional to the link capacity.With the exception of CPLEX (which is a commercial package), all the algorithms are implemented in theConstraint Logic Programming language ECLiPSe [10]. ECLiPSe is equipped with several constraint solvers, oneof which is over �nite domains. It also embeds an external linear solver, CPLEX, which we use to solve theLagrangian subproblems.4.1 Test setsThe test data were created using a generator provided by an industrial partner. They are based on a major USbackbone, composed of 88 nodes and 336 directed links; the network is very generously provisioned. The generatedtra�c is designed to simulate "real" tra�c matrices.We generate two di�erent benchmarks, Test-A and Test-B, with 900 test cases each. The test cases in Test-Arange in size typically between 100 and 200 demands. The second benchmark, Test-B, consists of larger test cases,with the number of demands exceeding the number of links. Here the number of demands is evenly distributedover the range [300, 600].4.2 Experimental resultsThe experiments were run on Pentium II 450 MHz processors, and for each test case there was a timeout of 1000CPU seconds. The optimality tolerance was set to 0.0001. The results are summarized in Table 1, where thealgorithms are compared on four dimensions, viz. on the percentage of cases in each test where the algorithms (1)proved optimality, (2) proved infeasibility, (3) found a solution (not necessarily the optimal one), and (4) resolvedthe problem, i.e., either found a solution or proved infeasibility. These provide an interesting perspective both onthe algorithms and on the TP problem itself. We discuss the results on each dimension, and provide a compositeview as it emerges. This is where the insight lies.4.2.1 Cases proved optimalThe second column in Table 1-(a) and -(b) shows that on both test benchmarks MIP �nds roughly 6% moreoptimal solutions than does HLR (within the timeout). Note, however, that the performance of both algorithmsdrops sharply on the larger cases in Test-B.Perhaps surprisingly, LPF-RR solves some tests optimally, although it is incomplete. In these cases, LPF-RRsolutions are optimal because they coincide with the LP relaxed solutions which happened to be integral. However,LPF-RR is clearly not competitive with MIP or HLR. As for the four shortest-path algorithms, they are not designedto prove optimality and hence, a comparison here is irrelevant.One can conjecture from these results that proving optimality is not in general a realistic goal.



4.2.2 Cases proved infeasibleThe third column in Table 1-(a) and -(b) shows that MIP is slightly better than HLR in proving infeasibility. Thedi�erence is 1.1% on Test-A and 4.1% on Test-B.The performance of LPF-RR is virtually the same as MIP on both test benchmarks. This indicates that formost instances proved infeasible, both the continuous and discrete variants of the TP problem are infeasible. Asfor the shortest-path algorithms, they are of course inappropriate to prove infeasibility.The surprising result is the percentage of cases that are infeasible, especially since the network is so generouslyprovisioned. Nearly 26% are infeasible in Test-A, and nearly 12% in Test-B.4.2.3 Cases solvedColumn four in Table 1-(a) and -(b) shows the total number of cases solved. On Test-A HLR solved almost asmany cases as MIP (73%). LPF-RR, in contrast, found solutions in only 45.5% of the cases.The picture changes dramatically on Test-B. Here MIP solved only 40.6% of the cases, compared to 84.% forHLR. On this dimension there is an enormous di�erence between MIP and HLR. Clearly, MIP is not well-suited tosolving large-scale problems, hence the need for decomposition. The di�erence is even larger in the case of LPF-RR,which solved just over 33% of the cases.Signi�cantly, SDP and WSP approximated the number of cases solved by HLR. CSPF was much less e�ective,and SWP non-competitive. This raises an interesting question, what is the gain in using HLR over SDP or WSP?We discuss this below.4.2.4 Total resolved casesWe now turn to the composite view of the results, captured in the last column of Table 1-(a) and -(b). Here welook at the number of cases resolved by each algorithm, i.e. those cases where the algorithm found an optimal ornon-optimal solution, or proved infeasibility. This measures one aspect of the overall performance.On Test-A MIP resolved 98.9% of the cases, compared to 97.6% for HLR. If we take solution quality to one side,there seems little to choose between these two algorithms. But Test-B reveals a signi�cant "gap". MIP resolvedonly 52.5% of these cases, leaving a total of 47.5% unresolved. In contrast, HLR resolved 92.6% of the cases, timingout (without a solution) in only 7.4%.As for SDP, WSP and CSPF, they failed to resolve just over 30% of the cases in Test-A. Most of these areinfeasible (slightly less than 26% of the total), which leaves about 3% of the known solvable cases unsolved. OnTest-B SDP and WSP left roughly 17% of the cases unresolved, about 5% might have a solution. CSPF left a lotmore unresolved cases, about 39%.So what does this mean? SDP and WSP approximate HLR in �nding solutions on the two benchmark tests(when there are solutions); here the di�erences are not large. What is surprising is the percentage of known infeasiblecases, nearly 26% on Test-A and 12% on Test-B. This seems very large given that the test network was thoughtto be well over-provisioned. SDP and WSP or any similar shortest path algorithm, cannot tell us anything aboutthese cases. In e�ect, the cases they leave unresolved (30% on Test-A and 17% on Test-B) are undi�erentiated;they might or might not all have a solution. This leaves a big question when routing with SDP or WSP: whatpercentage of the unplaced demands have a solution? This will vary widely depending upon the topology, and thenumber and size of the tra�c demands. This can present a real challenge to keeping one's customers happy.4.2.5 First solution foundWe observed that on average the quality of the �rst solution found by HLR di�ered only slightly from the bestsolution found, or indeed from the optimal one. Here it is important to note that HLR provides an estimate ofhow far each solution found lies from the optimal. This is measured by the duality gap, which is the di�erencebetween the best global lower bound and the solution cost. Recall that the duality gap is in fact an overestimateof a solution's distance from the optimal.In Test-A the average duality gap for �rst solutions is very small (0.015%) and the worst case is only half of onepercent (0.52%). In Test-B, the average gap is slightly larger (0.3%), with the worst case at 2.3%. The messagehere seems clear. The �rst solutions found by HLR are near-optimal, and seeking to improve on the �rst solutionwill typically yield a very small return. Hence, if we increase the optimality tolerance, many more solutions wouldbe considered optimal, thus narrowing the gap between the number of optimal cases and number of solved cases.Moreover, the �rst solutions are found quickly. In Test-A it took on average 12 CPU secs to �nd the �rstsolution, and in Test-B 20 secs. Curiously, the infeasible cases were proved on both tests in roughly the same time,13 secs on Test-A and 14 on Test-B.



4.3 SummaryThe experiments on Test-A and Test-B show the bene�ts that a CP-LR hybridization can achieve on the TPproblem. HLR typically yields the most informative results in the most e�ective way. It resolved nearly 98% of thecases in Test-A, taking on average 13 CPU secs to do so. In Test-B it resolved just under 93% of the cases, takingon average 20 secs to �nd the �rst solution and 14 secs to prove infeasibility.On Test-B MIP left almost half the cases unresolved, although it broadly resolved as many cases as did HLRon Test-A. SDP and WSP did much better on Test-B, leaving around 17% unresolved. Note, however, that it isimpossible to estimate the quality of the solutions they found, unlike HLR. Leaving 17% of the cases unresolvedleaves some important open questions.Finally, these results seem particularly striking in view of the fact that the test network is very generouslyprovisioned, some may think even over-provisioned. The average link utilization on all test cases is less than 26%.One might not expect there to be so many infeasible cases in this situation, or indeed so many unresolved cases.The situation can only deteriorate when the utilization rises. When this happens, HLR will become even moreinformative.References[1] R. K. Ahuja, T. L. Magnanti, and J. B. Orlin, "Network 
ows: theory, algorithms, and applications". Prentice-Hall, 1993.[2] D. Awduche and K. Kompella, "Notes on path computation in constraint-based routing". draft-kompella-te-pathcomp-00.txt, 2000.[3] F. Barahona and R. Anbil, "The volume algorithm: producing primal solutions with a subgradient method".Mathematical Programming, 385-399, 2000.[4] C. Barnhart, C. A. Hane, and P. H. Vance, "Integer multicommodity 
ow problems". Proceedings of IPCO,58-71, 1996.[5] C. Barnhart, C. A. Hane, and P. H. Vance, "Using branch-and-price-and-cut to solve origin-destination integermulticommodity 
ow problems". Operations Research, 48, 318-326, 2000.[6] B. Davie and Y. Rekhter, "MPLS technonlogy and applications". Morgan Kaufmann Publishers, 2000.[7] M. Garey and D. Johnson, "Computers and intractability". Freeman and Company, 1979.[8] M. Held, P. Wolfe, and H. P. Crowder, "Validation of subgradient optimization". Mathematical Programming,6, 62{88, 1974.[9] K. Holmberg, D. Yuan, "A Lagrangian heuristic based branch-and-bound for the capacitated network designproblem". Research Report LiTH-MAT-R-1996-23, Linkoping Institute of Technology, Sweden, 1996.[10] IC-PARC, "ECLiPSe user manual". IC-PARC, Imperial College London, 2000.[11] ILOG, "CPLEX Optimizer 6.5 user manual". http://www.cplex.com, 1999.[12] N. Jussein and F. Laburthe, editors, "Proceedings of CP-AI-OR". Le Croisic, France, 2002.[13] Q. Ma and P. Steenkiste, "On path selection for tra�c with bandwidth guarantees". Proceedings of IEEEICNP, 191-202, 1997.[14] W. Ouaja and B. Richards, "A Hybrid multicommodity routing algorithm for tra�c engineering". TechnicalReport IC-PARC-03-3, May 2003. Submitted for publication.[15] H. D. Sherali and G. Choi, "Recovery of primal solutions when using subgradient optimization methods tosolve lagrangian duals of linear programs". OR Letters, 19:105{113, 1996.[16] E. Tsang, "Foundations of constraint satisfaction". Academic Press, 1993.[17] Z. Wang and J. Crowcroft, "QoS routing for supporting multimedia applications". IEEE JSAC, 14(7), 1228{1234, 1996.[18] Y. Wang and Z. Wang, "Explicit routing algorithms for internet tra�c engineering". Proceedings of IEEEIC3N, 582{588, 1999.[19] L. A. Wolsey, "Integer programming". Wiley Interscience, 1998.[20] X. Xiao et al., "Tra�c engineering with MPLS in the internet". IEEE Network magazine, 28-33, March 2000.


