
Constraints, An International Journal, 1, 191{246 (1997)c
 1997 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.
Interval Propagation to Reason about Sets:De�nition and Implementation of a PracticalLanguageCARMEN GERVET c.gervet@doc.ic.ac.ukIC-Parc, Imperial College, William Penney Laboratory, London SW7 2AZ, U.K.Abstract. Local consistency techniques have been introduced in logic programming in order toextend the application domain of logic programming languages. The existing languages based onthese techniques consider arithmetic constraints applied to variables ranging over �nite integerdomains. This makes di�cult a natural and concise modelling as well as an e�cient solvingof a class of NP-complete combinatorial search problems dealing with sets. To overcome theseproblems, we propose a solution which consists in extending the notion of integer domains to thatof set domains (sets of sets). We specify a set domain by an interval whose lower and upper boundsare known sets, ordered by set inclusion. We de�ne the formal and practical framework of a newconstraint logic programming language over set domains, called Conjunto. Conjunto comprisesthe usual set operation symbols ([;\; n), and the set inclusion relation (�). Set expressions builtusing the operation symbols are interpreted as relations (s [ s1 = s2,...). In addition, Conjuntoprovides us with a set of constraints called graduated constraints (e.g. the set cardinality) whichmap sets onto arithmetic terms. This allows us to handle optimization problems by applying acost function to the quanti�able, i.e., arithmetic, terms which are associated to set terms. Theconstraint solving in Conjunto is based on local consistency techniques using interval reasoningwhich are extended to handle set constraints. The main contribution of this paper concerns theformal de�nition of the language and its design and implementation as a practical language.Keywords: CSP, �nite set domains, relational set constraints, consistency techniques, intervalpropagation, CLP, constraint programming language.1. Introduction and motivationThis paper presents a means to tackle set based combinatorial search problemsin a Constraint Logic Programming (CLP) framework (Ja�ar and Lassez, 1987,Colmerauer, 1987, Ja�ar and Maher, 1994). The main contribution of the work isa new language allowing set based constraint satisfaction problems to be modelledand solved in an elegant way using constraint logic programming. We introduce thenotion of set domain following the concept of �nite integer domain (Fikes, 1970).The elements of a set domain are known sets containing arbitrary values, and theset domain itself represents a powerset. It is de�ned as a set interval speci�ed byits lower and upper bounds. The constraints of the language are built-in relationsapplied to variables ranging over set domains. The solver is based on an exten-sion of consistency techniques (Mackworth, 1977, Mackworth and Freuder, 1985)|originating in arti�cial intelligence| to deal with set constraints. Closely relatedto our work are the notions of �nite domains, sets and intervals embedded in a



192 C. GERVETconstraint logic programming framework. These notions presented hereafter comefrom various backgrounds and were originally meant for di�erent purposes.1.1. Constraint satisfaction using CLPLogic programming (Kowalski, 1974, Colmerauer et al., 1983, Lloyd, 1987) is a pow-erful programming framework which enables the user to state nondeterministicprograms in relational form. Some ten years ago, the concept of �nite domainvariables (Van Hentenryck and Dincbas, 1986) i.e., variables ranging over a set ofnatural numbers, has been embedded into logic programming to allow for e�cienttackling of combinatorial search problems modelled as Constraint Satisfaction Prob-lems (CSPs)(Mackworth, 1977). A CSP is commonly described by a set of variablesranging over a set of possible values (the domains) and a set of constraints appliedto the variables. It is well known that combinatorial search problems are NP-complete (Papadimitriou and Steiglitz, 1982). The solving of a CSP utilizes localconsistency techniques. These are constraint propagation techniques aiming atpruning the search space, associated to a CSP, by removing values that can neverbe part of any feasible solution. One use of these techniques in logic programminghas aimed at extending a logic-based language with consistency techniques at thelanguage level (Van Hentenryck and Dincbas, 1986). This has led to the �rst de-velopment of a Constraint Logic Programming (CLP) language on �nite domains,CHIP (Dincbas et al., 1988) (Constraint Handling In Prolog).CHIP extends the application domain of logic programming to the e�cient solv-ing of combinatorial search problems. Typical examples are scheduling appli-cations, warehouse location problems, disjunctive scheduling and cutting stock(Dincbas et al., 1988) which are arti�cial intelligence or operations research prob-lems. The success of CHIP prompted the development of new �nite domain CLPlanguages, classi�ed as CLP(FD) languages (e.g. (Carlson et al., 1994)), but alsoraised the question of its limitations. Some of the limitations are concerned withthe di�culties CLP(FD) languages have to model and solve a class of combinato-rial problems based on the search for sets or mapping objects. Set partitioning, setcovering, matching problems are such combinatorial search problems. The mainmotivation of our work is to provide a solution to this problem. So far, a �nite do-main CSP approach models a set either as a list of variables taking their value froma �nite set of integers ([x1; :::; xm]; xi 2 f1; 2; :::; ng if m � n and the cardinality ofthe set is known to be m), or as a list of 0-1 variables ([y1; :::; ym]; yi 2 f0; 1g). The�rst approach requires the removal of order and multiplicities among the elementsof the list, which is achieved by adding ordering constraints (x1 < x2 < ::: < xm).Constraints over sets are modelled using arithmetic constraints. This is not natu-ral, costly in variables, and this often makes the program non-generic. The secondapproach, based on the use of 0-1 variables, originates from 0-1 Integer Linear Pro-gramming (ILP) (Schrijver, 1986). It makes use of the one-to-one correspondencewhich exists between a subset s of a known set S and a boolean algebra. Thiscorrespondence is de�ned by the characteristic function:



INTERVAL PROPAGATION TO REASON ABOUT SETS 193f : yi �! f0; 1g where f(yi) = 1 i� i 2 sIn other words, a 0-1 variable is associated with each element in S and takes thevalue 1 if and only if the element belongs to the set s. This approach requires a lotof variables. In addition it does not ease the statement of set constraints such asthe set inclusion, because the inclusion of one list into another requires consideringa large amount of linear constraints over the 0-1 variables. This is not very natural,nor concise. To cope with this problem, two solutions have been proposed. Oneconsists in de�ning a class of built-in predicates, referred to as global constraints(Beldiceanu, 1990, Beadiceanu and Contejean, 1994), which allow for the concisestatement and global solving of a collection of constraints. One way to achieve sucha global reasoning is to use operations research techniques in a CLP setting. Thisapproach aims to achieve a better pruning of the variable domains by taking intoaccount several constraints at a time. It also extends the programming facilitiesof CLP(FD) languages to handle e�ciently speci�c problems such as disjunctivescheduling, computation of circuits in a graph, etc. The second solution, presentedin this paper, aims at extending the expressiveness of the language by embeddingsets and providing set and mapping constraints for general purposes. This requiresan investigation of how CLP languages based on sets tackle the set satis�abilityproblem and how well expressiveness can be combined with e�ciency.1.2. Set data structures in logic-based programming languagesA set is a collection of distinct elements commonly described by fx1; :::; xng. The�rst application to embed sets as a high level programming abstraction was inrapid software prototyping and problem speci�cation (Oxford 1986, Schwartz etal., 1986, Turner, 1986) More recent proposals in database query languages, as-sume a logic-based language as the underlying framework. These proposals aimedat strengthening typical existing set facilities of languages like Prolog (e.g. setof,bagof) to handle sets of terms and complex data structures. In this line of worksets have been embedded in (Beeri et al., 1991, Kuper, 1990, Shmueli et al., 1992,Dovier et al., 1991). All these languages converge on one aspect: representinga set variable by a set constructor so as to nest objects in a natural manner.This constructor is speci�ed either by an extensional representation fx1; :::; xng((Beeri et al., 1991, Kuper, 1990)) or by an iterative one fxg [ E where E can beuni�ed with a set of terms containing possibly set variables (concept of sets of �nitedepth in (Dovier et al., 1991, Legeard and Legros, 1991, Stolzenburg, 1996)). Theequality relation over constructed sets is a particular case of Associative, Commuta-tive and Idempotent (ACI) relation (Livesey and Siekmann, 1976). Each propertyis usually modelled by a set of axioms. Ensuring the satis�ability of these prop-erties, i.e. solving the satis�ability problem of constructed sets, is NP-completeor even NP-hard (Livesey and Siekmann, 1976, Perry et al., 1986, Kapur andNarendran, 1986, Hibti, 1995), depending on the class of axioms and operationsconsidered (e.g. [;\; n). The main reason is the absence of a unique most general



194 C. GERVETuni�er when unifying constructed sets. This is clear from the following exam-ple: the equality fX;Y g = f3; 4g derives two solution sets: fX = 3; Y = 4g andfX = 4; Y = 3g neither of which is more general than the other. Thus, in practicethe uni�cation procedure of constructed sets is achieved by computing a minimalcollection of set uni�ers, that is a set of substitutions. This means that the satis-faction of the ACI axioms introduces nondeterminism in the uni�cation procedureby deriving disjunctions of a �nite number of equalities. In (Beeri et al., 1991,Jayaraman and Plaisted, 1989) a term-matching procedure is considered (uni�ca-tion of two sets when one of them contains no variables). This approach reducessigni�cantly the set of uni�ers. But term-matching for constructed sets remains anNP-complete problem (Perry et al., 1986, Kapur and Narendran, 1986). Indeed, iffx1; :::; xng = f1; :::;mg (m < n) there are at most 2n�m computable solutions.These approaches allow for a high level of abstraction when representing collec-tions of terms. Unfortunately they are very ine�cient in time complexity results.Recently, some alternative approaches have focused on embedding constructed setsin constraint logic programming. CLP languages dealing with sets, CLP(Sets),are de�ned as instances of the CLP scheme (Ja�ar and Lassez, 1987) over a spe-ci�c computation domain describing the class of allowed set expressions and setconstructors. These CLP(Sets) languages provide a sound and complete solver.Hereafter, we put a particular attention into the description of CLP(��) whichdeals with regular sets, the revisited language flogg which axiomatizes a set theory,and CLPS which aims at prototyping combinatorial problems using sets, multisetsand sequences.1.3. Set data structures in constraint logic programming languagesConstraint Logic Programming (CLP) combines the positive features of logic pro-gramming with constraint solving techniques. The concept of constraint solvingreplaces the uni�cation procedure in logic programming and provides, among oth-ers, a uniform framework for handling set constraints (eg. x 2 s; s � s1; s = s2).CLP(��) (Walinsky, 1989) represents an instance of the CLP scheme over thecomputation domain of regular sets. A regular set is a �nite set composed ofstrings which are generated from a �nite alphabet �. This language incorporatesstrings into logic programming to strengthen the standard string-handling features(eg. concat, substring). CLP(��) does not deal with sets in the general sensebut nevertheless, it constitutes a �rst attempt to compute regular sets by meansof constraints like the membership relation. The complexity of the satis�abilityprocedure is not given, but in�nite computations are avoided thanks to the use of
oundering.flogg (Dovier and Rossi, 1993, Bruscoli et al., 1994) has been revisited from a LPto a CLP framework in order to provide a uniform framework for the handling of setconstraints (2;=; 6=; =2). The author does not know of any application developedusing this language but its design and implementation have settled the theoreticalfoundations for embedding constructed sets of the form fxg[S into logic program-



INTERVAL PROPAGATION TO REASON ABOUT SETS 195ming and constraint logic programming. The soundness and completeness of itssolver allow us to use it for theorem proving and problem speci�cation. In flogg,the nondeterministic satisfaction procedure of constructed sets reduces a given con-straint to a collection of constraints in a suitable form by introducing choice pointsin the constraint graph itself. This leads to a hidden exponential growth in thesearch tree. In this approach, completeness of the solver is required if one aims atperforming theorem proving. Thus, there is no possible compromise here betweencompleteness and e�ciency.CLPS (Legeard and Legros, 1991, Legeard and Legros, 1992) aims at prototyp-ing combinatorial problems using sets, multisets and sequences. It proposes a coupleof interesting methods to handle extensional sets fx1; :::; xng of �nite depth (e.g.s = fffe; agg; cg is a set of depth three). Unlike flogg, CLPS comprises the setcardinality operation which in this prototyping context is of a great practical use.One of the distinctive features of CLPS is to allow set elements to range over in-teger domains. When set elements are �nite domain varaibles, the satis�abilityproblem of constructed sets is tackled by an arc-consistency algorithm of type AC-3 (Mackworth, 1977) combined with a local search procedure (forward checking).A system of set constraints where each set element ranges over a �nite domainis consistent if each of the set constraints it contains is locally consistent. Forexample, the system x 2 f1; 2g; y 2 f1; 3; 4g; [z; t] 2 f1; 2; 4; 5g; fx; yg = fz; tg isconsistent if x 2 f1; 2g; y 2 f1; 4g and [z; t] 2 f1; 2; 4g. Note that the set equal-ity relation should be associative, commutative and idempotent. It might happenthat due to the satisfaction of the ACI axioms, distinct selected values for the el-ements will generate identical instances of the sets (e.g. the two sets of selectedvalues fx = 1; y = 4; z = 1; t = 4g and fx = 1; y = 4; z = 4; t = 1g gener-ate a unique instance f1; 4g for both sets). While some a priori pruning can beachieved, the search procedure which uni�es the constructed sets remains expo-nential. This is a main drawback of this language when solving set-based com-binatorial search problems (e.g. bin packing, set partitioning). However, theirlater work on constructed terms for multisets and sequences proved to be appro-priate for modelling and solving scheduling problems with a reasonable e�ciency(Baptiste et al., 1994, Boucher and Legeard, 1996).To achieve a better e�ciency in the area of combinatorial search problem solving,a set should be represented by a variable as opposed to a constructed term; thisallows us to have a deterministic set uni�cation procedure which consists of testingin polynomial time the equality between set variables and ground sets (e.g. S =f1; 2g). In addition, sets should range over domains so as to make use of powerfulconstraint propagation techniques. To achieve this, we propose a language whichenables us to model a set-based problem as a set domain CSP |where set variablesrange over set domains|, and which tackles set constraints by using consistencytechniques. A set domain can be a collection of known sets of arbitrary elementslike ffa; bg; fc; dg; fegg. It might happen that the elements of the domain arenot ordered at all, and thus if large domains are considered, it is not possible toapproximate the domain reasoning by an interval reasoning as in some CLP(FD)



196 C. GERVETsystems. To cope with this, we propose to approximate a set domain by a setinterval speci�ed by its upper and lower bounds, thus guaranteeing that a partialordering exists. This allows us to make use of consistency techniques by reasoningin terms of interval variations, when dealing with a system of set constraints. Theset interval [fg; fa; b; c; d; eg] represents the convex closure of the set domain above.The strengths of handling intervals in CLP have recently been proved when deal-ing, in particular, with integers and reals. On the one hand, interval reasoningdoes not guarantee that all the values from a domain are locally consistent, versusdomain reasoning. On the other hand, it removes at a minimal cost some valuesthat can never be part of any feasible solution. This is achieved by pruning thedomain bounds instead of considering each domain element one by one. Inter-val reasoning is particularly suitable to handle monotonic binary constraints (e.g.x � y; s � s1), where it guarantees the correctness properties of domain reasoningwhile being more e�cient in terms of time complexity.1.4. Interval reasoning using CLPThe introduction of real intervals into CLP aims at avoiding the errors resultingfrom �nite precision of reals in computers. A real interval is an approximation ofa real and is speci�ed by its lower and upper bounds. It does not denote the set ofpossible values a variable could take but a variation of an in�nite number of values.Cleary (Cleary, 1987) introduced a relational arithmetic of real intervals into logicprogramming based on the interpretation of arithmetic expressions as relations.Such relations are handled by making use of projection functions and closure oper-ations, which correspond to the de�nition of transformation rules expressing eachreal interval in terms of the other intervals involved in the relation. These transfor-mation rules approximate the usual consistency notions. The handling of these rulesis done by a relaxation algorithm which resembles the arc-consistency algorithmAC-3 (Mackworth, 1977). This approach prompted the development of the class ofCLP(Intervals). A formalization of this approach is given in (Benhamou, 1995).While CLP(Intervals) languages make use of consistency techniques, they do notmodel CSPs because the solving of a problem modelled in a CLP(Intervals) lan-guage searches for the smallest real intervals such that the computations are correct.It guarantees that the values which have been removed are irrelevant, but does notbind the real variables to a value. Set intervals in constraint logic programming re-semble the real interval arithmetic approach in terms of interpreting set expressions(e.g. s[ s1; s\ s1) as relations and using interval reasoning to perform set intervalcalculus when handling the constraints. However, set intervals in constraint logicprogramming contribute to the de�nition of a language which allows one to modeland solve discrete CSPs. In practice, this corresponds to providing a labelling pro-cedure in order to reach a complete solution. This requirement di�ers from thatof CLP(Intervals) languages where the completeness issue is still an open problembecause of the in�nite size of real intervals.



INTERVAL PROPAGATION TO REASON ABOUT SETS 1971.5. ContributionThis paper contains the following contributions:� A formal framework for solving a system of set constraints over set domains.This framework de�nes the algebraic structure of the constraint domain over setintervals. It is generic and can be adapted to formalize the class of languageswhich make use of consistency techniques as main constraint solving tool.� A practical framework describing the Conjunto language which we have designedand implemented using the constraint logic programming platform ECLiPSe(ECRC, 1994).� Applications developed in Conjunto. They illustrate the modelling facilities ofthe language and its ability to solve in an e�cient way large search problems(Gervet, 1994, Gervet, 1995).I Formal FrameworkThis part describes a constraint logic programming system dealing with sets whichrange over a �nite domain |i.e., sets which belong to a powerset| and whosesolver is based on consistency techniques.A CLP system is parameterized by its computation domain and more generallyby its constraint domain (Ja�ar and Maher, 1994). The computation domain isthe algebraic structure over which constraints are applied to set variables and theconstraint domain is the algebraic structure over which consistency techniques areperformed in terms of set interval reasoning. A clear distinction should be madebetween them. On the one hand, the user manipulates sets in a logic-based languageand on the other hand set interval calculus is performed to search for set values asillustrated on the following �gure.
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Set interval calculus 
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transformation
rule

[{6},{6,13}]    [{13},{13,5}] =  {} D2  <-  [{13},{13,5}]

D1  <-[{6}, {6}]

X     D1, 

Y     D2,  
 X       Y = {} 

Y     [{13},{13, 5}],  

X     [{6},{6,13}], 

 X       Y = {} 

A constraint logic programming language with sets, set operations and relationsis not expressive enough to tackle set-based search problems. In particular opti-mization problems require the statement of a cost function which necessarily deal



198 C. GERVETwith quanti�able, i.e., arithmetic, terms. To cope with this, an extension of thelanguage is presented and consists in adding to the language syntax and to theconstraint domain of the system a class of functions which map sets to integers(e.g. the set cardinality #, the set weight, etc.). These functions are called gradedfunctions when they map elements from a lattice (e.g. a powerset equipped withthe operations [;\ and the partial ordering �) to the set of integers.2. Basics of powerset latticesSome de�nitions, properties and results on lattices are necessary to understandthe main features of the formal description of the system. These can be found in(Birkho�, 1967, Graetzer, 1971, Gierz and Ho�man, 1980). The particular latticewe deal with is the powerset lattice. To give an intuitive idea of the subsequent useof these de�nitions, some examples relating to powerset lattices are given. Readersfamiliar with these notions can skip this subsection.2.1. LatticesDefinition 1 A poset (also known as partially ordered set) is a set S equippedwith a binary relation � (formally a subset of S � S) that satis�es the followinglaws:P1. Re
exivity 8x; x � xP2. Antisymmetry (x � y and y � x) ) (x = y)P3. Transitivity (x � y and y � z) ) x � zExample: Let S be a �nite set and P(S) the set of all subsets of S or powerset ofS. Then the set inclusion � is easily seen to be a partial order on P(S). P(S) isa poset.Definition 2 Let S be a poset, X a subset of S and y an element of S. Then yis a meet or greatest lower bound or glb for X i�:y is a lower bound for X, i.e., if x 2 X then y � x and,if z is any other lower bound for X then z � yThe notation we use is y = V (X).Definition 3 Let S be a poset, X � S and y 2 S. Then y is a join or least upperbound or lub for X i�:y is an upper bound for X, i.e., if x 2 X then y � x and,if z is any other upper bound for X then z � yThe notation we use is y = W (X).Proposition 1 Let S be a poset and X a subset of S. Then X can have at mostone meet and at most one join.



INTERVAL PROPAGATION TO REASON ABOUT SETS 199Proof: By P2, meet and join are clearly unique whenever they exist. If a and bare two meets then we have on the one hand a � b and on the other hand b � a.This infers a = b.The following property establishes a link between � and the pair (V, W) as actualmeet and join.Property 1 (Consistency property) Let S be a poset. Then for all x; y 2 S,x � y , x = V (fx; yg)x � y , y = W (fx; yg)Proposition 2 (Graetzer, 1971) The following de�nitions are equivalent:(i) A poset is a lattice i� every �nite subset has a meet and a join.(ii) A poset S is a lattice i� every two elements have a meet and a join.Example: The powerset P(X) is a lattice where the meet operator is the intersection\ and the join operator is the union [. Every two elements x; y of P(X) have ameet x \ y and a join x [ y.The partial order as set inclusion � satis�es the consistency property:x [ y = y , x � y , x \ y = xThis equivalence de�nes the correspondence between the relational de�nition of thestructure [P(X); �;\;[] in terms of properties of the partial order � (existence ofa glb and a lub) with its algebraic de�nition in terms of properties of the operations[;\.2.2. Intervals in powerset latticesReasoning with and about intervals within a powerset lattice constitutes the coreof our system. The following de�nitions and properties give the basic properties ofset intervals in powerset lattices. A set interval delimited by two sets x and y isspeci�ed by the syntax [x; y] such that x � y. In case x = y this interval is reducedto a singleton. One important task in set interval reasoning is the computation ofset intervals which describe the smallest convex powerset containing a collection ofsets. This subsection focuses on the de�nitions and properties of these convex setintervals.Definition 4 An interval of two arbitrary sets x; y in a powerset lattice is the set[x \ y; x [ y].Definition 5 A subset S of a powerset lattice L is convex if x; y 2 S imply[x \ y; x [ y] � S



200 C. GERVETProperty 2 The meet and join operators in a powerset lattice are isotone (preservethe order):x � y ) x \ z � y \ zx � y ) x [ z � y [ zExample: This property is extremely useful when reasoning about set intervals in apowerset lattice P (X). Consider the following inclusion relations between elementsof P (X):a � x � b and c � y � dx and y belong to the respective intervals [a; b] and [c; d]. From property 2, weinfer a \ c � x \ y � b \ d and dually for the union operation. So if x and y areonly de�ned from the intervals they belong to, their union and intersection can beapproximated by the new intervals [a [ c; b [ d] and [a \ c; b \ d].Proposition 3 A closed set interval [x \ y; x [ y] is convex.Proof: Let I = [x\y; x[y] be a set interval. If z; t 2 I then z\ t 2 I and z[ t 2 I ,and by Property 2: [z \ t; z [ t] � I .3. Set intervals in CLPConsider an arbitrary collection of sets. Take the smallest convex set which containsthis collection of sets. This convex part denotes a set interval. This concept of setinterval is the means we use to reason with and about sets in a CLP system. On theone hand the user manipulates sets in a logic-based language and on the other handset interval calculus is performed to search for set values. This section describes thealgebraic structure of the system called the constraint domain. This is the structureover which set interval calculus is performed.3.1. PreliminariesLet �S be the set of prede�ned function and predicate symbols necessary to reasonwith and about sets in the language:�S = f;;[;\; n;�;2[a;b]gThe predicate symbol 2[a;b] applied to a variable s will be interpreted as the doubleordering a � s � b.The set of constants de�nes the domain of discourse of the language. It extendsthe Herbrand universe to provide the concept of set constant.Definition 6 The domain of discourse is the powersetDS = P(Hu) where Hu refers to the Herbrand universe



INTERVAL PROPAGATION TO REASON ABOUT SETS 201A set constant is any element from P(Hu) represented by the abstract syntaxfe1; :::; eng where the ei belong to Hu.Definition 7 A set variable is any variable taking its value in P(Hu).Definition 8 A set expression S of DS where s1; s2 are set constant or variablesis inductively de�ned by: s1 [ s2 j s1 \ s2 j s1 n s2Notations. Set variables will be represented by the letters x; y; z; s. Set constantswill be represented by the letters a; b; c; d. Natural numbers will be represented bythe letters m;n and integer variables by v; w. All these symbols can be subscripted.3.2. Computation domainThe computation domain of the system is the powerset algebra DS which interprets(over the domain of discourse DS) the function symbols [;\; n belonging to �S intheir usual set theoretical sense (i.e., ; is the empty set, n the set di�erence, etc.).The interpreted set union and intersection symbols have the following algebraicproperties:C. x \ y = y \ x x [ y = y [ x commutativityAs. (x \ y) \ z = x \ (y \ z) (x [ y) [ z = x [ (y [ z) associativityI. x \ x = x x [ x = x idempotenceAb. x \ (x [ y) = x x [ (x \ y) = x absorption3.3. Constraint domainThe constraint domain represents the structure of the system over which set in-terval calculus is performed. This structure is built from the computation domainequipped with the predicate symbols �;2[a;b] belonging to �S and interpreted asconstraint relations. The predicate symbol � is interpreted as the set inclusion andthe predicate 2[a;b] is interpreted as the set domain constraint. This relation con-strains a set variable to take its value in a speci�c domain. Since the main idea ofthe system is to perform set interval calculus, we must guarantee that the domainof any set variable is an interval.The structure denoted by [DS ;�] describes a powerset lattice with the partialorder �. Any two of its elements c; d have a unique least upper bound c [ d and aunique greatest lower bound c\d (cf. section 2.1.). The existence of limit elementsfor any set fc; dg belonging to DS allows us to de�ne a notion of set domain as aconvex subset of DS , that is a set interval [c \ d; c [ d].Definition 9 A set interval domain or set domain is a convex subset of DS spec-i�ed by [a; b] such that a � b and a; b 2 P(Hu).Definition 10 A set variable s is said to range over a set domain [a; b] if andonly if s 2 [a; b].



202 C. GERVETDefinition 11 The de�nite elements of a set s such that s 2 [a; b] are the elementscontained in the greatest lower bound a.Definition 12 The possible elements of a set s such that s 2 [a; b] are the elementscontained in the least upper bound b which are not in a.Example: The constraint s 2 [f3; 1g; f3; 1; 5; 6g] means that the elements 3; 1 arede�nite elements of s (they belong to s) and that 5 and 6 are possible elements of s.Set intervals have been used so far to specify the domain of a set variable. Re-garding set expressions, the domain of a union or intersection of sets is not a setinterval because it is not a convex subset of DS (e.g. I = [f1g; f1; 3g][ [fg; f2; 6g],f1; 3g; f6g 2 I but [fg; f1; 3; 6g] 6� I). It is possible to maintain such disjunctionsof domains during the computation, but this leads to a combinatorial explosion.This handling of \holes" can be avoided by considering the convex closure of a setexpression domain. Consequently, the constraint domain of the system is de�nedas the powerset lattice over the convex parts of P(DS) (convex subsets of DS),equipped with a convex closure operation.Definition 13 The set of all convex parts of P(DS) is a subset of P(DS) orderedby set inclusion and designated by 
DS.Definition 14 The constraint domain CD is the algebraic structure of the lattice
DS of set intervals ordered by set inclusion such that:CD = [
DS ;DS ;�;2[a;b]]Convex closure operation To ensure that any set domain is a set interval, wede�ne a convex closure operation which associates to any element of P(DS) itsconvex closure as being a set interval, element of 
DS .Definition 15 The convex closure operation ~conv : P(DS) ! 
DS is such that~conv : x! x satis�es:x = fa1; :::; ang ! x = [\ai2xai; [ai2xai]For example, the convex closure of the set ff3; 2g; f3; 4; 1g; f3gg belonging toP(DS) is the set interval [f3g; f1; 2; 3; 4g].Property 3 An element x of P(DS) is convex under the above convex closureoperation when x is equal to its \closure" x.Corollary 1 All singleton sets are convex.In the following, the operations Tai2x ai and Sai2x ai will be respectively writtenglb(x) and lub(x) which stand for greatest lower bound and least upper bound ofx, respectively.



INTERVAL PROPAGATION TO REASON ABOUT SETS 203Property 4 The operation ~conv(x) = x = [glb(x); lub(x)] has the following prop-erties:C1. x � x ExtensionC2. x = x IdempotenceC3. If x � y, then x � y MonotonicityIf we consider the � relation as a logical implication, the extension property C1can be interpreted by \any element of x belongs to x (thus to glb(x)) and anyelement de�nitely not in x (not in lub(x)) does not belong to x". This allows theset calculus to be performed in 
DS while ensuring that the computed solutionsare valid in DS . Property C3 guarantees that the partial order � is preserved in
DS .
DS equipped with the operation ~conv allows us to de�ne the constraint do-main from an algebraic point of view, i.e., from the properties of the union andintersection operations in 
DS .Definition 16 The constraint domain CD is a powerset lattice [DS ;�;2[a;b]] withthe family 
DS of set intervals that satis�es:P1. Each union of elements of 
DS is also an element of 
DSP2. Each �nite intersection of elements of 
DS is also an element of 
DSP3. P(DS) and the empty set fg are elements of 
DS.Properties P1 and P2 de�ne the distributivity of [ and \ in 
DS . It follows fromP2 and the �rst statement of P3 (P(DS) 2 
DS) that a convex closure operationsatisfying C1-C3 is de�ned in CD. This operation is ~conv. Because of P1 and P2this operation satis�es:x [ y = x [ y and x \ y = x \ yFinally P3 implies that ; = ;.3.4. Set interval calculusIn order to satisfy the properties P1, P2 and P3, we de�ne a set interval calculuswithin 
DS . This consists in deriving equality relations from the following orderingrelations:[a; b] [ [c; d] � [a [ c; b [ d] and [a; b] \ [c; d] � [a \ c; b \ d]This is achieved by making use of the convex closure operation. The resulting setinterval calculus is described as follows:[a; b] [ [c; d] = [a [ c; b [ d][a; b] \ [c; d] = [a \ c; b \ d]P(Ds) = P(Ds) and ; = ;



204 C. GERVETWith regard to the set di�erence operation [a; b]n[c; d], its set theoretical de�nitionis x n y = x\ y0 where y0 is the complement of y. The complement of a set interval[c; d] is the set interval [Ds n d;Ds n c] which is characterized by the fact that itdoes not contain the elements in c and that the elements of d should not a priori bede�nite elements of this interval. So the convex closure of a set interval di�erenceis: [a; b] n [c; d] = [a n d; b n c]The consistency property x � y , y = x [ y and x � y , x = x \ y (cf. 2.1.property 1) characterizes � by the set operations of a powerset lattice (in fact byeither of them). This embeds the notions of right inclusion (y = x [ y), whichde�nes the least upper bound (join operator) for x and y to be y, and the leftinclusion (x = x\ y), which de�nes the greatest lower bound (meet operator) for xand y to be x. From an operational point of view, obtaining such a characterizationis essential. However since computations are performed in CD, this property needsto be de�ned for set intervals using te set interval calculus within 
DS .Consider two set intervals [a; b] and [c; d]. They denote powersets and thus sets.Consequently we have: [a; b] � [c; d] , [a; b] = [a; b] \ [c; d] , [c; d] = [c; d] [ [a; b].Using the set interval calculus, this is equivalent to:[a; b] � [c; d] , [a; b] = [a \ c; b \ d], [c; d] = [c [ a; d [ b], a � c; b � dDefinition 17 Assuming that [a; b]; [c; d] specify set domains, the consistency prop-erty in CD is de�ned by:[a; b] � [c; d], a � c; b � dThis de�nition of consistency gives us the necessary conditions to be satis�edwhen checking and/or inferring consistency of the set inclusion constraint over setdomains.3.5. Graded functionsThe expressivity of the system can be increased if some graded functions are appliedto sets. A graded function maps a non quanti�able term to an integer value denotinga measure of the term. The set cardinality is one example of such a function. Theyallow the user to deal with optimization functions in a set-based language (e.g.minimizing the cardinality of a set). The constraint domain presented so far doesnot contain any such graded functions. In this subsection, we extend the languagealphabet and the constraint domain of the system to deal with such functions. Inorder not to limit the extension of the language to the set cardinality function, thegeneral case of an arbitrary graded function f is studied.



INTERVAL PROPAGATION TO REASON ABOUT SETS 205Definition 18 A graded function f is a function from [DS ;�] to N (set of positiveintegers) which maps each element x 2 DS to a unique m such that f(x) = m andwhich satis�es:s1 � s2 ) f(s1) < f(s2) (� is the strict inclusion and < the arithmetic inequality)The convex closure of a graded function f is required to deal with elements from
DS . The closure function, written f , maps elements from 
DS to a subset of thepowerset P(N ) containing intervals of positive integers. This subset is designatedby 
N .Example: Let s be a set and #s its cardinality (a positive integer). Considerthe constraint s 2 [fg; f1; 2g]. The cardinality function # is approximated by #.Intuitively we have #(s) = [0; 2].Definition 19 Let f : DS ! N . The function f : 
DS ! 
N is derived from fas follows:f([a; b]) = [f(a); f(b)]Property 5 If s 2 [a; b] then f(s) 2 f([a; b]).Proof: By de�nition f is a graded function. So if a � s � b then we have f(a) <f(s) < f(b). Consequently we have f(x) 2 [f(a); f(b)] which means f(s) 2 f([a; b]).This property guarantees that the output of the function f applied to a set domaincontains the actual graduation value of the concerned set variable.3.6. Extended constraint domainGraded functions add expressive power to the language. They can be embeddedas prede�ned symbols in the language, if the constraint domain is extended todeal with integer intervals and integer variables. The constraint domain associatedwith integer intervals is that of integer interval domains (subset of the standardconstraint domain over �nite integer domains). It is de�ned by the structure:FD = [
N ; (N ;+);=; 6=;�;2[m;n]]where the relation 2[m;n] is interpreted in 
N as the integer domain constraintsuch that: x 2[m;n] [m;n] is equivalent to m � x � n. The other symbols areinterpreted in their usual arithmetic sense. The extended constraint domain of oursystem should contain FD.The extended constraint domain CDe with graded functions, is the structure:[
DS ;DS ; f;�;2[a;b]] [ FDCDe interprets graded function symbols as unary set operations with respectto their intended meaning. For example the symbol # is interpreted as the setcardinality operation.



206 C. GERVET4. Execution modelThe execution model is based on constraint solving in CDe. It is a top-down ex-ecution model which de�nes the operational semantics of the system. The modeldescribes how the constraints are processed over CDe and what they lead to. Theidea consists in (1) constraining each set variable to range over a set domain, and(2) removing some values of the set domains that can never be part of any feasiblesolution. This is achieved by making use of local consistency techniques adaptedto the handling of constraints de�ned in CDe. A transformed system is commonlycalled a locally consistent system. One necessary condition for dealing with localconsistency techniques is that each set variable ranges over a set domain.4.1. De�nition of an admissible system of constraintsThe set of prede�ned constraints in CDe can contain any of the following:� set domain constraints s 2 [a; b] where s is a set variable.� set constraints S � S1 where S; S1 are set expressions (comprising constants,variables and possibly set operation symbols in f[;\; ng).� graduated constraints f(S) 2 [m;n] where f is any prede�ned graded functionand [m;n] any element in 
N (i.e., an integer if m = n or an integer domain).Definition 20 An admissible system of constraints in CDe is a system of con-straints such that every set variable s ranges over a set domain.4.2. From n-ary constraints to primitive onesThe prede�ned constraints might denote n-ary constraints like s1 [ s2 � s3 \ s4.Ensuring the local consistency of these constraints via interval re�nement methodsrequires us to express each set variable in terms of the others. Since there is noinverse operation for [;\; n there is no way to move all the operation symbols on oneside of the constraint predicate. So it is necessary to decompose n-ary constraintsinto primitive ones.Consider the following set of basic set expressions fs \ s1; s [ s1; s n s1g. Theproposed method consists in approximating each basic set expression by a new setvariable with its appropriate domain. The resulting constraints are binary or unaryones called primitive constraints.Definition 21 A primitive constraint is (1) a prede�ned set constraint containingat most two set variables or, (2) a graduated constraint containing at most one setvariable.



INTERVAL PROPAGATION TO REASON ABOUT SETS 207In the former example the n-ary constraint is approximated by the system ofconstraints:s1 [ s2 = s12; s3 \ s4 = s34; s12 � s34This approach is similar to the relational form of arithmetic constraints over realintervals introduced by Cleary (Cleary, 1987).A relation denoting a basic set expression represents a subset of the Cartesianproduct of the set domains attached to each set variable. In order to deal with theconsistency of these relations, we de�ne projection functions which allow each setdomain to be expressed in terms of the others. Consider a relation r � [a1; b1] �[a2; b2] � [a3; b3]. The set it denotes must belong to the domain 
DS over whichthe computations are performed. Since 
DS contains convex sets, each value of aprojection function must be a convex set, that is a set interval. Consequently, toeach projection function designated by �i we associate its closure �i. The closure isderived from �i by making use of the closure operator de�ned above which satis�es:�i = ~conv(�i)�i represents the approximation of this projection of the relational form r on thesi-axis.Definition 22 The i-th projection function �i of a relation r denoting a set ex-pression is the mapping :�i = ~convfsi 2 [ai; bi] j 9(sj ; sk) 2 [aj ; bj ]� [ak; bk] such that j; k 6= i : (si; sj ; sk) 2rgThese relational forms of set expressions are not visible to the user but they arenecessary to de�ne the local consistency of an n-ary constraint.4.3. Consistency notionsThe standard notions of consistency (Mackworth, 1977) applied to integer domainsstate conditions that must be satis�ed by each element belonging to a variabledomain. For example, arc-consistency states conditions that must be satis�ed byeach value belonging to a variable domain:Definition 23 A binary constraint c(x; y) such that x 2 Dx and y 2 Dy is arcconsistent if and only if (1) for any value i 2 Dx, there is a value j 2 Dy such thatc(i; j) is true, and (2) for any value j 2 Dy, there is a value i 2 dx such that c(i; j)is true.This domain reasoning approach is not useful for set variables since set domainsspeci�ed by set intervals can contain an exponential number of elements (e.g. theset interval [fg; f1; :::; ng] contains 2n elements). Instead, we derive conditions thatmust be satis�ed by the set domain bounds. These conditions guarantee that a



208 C. GERVETconstraint relation which does not hold for the bounds of the variable domains doesnot hold for any set between these bounds. For this purpose we de�ne here thelocal consistency notions for each constraint appearing in an admissible system.Consider a set variable s. The lower and upper bounds of the domain of s willbe respectively de�ned by the functions glb(s) and lub(s).Definition 24 Let s1 � s2 be a primitive set constraint. We say that this con-straint is locally consistent if and only if:SC1. glb(s1) � glb(s2) andSC2. lub(s1) � lub(s2).Property 6 A primitive set constraint is locally consistent if an only if it is arc-consistent.Proof: This property holds because the operations [ and \ are isotone. The do-main constraint s 2 [a; b] is equivalent to 8es 2 [a; b] we might have s = a[es. Theisotony of [ means that a � es � b) a � es [ a � b (since a � b).Assume the domain constraints s 2 [a; b]; s1 2 [c; d]. The set constraint s � s1 isinterval consistent i�:a � c and b � d , 8es 2 [a; b] a [ es � c [ es and b [ es � d [ es, 8es 2 [a; b]; 9es1 2 [c; d]; es1 = c [ es such thates � es1, s � s1 is arc-consistent.Definition 25 A primitive graduated constraint f(s) 2 [m;n] is locally consistenti�: SC3. f(glb(s)) � m and f(lub(s)) � nThe local consistency of the relational forms of basic set expressions is de�nedthrough the consistency of the projection functions. Since the set domain of a basicset expression is approximated it is clear that we cannot get the equivalent of arc-consistency. Some elements in the resulting set interval are meant to ful�ll \holes"and are not expected to be part of any feasible solution.Theorem 1 A relation r denoting the relational form of a basic set expression islocally consistent if and only if each of the projection functions �i describing r islocally consistent.Definition 26 A projection function �i associated to the relationr � �j2f1;:::;3g[aj ; bj ] is locally consistent if and only if:SC4. glb(�i) � ai and bi � lub(�i)4.4. Inference rulesThe consistency notions de�ne conditions to be satis�ed by set domain boundsso that a set constraint is locally consistent. If such conditions are not satis�ed



INTERVAL PROPAGATION TO REASON ABOUT SETS 209this means that elements in the domain are irrelevant. Local consistency can beinferred by moving such elements \out of the boundaries of the domain" whichmeans pruning the bounds of the domain. The essential point is that a re�nementof both bounds allows us to prune a domain. Reducing the set of possible values a setcould take can be achieved either by extending the collection of de�nite elements ofa set i.e., adding elements to the glb of a set domain, or by reducing the collectionof possible elements i.e., removing elements from the lub of a set domain. Bothcomputations are deterministic.4.4.1. For set constraintsConsider the constraint s � s1 such that s 2 [a; b]; s1 2 [c; d]. Inferring its localconsistency amounts to possibly extending the lower bound of the domain of s2 andto possibly reducing the upper bound of the domain of s1. This is depicted by thefollowing inference rule:I1. b0 = b \ d ; c0 = c [ afs 2 [a; b]; s1 2 [c; d]; s � s1g 7�! fs 2 [a; b0] ; s1 2 [c0; d]; s � s1gWhen s; s1 denote set expressions, the relational forms are created and the fol-lowing additional inference rule is necessary to deal with the projection functions.For each projection function �i describing the domain of an si appearing in a setexpression, we have:I2. a0i = ai [ c ; b0i = bi \ df si 2 [ai; bi]; �i = [c; d] g 7�! f si 2 [a0i; b0i]g4.4.2. For primitive graduated constraints.The constraint f(s) 2 [m;n] such that s 2 [a; b] describes a mapping from an el-ement belonging to a partially ordered set to an element belonging to a totallyordered set. Consequently, it might occur that two distinct elements in [a; b] havethe same valuation in [m;n]. This implies that inferring the local consistency ofthis constraint might require re�ning [a; b] only if a single element in [a; b] satis�esthe constraint. If this element exists, it corresponds necessarily to one of the do-main bounds since they are uniquely de�ned and are strict subset (or superset),of any element in the domain. Thus, the value of the graded function mappedonto them cannot be shared. The inference mechanism is depicted by the followingrules. min() and max() are functions which take as input a collection of integersand return respectively the minimal and maximal integer value of this collection.I3. [m0; n0] = [max(m; f(a));min(n; f(b))]f s 2 [a; b] ; f(s) 2 [m;n]g 7�! fs 2 [a; b] ; f(s) 2 [m0; n0] g



210 C. GERVETI4. n = f(a)f s 2 [a; b] ; f(s) 2 [m;n]g 7�! fs = a gI5. m = f(b)f s 2 [a; b] ; f(s) 2 [m;n]g 7�! fs = b g4.4.3. For domain constraintsThe inference rules de�ned here, describe the cases when two distinct set domainsare applied to a single set variable, or when the set domain of a set variable isreduced to one value or is inconsistent.I6. a = bf si 2 [a; b] g 7�! f s = ag I7. a � bf si 2 [a; b] g 7�! failI8. a0 = a [ c ; b0 = d \ bfs 2 [a; b]; s 2 [c; d]g 7�! fs 2 [a0; b0]gThree similar inference rules exist for the integer domain constraints. They arenot speci�c to our system but are recalled hereafter since we also deal with integerdomains. The integer variable is speci�ed by v.I9. m = nf v 2 [m;n] g 7�! f v = mg I10. m > nfv 2 [m;n]g 7�! failI11. m0 = max(m;m1) ; n0 = min(n; n1)fv 2 [m;n]; v 2 [m1; n1]g 7�! fv 2 [m0; n0]g4.4.4. Properties of the inference rulesThe behaviour of all the inference rules I1 to I11 is captured by the following scheme.Let us denote a set/graduated constraint relation by c and its arity by k. Let usrepresent an inference rule as a mapping from a Cartesian product of set/integerdomains, onto another Cartesian product.Let �j2f1;::;kg [aj ; bj ];�j2f1;::;kg [a0j ; b0j ] be two distinct Cartesian products of thedomains of the variables appearing in c. These Cartesian products can be madeinto ordered sets by imposing the strict set inclusion ordering de�ned by:�j2f1;::;kg[aj ; bj ] � �j2f1;::;kg[a0j ; b0j ], 8j 2 f1; ::; kg; [aj ; bj ] � [a0j ; b0j ]i.e., all the elements in [aj ; bj ] are in [a0j ; b0j ].



INTERVAL PROPAGATION TO REASON ABOUT SETS 211An inference rule � applied to a constraint relation c maps a Cartesian product�j2f1;::;kg[aj ; bj ] onto a newly computed Cartesian product of domains. Each newdomain is the output of a projection �i of � onto the i-axis (cf. De�nition 22). Aprojection function �i derives a new domain by intersecting c with �j2f1;::;kg[aj ; bj ],projecting the result back onto the i-axis, and computing the convex closure of thisprojection. Thus, an inference rule is de�ned in algebraic terms by:�( �j2f1;::;kg [aj ; bj ]) = �i2f1;::;kg �i (�j2f1;::;kg[aj ; bj ])One can easily see that this generic procedure (and thus each inference rule) is:(i) correct (all possible solutions are kept) since only irrelevant values are removedfrom the domains, (ii) contracting (�nal domains are subset of the initial domains),since the domains can only get re�ned, and (iii) idempotent (the smallest domainshave been computed the �rst time), since every element that can be removed hasbeen removed the �rst time.Moreover, an inference rule � applicable to c is inclusion monotone if:�j2f1;::;kg[aj ; bj ] � �j2f1;::;kg[a0j ; b0j ]) �(�j2f1;::;kg[aj ; bj ]) � �(�j2f1;::;kg[a0j ; b0j ])This means that smaller initial domains yield smaller �nal domains.Lemma 1 The inference rules are inclusion monotone.Proof: The monotonicity property of the inference rules follows from that of theprojection functions.Assume that 8j 2 f1; ::; kg : [aj ; bj ] � [a0j ; b0j ]. Each projection function �i (i 2f1; ::; kg) is monotone since the set intersection is isotone (Property 2) and theconvex closure operation is monotone (Property 4). This implies that:8i 2 f1; ::; kg : ~conv (( c \ �j2f1;::;kg[aj ; bj ])i) � ~conv (( c \ �j2f1;::;kg[a0j ; b0j ])i)which is equivalent to:8i 2 f1; ::; kg : �i (�j2f1;::;kg[aj ; bj ]) � �i (�j2f1;::;kg[a0j ; b0j ]) , and consequently to:�(�j2f1;::;kg [aj ; bj ]) � �( �j2f1;::;kg [a0j ; b0j ]). Thus � is monotone.4.5. Operational semanticsThe inference rules described so far can be applied to individual constraints. Theoperational semantics shows how to check and infer the consistency of a system ofconstraints. This system should correspond to an admissible system of constraints.The consistency of such a system results from the consistency of each constraintappearing in it. The operational semantics is described by the following algorithm.Let a tuple (c; ~s; ~ds) denote a constraint c over a set of variables designated by~s where each variable si is constrained by a domain constraint dsi . The set ofrelevant domain constraints with respect to ~s is designated by ~ds. The initial setof constraints to be considered is designated by G. The set of domain constraintsis designated by A. A set C which represents the constraint store contains the



212 C. GERVETconstraints whose consistency has been checked. The operational semantics is basedon one non deterministic transition rule which takes as input one constraint c in Gand applies to it the adequate local inference rule using a depth �rst search strategy.Each constraint c is determined to be locally consistent if the inference rule infersconsistent domains. This might require some domain re�nements and consequentlya need to reconsider some constraints in C whose variables intersect with those inc. Such constraints are moved from C to G. The constraint c is then added to theconstraint store C and another constraint is selected in G. The last state of theresolution is reached once no goal remains in G, or when a failure is encountered(i.e., at least one set domain [a; b] or integer interval [m;n] is such that a 6� b orm 6� n). The general schema of the algorithm is depicted in the following �gure.beginInitialize G to the set of all the constraints in the admissible systemInitialize C to the empty setInitialize A to the empty setwhile G is not empty dobeginselect and remove a constraint (c; ~s) from Gselect and remove the relevant domain constraints ~ds in G [ Aapply the adequate inference rule on (c; ~s; ~ds) which returns (c; ~s; ~ds0)if ~ds0 is inconsistent thenexit with failureelse if ~ds 6= ~ds0 thenbegin~ds  ~ds0for each (p;~v) in C doif ~s \ ~v 6= ; thenremove (p;~v) from C and add it to Gendif ~ds \G 6= ; then remove the domain constraints in ~ds \G from Gand add them to Aadd (c; ~s) to C.endendThis whole process amounts to considering a transition system on states whereeach state contains the constraints as yet unconsidered and the constraints whichhave already been checked out. One state i is speci�ed by the tuple hGi; Ai; Cii.The initial state of the transition system is speci�ed by the tuple hG0; ;; ;i whereall the constraints need to be checked. The �nal state is either fail or h;; A0; C 0i.



INTERVAL PROPAGATION TO REASON ABOUT SETS 213Theorem 2 A transformed system of constraints h;; A; Ci is locally consistent ifand only if each domain constraint in A is locally consistent.Proof: This follows simply from the various inference rules. Inferring the con-sistency of a system amounts to considering the consistency of each constraint inconjunction with the already consistent ones. An inconsistency is detected if oneof the inference rules I7 or I10 is successfully applied which means a failure isencountered in one (integer, set) domain.This algorithm resembles the relaxation algorithm used by CLP(Intervals) sys-tems (Lee and van Emden, 1993) also referred to as �xed point algorithm in (Ben-hamou et al., 1994, Benhamou, 1995) All of those can be seen as an adaptation ofthe AC-3 algorithm (Mackworth, 1977) where domains are speci�ed by intervals.The only di�erence between the algorithms lies in the inference rules applied. Thegeneric algorithm satis�es the following properties of �xed point algorithms : ter-mination, existence of a unique �xed point independent of the constraint ordering,and correctness.Theorem 3 The algorithm always terminates.Proof: This comes from the fact that the domains are �nite and can only getre�ned (contractance property of the inference rules). Also, if a failure is detected,the algorithm terminates with fail.Theorem 4 The algorithm has a unique �xed point independent of the ordering ofthe inference rules.Proof: (Older and Vellino, 1993) proved that propagation methods based on theAC-3 algorithm compute a unique �xed point independent of the ordering of theinference rules, if the states of the iteration process can be ordered within a latticeand if the inference rules applied are contracting, idempotent and inclusion mono-tone. They show that the contractance and idempotence properties guarantee theexistence of a �xed point. In addition, due to the monotonicity of the inferencerules, the �xed point is unique and independent of the ordering of the inferencerules.In our case, the only things that change during our iteration process are thebounds of the domains. Thus the states can be characterized by the set of domains.The domains are partially ordered by the set inclusion within the lattice of set andinteger domains 
DS [ 
N . Additionally, we have shown (section 4.4.4) that thecontractance, idempotence and inclusion monotone properties are satis�ed by ourinference rules. Thus, the generic algorithm has a unique �xed point independentof the ordering of the inference rules.Theorem 5 If a solution exists, it can be derived from the consistent system ofconstraints.



214 C. GERVETProof: This follows directly from the monotonicity of the convex closure operationand the correctness of the inferences rules applied. Monotonicity guarantees thatthe actual value of a set or integer lies in the approximated domains. Moreover,the inference rules are correct, so all possible solution values are kept.4.6. Satis�ability issueEnsuring the satis�ability of a consistent system requires guaranteeing that a so-lution exists. This is not possible when both symbols [ and \ belong to somen-ary constraints since we work on domain approximations. However satis�abilitycan be guaranteed in some particular cases which are of practical interest (eg. forconstraints of the form s1 \ s2 = ;). The following properties give the equiva-lences and/or implications which exist between the lower and upper bounds of aset expression domain and the lower and upper bounds of the set variables invoked.Properties 7 (Pawlak, 1991)1. glb(s1) � s1 � lub(s1)2. lub(s1 [ s2) = lub(s1) [ lub(s2)3. glb(s1 \ s2) = glb(s1) \ glb(s2)4. lub(s1 \ s2) � lub(s1) \ lub(s2)5. glb(s1 [ s2) � glb(s1) [ glb(s2)Properties 7-2 and 7-5 show respectively that the union operation preserves theupper bounds but not the lower bounds. By duality, properties 7-3 and 7-4 showrespectively that the intersection preserves the lower bounds but not the upperbounds. This means that inferring the local consistency of an n-ary constraint con-taining only the set union symbol is achieved by computing the exact upper boundsof each set variable and by approximating the lower bounds of the set variables us-ing the set interval calculus. The dual case is considered for a n-ary constraintcontaining the set intersection symbol. Consequently, we have the following prop-erties:Property 8 Let s1 \ s2 = s12 be the relational constraint associated to the setexpression s1 \ s2. If this relational constraint is locally consistent then we haveglb(s1) \ glb(s2) = glb(s12).Property 9 Let s1 [ s2 = s12 be the relational constraint associated to the setexpression s1 [ s2. If this constraint is locally consistent then we have lub(s1) [lub(s2) = lub(s12).



INTERVAL PROPAGATION TO REASON ABOUT SETS 215With respect to the primitive set inclusion constraint s1 � s2, we have proved atan earlier stage that if this constraint is locally consistent then it is arc-consistent(cf. property 6). In other words, the domain bounds are possible values for the setvariables as well as any set value between the bounds.Theorem 6 A locally consistent system built from set domain constraints, primi-tive set inclusion constraints and relational constraints containing either the unionor intersection symbol is satis�able if the domain constraints embedded in the systemare satis�able.Proof: Clearly, if some set domain constraints are not locally consistent, thesystem is not consistent and a fortiori not satis�able. Otherwise, it is always possibleto construct a solution to this system. By property 8, all the relational constraintsof the form s1 \ s2 = s12 are true if we assign to each set variable the lowerbound of their domain. These assignments also hold for the primitive set inclusionconstraints. By property 9, all the constraints of the form s1 [ s2 = s12 are true ifwe assign to each set variable the upper bound of their domain. These assignmentsalso hold for the primitive set inclusion constraints. Thus in either of the twoconsistent systems of constraints we guarantee that a solution exists.Note that a system containing both forms of relational constraints can be locallyconsistent but not globally consistent: assigning respectively to each set variablethe lower bound of its domain (or the upper one) does not lead to a solution. Withrespect to graduated constraints, consistency does not guarantee satis�ability sincea consistent graduated constraint f(s) = m does not guarantee that some elementsof the domain of s might satisfy the constraint. The satis�ability for systemscontaining such constraints is not provable unless the solver performs exhaustivecomputations at an exponential cost in the largest upper bound among the setdomains.Example: Consider the system of constraints:s1; s2; s3 2 [fg; f1; 2; 4; 5g]; s1 [ s2 = s12; s12 [ s3 = f1; 2; 4; 5g;s1 \ s2 = s21; s21 \ s3 = fgIt is locally consistent but not satis�able. No possible value for each set variableleads to a solution.II Practical FrameworkThe formal framework has given us the structure of a set-based system whose solveris based on consistency techniques. It constitutes the basis of the design of a prac-tical language called Conjunto (Conjunto means \set" in Spanish). Conjunto is aconstraint logic programming language designed and implemented to reason withand about sets ranging over a set domain. Its functionalities (apart from those of alogic-based language like Prolog (Colmerauer et al., 1983)) are set operations andrelations from set theory together with some graded functions which provide set



216 C. GERVETmeasures like cardinality, weight, etc. The graded functions map set domains tosubsets of the natural numbers (�nite domains). This requires from an implementa-tion point of view to establish a cooperation between two solvers (the set constraintsolver of Conjunto and a �nite domain solver). In this part, we describe the imple-mentation of Conjunto which raises among others the issues of (1) this cooperationbetween two solvers, (2) the dynamic handling of a system of constraints by meansof delay mechanisms, (3) the speci�c set data structure which is required to attachall the relevant information related to a set variable, (4) the way set calculus isachieved in algorithmic terms. Since Conjunto aims at solving set-based combina-torial search problems, the local consistency ensured by the solver via some localtransformation rules should be enriched by a labelling procedure in order to reacha complete solution. This procedure is described together with some programmingfacilities which enhance the expressive power of the language.5. Design of ConjuntoWe describe the functionalities of the Conjunto language and omit a detailed de-scription of the traditional predicates and functions on Prolog terms (Colmeraueret al., 1983).5.1. SyntaxThe Conjunto language is a logic-based programming language with the alphabetof a Prolog language (constants, predicates, functions, connectives, etc). It is char-acterized by a signature � which contains the following set of prede�ned functionand predicate symbols in their concrete syntax:� the constant {}.� the binary set predicate symbols f`<, `<>, `::, #, weightg and arithmeticpredicate symbols f=;�; 6=g.� the binary set function symbols f\/, /\, \g and the arithmetic sum symbol+.Definition 27 (Lloyd, 1987) An atomic formula (or atom) is de�ned as follows:If p is an n-ary predicate and t1; :::; tn are terms, then p(t1; :::; tn) is an atom.The atoms which are built from set terms and prede�ned predicate symbols in �are called constraints. They are subject to a speci�c interpretation in Conjunto.A program built from the language is based on de�nite clauses of the form:(1) a : �b1; :::; bn and (2) : �g1; :::; gnwhere a is an atom and the bi; gi are atoms or constraints. (1) is called a programclause and (2) a program goal. The constraints constitute the core functionalitiesof the language and are characterized by a speci�c terminology and semantics.



INTERVAL PROPAGATION TO REASON ABOUT SETS 2175.2. Terminology and semanticsThe main objective of Conjunto is to perform set calculus over sets de�ned aselements from a powerset domain. Some constraints like set cardinality or setweight require us to deal also with �nite domains, that is integers and arithmeticconstraints.Definition 28 The computation domain is the set D = P(Hu)[Hu where P(Hu)is the powerset of the Herbrand universe.5.2.1. TerminologyThe terminology gives names to the predicate and function symbols in � and de�nesthe notions of set domains and set terms necessary to reason with and about setsin D.The symbols in f`<, `<>, `::, #, weightg refer respectively to the set inclu-sion constraint predicate, the set disjointness constraint predicate, the set domainconstraint, the set cardinality constraint predicate and the weight constraint pred-icate. The symbols in f\/, /\, \g represent the concrete syntax of the set oper-ations [;\; n. They will be interpreted in their usual set theoretical sense; the setdi�erence is a complementary di�erence (e.g. s n s1 = fx 2 s j x =2 s1g). The othersymbols in � refer simply to the arithmetic operations they denote.Definition 29 A ground set is an element of P(Hu) which represents a �nite setof Herbrand terms delimited by the characters f and g.Example: {2,3,f(f(u,o))} is a ground set.Definition 30 A set variable is any variable taking its value in PHu.Definition 31 A set term is de�ned by:(1) any set constant a is a set term(2) any set variable s is a set termThe concepts of set domain and set expressions are those from the formal descrip-tion.The syntax of a set variable is s = s{[a,b]} where s{[a,b]} denotes the domainattached to a variable s. We introduce a new concept which is that of weighted setdomain.Definition 32 A weighted set domain is a speci�c set domain where each elementof the set domain bounds has the syntax (e;m) such that e is a Herbrand term andm is a positive integer.Example: S= S{[{(a,1)},{(a,1),(c,2),(d,2)}]} is a set variable whoseweighted set domain is the set interval [{(a,1)},{(a,1),(c,2),(d,2)}].



218 C. GERVETSimilarly, variables denoting integers will take their value in a �nite set of integers(�nite domain). In Conjunto these domains are approximated by integer intervaldomains. An integer interval domain is the convex closure of a �nite set of integersand will be simply referred to as an integer interval.Definition 33 An integer variable is a logical variable whose value lies in aninteger interval.Notation. Conjunto's predicate and function symbols are written in a bold font.Set variables are denoted by s; v; w, set expressions t, integer variables are denotedby x; y; z, ground sets a; b; c; d, integers m;n. These symbols may be subscripted.5.2.2. SemanticsThe interpretation of the elements of � in D is given by distinguishing set con-straints from graduated constraints.A primitive set constraint is one of the following constraints:� s `:: [a; b] is semantically equivalent to a � s � b (cf. the 2[a;b]a�b predicate inthe formal part).� s `< s1 is equivalent to the set inclusion relation s � s1.� s `<> s1 is equivalent to the empty intersection of the two sets s; s1.Note that the set equality can be derived from the double inclusion:s `= s1 , s `< s1 and s1 `< s.Remark The set disjointness constraint `<> which was not included in the formalpart has been embedded as a primitive constraint in Conjunto mainly for practicalreasons. Since the disjointness of two sets appears in almost all set based problems,it is simpler to use a speci�c syntax and more e�cient to handle it as a primitiveconstraint.A primitive graduated constraint is one of the following:� #(s; x) is equivalent to the arithmetic equality #s = x where #s is the standardcardinality function of set theory.� weight(s; x) is semantically equivalent to the arithmetic operation Pimi = xsuch that (ei;mi) 2 s.Definition 34 The constraint system of a Conjunto program is an admissiblesystem (cf. de�nition 20) of set constraints and graduated constraints where everyset variable is constrained by a set domain constraint.



INTERVAL PROPAGATION TO REASON ABOUT SETS 219In this admissible system of constraints the searched objects are the sets. Theinteger variables are not part of the initialization of the search space which isattached to the system. They constitute essentially a means to get to the �nalsolution. This is described in the following de�nition.Definition 35 A set domain constraint satisfaction problem is an admissible sys-tem of set and graduated constraints, i.e. a constraint satisfaction problem wherethe initial search space is de�ned by the set domains attached to the set variables.5.3. Constraint solvingThe constraint solving in Conjunto focuses on e�ciency rather than on complete-ness. The Conjunto solver based on the �xed point algorithm presented earlier aimsat checking and inferring the consistency of an admissible system of constraints.This is achieved by:� applying some local transformation rules, which allow for the consistency of oneconstraint to be checked/inferred, using a top-down search strategy,� delaying consistent constraints which are not completely solved.The Conjunto solver considers one constraint at a time and checks/infers its con-sistency in conjunction with the set of delayed constraints (constraint store). Thisprocess might require the local consistency of some delayed constraints to be re-considered. These constraints are woken using a data driven mechanism based onsuspension handling mechanisms. Each newly consistent constraint is added to theconstraint store. The �nal state of the program is achieved when all atoms appear-ing in a goal clause have been checked and when no further domain re�nement isrequired. This state is either denoted by \fail" when some constraints have beenmarked inconsistent or it contains a set of delayed constraints together with the setvariables and their associated domains.Example: The goal::- S `:: [{1},{1,2,3,4}], S1 `:: [{3},{1, 2, 3}], S `< S1.produces the re�ned domains:S = S{[{1},{1,2,3}]} S1 = S1{[{1,3},{1,2,3}]}and the delayed goal: S `< S1Example: The goal::- S `:: [{1},{1,2,3,4}], #(S,1).produces the instantiation S = {1} and no delayed goal since the initial goal iscompletely solved.



220 C. GERVET5.4. Programming facilitiesOne of the application domains we have investigated using Conjunto is the mod-elling and solving of set based combinatorial problems (e.g. set partitioning, binpacking, hypergraph computations). To allow the user to state short and con-cise programs, some programming facilities have been added to the initial set ofprimitive constraints. They consist of a collection of constraints de�ned from theprimitive ones, some predicates necessary to access information related to the vari-able domains, and a built-in set labelling procedure. The most important ones arepresented below, others are described in (Gervet, 1995).5.4.1. Set domain accessSet domains are represented as abstract data types, and the users are not supposedto access them directly. So two predicates are provided to allow operations onset domains : glb(s; sglb) and lub(s; slub). If s denotes a set variable, each term isrespectively assigned the value of the domain's lower and upper bound. Otherwise itfails. Similar predicates are de�ned to access integer domain bounds: min(x; xmin)and max(x; xmax).5.4.2. Set labellingAssigning a value to a set variable is a nondeterministic problem which can betackled by di�erent labelling strategies. Since the Conjunto solver uses local con-sistency techniques, an adequate strategy should aim at making an active use ofthe constraints in the constraint store. On the one hand, a procedure which wouldconsist in instantiating a set by directly selecting an element from the set domainmakes a passive use of the constraints whose consistency is only local. In the worstcase this process might require considering all the elements belonging to a set do-main even if some of them are irrelevant. On the other hand re�ning a set domainby adding one by one elements to the lower bound of the domain is more likelyto minimize the possible choices to be made. The refine predicate embedded inConjunto behaves as follows:refine(s) labels s, if s is a set variable. If there are several instances of s, it createschoice points. If s is a ground set, nothing happens. If not, the following actionsare performed recursively until the set gets instantiated: (1) select an element efrom the ground set lub(s) n glb(s), (2) add the membership constraint e in sto the program. This added constraint is handled by the solver which checks itsconsistency in conjunction with the actual constraint store. In case of failure theprogram backtracks and (3) the nonmembership constraint is added (successfully)to the program so as to remove the irrelevant value e from the domain. The points(2) and (3) correspond to the disjunctive set of constraints:( e in S ; e notin S)



INTERVAL PROPAGATION TO REASON ABOUT SETS 221Example: Consider the goal::- S `:: [{},{1,2,3}], refine(S).The search tree generated during the labelling procedure and covered using adepth �rst search strategy is described in the following �gure.
S{[{},{2,3}]}

S{[{2},{2,3}]} S{[{},{3}]}

S={2,3} S={2} S={3} S={}
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S={1,2,3}
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The strategy, which consists in adding membership constraints to the program,aims in particular at making an active use of those graduated constraints whoseconsistency is only local.Example: Consider the goal::- S `:: [{},{1,2,3}], #(S,1), refine(S).The irrelevant branches of the search tree are cut in an a priori way i.e., no uselesschoice point is created. The search tree generated during the solving of this goal isdepicted in the following �gure.
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S={1}
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5.4.3. Optimization predicatesThe notion of optimization is common in problem solving. It aims at minimizingor maximizing a cost function which denotes a speci�c arithmetic expression. The



222 C. GERVETnotion of cost de�nes a kind of measure or quanti�cation applied to some terms.A set can not denote a quantity and is not measurable. Only its possible gradedfunctions are. Thus there are no speci�c optimization predicates for sets. Existingpredicates embedded in a �nite domains solver (e.g. for a branch and bound search)can be directly applied to expressions over integer intervals occurring in graduatedconstraints. For example, minimizing a set cardinality acts over a set through thelink existing between a set variable and its cardinality.5.4.4. Relations and constraintsWhen dealing with sets, it sounds quite natural to deal with relations and functionsas well. Functions are more restrictive than relations since they constrain eachelement from its DS-domain (DS-domain stands here for departure set) to haveexactly one image. Providing relations at the language level extends the expressivepower of the language when dealing for example with circuit problems and matchingproblems originating from Operations research. In relation theory (Fraiss�e, 1986),a relation R is represented as a set of ordered pairs (xi; yj) such that xi belongsto the DS-domain d of R and yj to its AS-range (AS-range stands here for arrivalset) a. In other words, a relation R on two ground sets d and a is a subset ofthe Cartesian product d � a. Keeping this representation to deal with relationsas speci�c set terms containing pairs of elements can be very costly in memory.Indeed, the statement of the Cartesian product referring to a relation requires us toconsider explicitly a huge set of pairs. This is very inconvenient. Instead, a relationin Conjunto is represented as a speci�c data structure which is characterized bytwo ground sets (DS-domain and AS-range) and a list containing the successor setsattached to each element of DS-domain (Gervet, 1993, Gervet, 1993a). Consideringone successor set per element splits the domain of a relation into a collection of setdomains. The resulting value of a relation is clearly the union of the successorsets. This approach is close to the one introduced in the seminal work ALICE(Lauri�ere, 1978) which dealt essentially with functions. However in ALICE thereis no explicit notion of set domain.Definition 36 Let a relation be r � d � a. The successor set s of an elementx 2 d is the set s = fy 2 a j (x; y) 2 rg.Definition 37 A relation variable r is a logical variable whose value is a compoundterm birel(l; d; a) such that birel is a functor of arity three, l is a list of #d setvariables si such that si `:: [fg, a] and d; a are two ground sets.This compound term is associated to a free variable by means of the predicater bin_r d --> a.Example: The goal::- R bin_r {1,2} --> {a,b,c}.



INTERVAL PROPAGATION TO REASON ABOUT SETS 223creates the term:R = birel([Set1{[{},{a,b,c}]}, Set2{[{},{a,b,c}]}], {1,2}, {a,b,c})The de�nition of constraints applied to relation variables abstracts from statingdirectly constraints over the set DS-domain and AS-range or over the successorsets. The following constraints have been embedded in Conjunto:� (i; j) in_r r, (i; j) notin_r r which adds or retrieves pairs to the relation� funct(r) which constrains a relation to be a function,� inj(r) which constrains a relation to be an injective function,� surj(r) which constrains a relation to be a surjective function,� bij(r) which constrains a relation to be a bijective function.The schema of these constraints is directly derived from their usual interpretationissued from relation theory (Fraiss�e, 1986). They are represented below using themathematical cardinality operation #, the usual set operation symbols ([;\) andthe arithmetic inequality (�).Constraints Interpretationr bin_r d --> a r = birel(l; d; a) where l = fsi j 8i 2 d; si 2 fg::ag(i; j) in_r r if i 2 d; j 2 a then j 2 si(i; j) notin_r r if i 2 d; j 2 a then j =2 siConstraints Interpretationfunct(r) 8i 2 d; #si = 1inj(r) #d � #a; #d = ns1 \ s2 = ;; s1 \ s3 = ;; :::; sn�1 \ sn = ;8i 2 d; #si = 1surj(r) #d � #a; #d = ns1 [ s2::: [ sn = a8i 2 d; #si = 1bij(r) #d = n; #a = ns1 \ s2 = ;; s1 \ s3 = ;; :::; sn�1 \ sn = ;8i 2 d; #si = 1These schema tell us how each constraint over a relation is described and imple-mented in Conjunto by means of set and graduated constraints. These constraintsover relations do not require any speci�c solver since the reasoning is based on



224 C. GERVETthe successor set variables. The Conjunto solver is simply used. The expressiv-ity of these relation variables and constraints is illustrated in the set partitioningapplication presented subsequently.Example: The goal::- R bin_r {1, 2} --> {a, b, c}, funct(R).creates the term:R = birel([Set1{[{},{a,b,c}]}, Set2{[{},{a,b,c}]}], {1,2}, {a,b,c})and the list of delayed goals:#(Set1{[{},{a,b,c}]}, 1), #(Set2{[{},{a,b,c}]}, 1)Since the created compound term is not visible to the user, a collection of predicaterelations allows him/her to access the properties of the relation:� succs(r; l) instantiates l to the list of successor sets of r.� dom(r; s) instantiates s to the DS-domain of r.� ran(r; s) instantiates s to the AS-range of r.� succ(r; e; s) instantiates s to the successor set of the element ebelonging to DS-domain, such that s = fx j (e; x) 2 rg.6. Implementation of ConjuntoThe implementation of Conjunto was done in the ECLiPSe (ECRC, 1994) sys-tem which extends the plain Prolog language with features dedicated to the im-plementation of speci�c constraint solvers. The main features provided at the lan-guage level comprise the attributed variable data structure and the suspension han-dling predicates. An attributed variable is a special data type (Le Huitouze, 1990,Holzbaur, 1992) which consists of a variable with a set of attributes attached andwhose behaviour on uni�cation can be explicitly de�ned by the user in a way thatdi�ers from Prolog uni�cation. Attributed variables aim at dealing with speci�ccomputation domains distinct from the Herbrand universe. The suspension han-dling predicates provide means to (1) delay a goal or constraint, (2) store it ina speci�c list with respect to one or several variables, (3) awake a list of delayedgoals when some given conditions are satis�ed. The suspension handling predicatesallowed us to implement the data driven constraint handling in Conjunto. In ad-dition, the Conjunto solver makes use of the �nite domain library of ECLiPSe todeal with integer interval terms (as well implemented as attributed variables).6.1. Set data structureA set variable is not represented as a standard Prolog variable, but as an attributedvariable which is subject to a dedicated uni�cation algorithm. The internal repre-sentation of ground sets is also given since it in
uences the time complexity of the



INTERVAL PROPAGATION TO REASON ABOUT SETS 225transformation rules. Both the data structure and the internal representation ofground sets are not visible to the user and will be ignored in the description of thetransformation rules.6.1.1. Set variable representationA set variable is an attributed variable comprising the following list of attributes.This structure stores for each set variable all the necessary information regarding itsdomain, cardinality, and weight (null if unde�ned) together with three suspensionlists. The attribute arguments have the following meaning:� setdom: [Glb,Lub] represents the set domain. The user can access it usingthe built-in predicates glb, lub.� card: C represents the set cardinality. This attribute C is initialized as soonas a set domain is attached to a variable. It is either an integer interval or aninteger. It can be accessed and modi�ed using speci�c built-in predicates froma �nite domain library.� weight: W represents the set weight. W is intialized to zero if the domainis not a weighted set domain, otherwise it is computed as soon as a weightedset domain is attached to a set variable. It can be accessed and modi�ed usingspeci�c built-in predicates from a �nite domain library.� del_glb: Dglb is a suspension list that should be woken when the lower boundof the set domain is updated.� del_lub: Dlub is a suspension list that should be woken when the upper boundof the set domain is updated.� del_any: Dany is a suspension list that should be woken when any set domainre�nement is performed.6.1.2. Ground set representationThe choice for the internal representation of sets is independent of the algorithms,and not visible to the user. However, it plays a role in the time complexity of thedi�erent set operations. In contrast to integer intervals, the time complexity foroperations on ground sets ( +; � versus [; \; n) can not be considered as constantfor it closely depends on the internal representation of a set. In Conjunto eachground set is represented by a sorted list where the time complexity for any setoperation ([; \; n) is bounded from above by O(d) where d is #lub(s) + #glb(s)and s the set with the largest domain.Since we work essentially on set domains, another approach has been tried outwhich consists in representing a set domain as a boolean vector mapped onto a list



226 C. GERVETcontaining the actual value of the elements. The upper bound is speci�ed by theset of elements whose corresponding 0-1 variable has the value 1 or 0-1 (undeter-mined). The lower bound is speci�ed by the set of elements whose corresponding0-1 variable has the value 1. This approach reduces the time complexity of the [and \ operations to O(#lub(s)) where lub(s) is the largest domain upper bound.But this leads to much larger memory usage due to the size of the domains usedin practice and to the handling of two lists (the list of 0-1 variables and the list ofactual values).From now on, the value of d in the complexity results will always stand for#lub(s) + #glb(s).6.2. Set uni�cation procedureA Conjunto program attaches a speci�c semantics to set terms. This semanticsrequires to extend the Prolog uni�cation to the one of set terms. The behaviour ofthe set uni�cation procedure comprises the following tests and inferences:� the uni�cation of a logical variable and a set variable. The logical variable isbound to the set variable.� the uni�cation of a ground set and a set variable. The set variable is instantiatedto the ground set if it belongs to its domain.� the uni�cation of two set variables. The two variables are bound to a newvariable whose domain is the convex intersection of the two domains (cf. setinterval calculus). If this domain is empty the uni�cation fails.� the uni�cation of a set variable with any other term fails.6.3. Local transformation rulesConsistency notions and inference rules have been de�ned in the formal part forprimitive set constraints and for the general case of projection functions and grad-uated constraints respectively. Here, we make use of these de�nitions to de�ne thetransformation rules which check and infer the local consistency of each primitiveconstraints implemented in Conjunto. The basic idea consists in pruning the setdomains attached to the set variables by removing set values which can never bepart of any feasible solution. Set values are removed by adding elements to thelower bound of the domain and/or by removing elements from the upper bound.6.3.1. Transformation rules for primitive set constraintsPrimitive set constraints are s `< s1 and s `<> s1 where s and s1 denote set variablesranging over a set domain.



INTERVAL PROPAGATION TO REASON ABOUT SETS 227Consider the set inclusion constraint s1 `< s2 such that s1 2 d1, s2 2 d2. Thetransformation rule makes use of the lower and upper ordering of the set inclu-sion. Making this constraint consistent might require adding elements to the lowerbound of the domain d2 and removing elements from the upper bound of d1. There�nements lead to the new domain bounds:T1. glb(d01)  glb(d1) lub(d01)  lub(d1) \ lub(d2)T2. glb(d02)  glb(d2) [ glb(d1) lub(d02)  lub(d2)Consider the disjointness constraint s1 `<> s2 such that s1 2 d1, s2 2 d2. Theonly possible re�nement aims at removing elements from each upper bound of aset domain which are de�nite elements of the other set. This constraint is locallyconsistent if the re�ned domains for the variables are:T3. glb(d01)  glb(d1) lub(d01)  lub(d1) n glb(d2)T4. glb(d02)  glb(d2) lub(d02)  lub(d2) n glb(d1)Complexity issues. The time complexity for each transformation is bounded byO(d) since only one set operation is applied each time.6.3.2. Projection functions for n-ary constraintsConstraints over set expressions require a special handling mechanism if we wantto express each set variable in terms of the others involved in a constraint. Thispoint requires us to tackle these n-ary constraints as \mini-programs". The ap-proach implemented in Conjunto consists in approximating an n-ary constraint by(1) associating each basic set expression (s1 \/ s2, s1/\ s2, s1\s2) with its rela-tional form, (2) applying inductively this process until the n-ary constraint can beexpressed as a binary one. The relational forms of set expressions are derived bycreating a new set variable whose domain is approximated by using the set intervalcalculus. The relational forms correspond to the following constraints:union (s1; s2; s) $ s1 \/ s2 `= sinter (s1; s2; s) $ s1 /\ s2 `= sdiff (s1; s2; s) $ s1 \ s2 `= sThe local consistency of these 3-ary constraints ensures that no triples satisfyingthe constraint are excluded. The inference is performed using transformation rulesthat make use of the projection functions. Each projection function allows each setdomain to be expressed in terms of the others (with respect to one constraint). Eachsuch projection uniquely de�nes a smallest set domain which contains the possiblesolution values. Three projection functions are required per relational constraint.They are depicted in the following �gures.



228 C. GERVETProjection functions associated to the constraint union(s1; s2; s) such that s1 2d1; s2 2 d2; s 2 d. T5 holds also for s2 and a similar rule exists for d2.T5. glb(d01)  glb(d1) [ glb(d) n lub(d2)lub(d01)  lub(d1) \ lub(d)T6. glb(d0)  glb(d) [ glb(d1) [ glb(d2)lub(d0)  lub(d) \ (lub(d1) [ lub(d2))The union of two sets represents a logical disjunction. So it is very unlikely thatthe addition of new elements to glb(d) requires modifying the lower bound of thedomains of s1 or s2. The one case which requires such a re�nement occurs if someelements belong to the lower bound of d and can never belong to one of the twosets (cf. T5). Consequently they should be added to the other one.Projection functions associated to the constraint inter(s1; s2; s) such that s1 2d1; s2 2 d2; s 2 d. T7. holds also for d2.T7. glb(d01)  glb(d1) [ glb(d)lub(d01)  lub(d1) n ((lub(d1) \ glb(d2)) n lub(d))T8. glb(d0)  glb(d) [ glb(d1) \ glb(d2)lub(d0)  lub(d) \ lub(d1) \ lub(d2)The intersection of two sets represents a logical conjunction. So any addition ofelements to one of the three domains requires modifying at least one of the lowerbounds of the domains. A pruning of the upper bound of these domains is lessfrequent. However, it might occur in the case depicted in T7 which correspondsto the following con�guration: some elements are de�nite ones of s2 (or s1) andpossible ones of s1 (or s2). If they cannot belong to s then they should be removedfrom the upper bound of the domain of s1 (respectively s2).Projection functions associated to the constraint diff(s1; s2; s) such that s1 2d1; s2 2 d2; s 2 d:T9. glb(d01)  glb(d1) [ glb(d)lub(d01)  lub(d1) n (lub(d1) n (lub(d) [ lub(d2)))T10. glb(d02)  glb(d2)lub(d02)  lub(d2) n glb(d)T11. glb(d0)  glb(d) [ (glb(d1) n lub(d2))lub(d0)  lub(d) \ (lub(d1) n glb(d2))The second part of the rule T9 considers a particular case where the upper boundof d1 should be pruned. If lub(d1) contains elements which do not belong both to



INTERVAL PROPAGATION TO REASON ABOUT SETS 229the upper bound of d and to the upper bound of d2, then these elements cannotbelong to s1. Both conditions must be satis�ed to prune lub(d1).Complexity issues. Time complexity for each transformation rule is boundedby O(d) times the number of basic set operations, which is bounded by 4 for therules T7 and T9.Remark. The relational constraints are transparent to the user at the program-ming level. However, any temporary state of a program is given in terms of thesenewly created constraints.Example: A locally consistent constraint of the form: S1 \/ S2 `< S2 /\ S3is stored using the set of delayed goals:union(S1, S2, S12),inter(S2, S3, S23),S12 `< S23.6.3.3. Graduated constraints: cardinality and weight constraintsGraduated constraints deal with set variables and integer variables. Inferring thelocal consistency of these constraints might require re�ning the integer domainsor assigning a value to a set. Since graded functions are not bijective functions,a modi�cation of the integer domains is not a su�cient condition to require a setdomain re�nement. The pruning for the set cardinality and the weight constraintsachieved by the following transformation rules. It guarantees that (1) the valuesremoved from the domains cannot be part of any feasible solution, (2) if a solutionexists, its value lies in the remaining set and integer domains.Consider the set cardinality constraint #(s; x) where s 2 d and x 2 [m;n]. x is aninteger variable. We have:T12. [m0; n0]  [ max(m;#glb(d)), min(n,#lub(d))]T13. d0  glb(d) if #glb(d) = nT14. d0  lub(d) if #lub(d) = mThe transformation rules for the weight constraint are similar. The only di�erencelies in the initial computation of the integer intervals.Consider the weight constraint weight(s; y) where s 2 d; y 2 [m;n] andP(ek;mk)2 glb(d)mk = wglb and P(ek ;mk)2 lub(d)mk = wlub. We have:T12'. [m0; n0]  [max(m;wglb);min(n;wlub)]T13'. d0  glb(d) if m = wlubT14'. d0  lub(d) if n = wglb



230 C. GERVET6.4. Complexity of the constraint solverThe constraint solver is based on the generic �xed point algorithm described in theformal part. It applies these rules to check/infer the consistency of an admissiblesystem of constraints in an incremental way. Incrementality refers to the natureof the Conjunto solver which stores each newly locally consistent constraint andhandles the consistency of each constraint in conjunction with the constraint store.Complexity issues Let G be the set of all the constraints to be considered andl its size. The cost of one transformation rule is bounded by O(d) (d being thelargest #lub(s) + #glb(s)). For one constraint the algorithm can be iterated atworst d0 times if d0 = #lub(s) � #glb(s). If these iterations are necessary for allthe constraints the worst time complexity is then O(ldd0).2This time complexity does not occur in practice since a constraint is not sys-tematically reconsidered if some of its variable domains get modi�ed. Indeed, theconstraints are stored in various suspension lists so as to avoid reconsidering themwhen there is no need to do so. These lists are described below.Suspension lists Three di�erent lists are attached to each set variable. Theyare meant to improve the time complexity and thus the e�ciency of the solverby splitting the list C so that only those constraints concerned with the speci�cdomain re�nement are woken. Corresponding to each set variable si with domaindi, each of the three lists could contain the following goals:� Qglb contains the primitive constraints for which a modi�cation of the lowerbound of di might require reconsidering the constraints. It contains only con-straints of the form si `< sj .� Qlub contains the primitive constraints for which a modi�cation of the upperbound of di might require reconsidering the constraints. It contains the con-straints of the form: sj `< si; si `<> sj , (and its symmetrical sj `<> si).� Qany contains the remaining constraints for which any set domain modi�cationmight require reconsidering them. In other words it contains the relational con-straints (relational forms of the set union, intersection and di�erence operations)and the graduated constraints in which the variable si appears.In addition, the graduated constraints are also stored in the list of delayed goalsattached to the integer variables appearing in it. While graduated constraints aredelayed only once, they are attached to two lists and thus might be reactivatedwith respect to two di�erent conditions. This process establishes the dynamiccooperation between the Conjunto solver and the �nite domain solver. It guaranteesthat the local consistency of a graduated constraint is always maintained within aconstraint system.



INTERVAL PROPAGATION TO REASON ABOUT SETS 2316.5. Solver modularityThe Conjunto solver can be embedded in any logic-based language provided a set ofconstraint solving facilities is given or can be de�ned. These facilities comprise (1)attributed variables or a similar structure which links a set variable to its domainand the required lists of delayed goals, (2) suspension handling mechanisms todeal with delayed goals, (3) possibly a �nite domain library to tackle set basedoptimization problems. The following �gure shows the modules and functionalitiesrequired during the execution of a Conjunto program.
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III ApplicationsWe show the applicability of the Conjunto language to the modelling and solvingof set based search problems. The focus is on the expressiveness and the e�ciency ofthe language when dealing with search problems and optimization problems arisingfrom operations research and combinatorial mathematics.7. Set domain CSPsThe modelling and solving of a set domain CSP follows the usual procedure for CSPswhich consists of the problem statement, the labelling procedure and possibly thesearch for an optimal solution.The labelling can be achieved by using the pre-de�ned labelling procedure refinedescribed in the practical framework or by de�ning a new labelling procedure based



232 C. GERVETon speci�c labelling strategies. An e�cient set labelling procedure should not tryto directly instantiate a set to one of its domain elements. The reason is that bydoing so, the satisfaction of those constraints for which only a local consistency isguaranteed is reached in a passive way.The concept of optimality is related to the notion of minimizing or maximizing acost function. This function necessarily denotes a measure, takes as input an arith-metic expression and returns an integer value. Possible cost functions associatedwith a set domain CSP are the sum of the set cardinality values, the sum of theweights, etc. Such a function constrains the sets via their associated measure andconsequently no speci�c optimization predicate is required to deal with sets. Theuser can make use of existing predicates developed for integer domain CSPs withan optimization criterion. One of these predicates used in a subsequent application(set partitioning), performs the branch and bound search.The predicate min_max(Goal, Cost) searches for a solution to the goal Goal thatminimizes the value of the linear term Cost using the branch and bound methodfrom operations research (Papadimitriou and Steiglitz, 1982). As soon as a partialsolution to Goal is found whose cost is worse than the previous solution the searchis not explored any further and a new solution is searched for.Another predicate is often used to minimize the cost of a solution within a �xedrange: min_max(Goal, Cost, Min, Max, Percent). This predicate also makesuse of the branch and bound method with some restrictions. It starts with theassumption that the value Cost to be minimized is less than or equal to Max. Assoon as a solution is found whose minimized value is less than Min, this solutionis returned. When one partial solution is found, the search for the next bettersolution starts with a minimized value Percent % less than the previous one.The use of these predicates in a set domain CSP requires the de�nition of Goalas a set labelling procedure call, plus a graduated constraint whose integer valueis Cost. The solving of min_max/2/5 will execute the labelling procedure andincrementally re�ne the integer domain involved in the graduated constraint. Onceall the sets are labelled the integer domain becomes one value (the cost) whichcan be evaluated. The optimization process will then constrain the integer variableappearing in the graduated constraint to have its value in a new domain whoseupper bound is lower than the cost previously computed.7.1. Modelling facilitiesThe two problems presented hereafter come from the areas of combinatorial math-ematics (Lueneburg, 1989) and operations research. The �rst one |the ternarySteiner problem| is to �nd a speci�c hypergraph whose nodes are integer variables.Our approach illustrates how an hypergraph whose nodes are integer variables canbe modelled as a simple graph whose nodes are set variables. The second problem isa set partitioning problem usually represented by mathematical models and solvedusing integer linear programming techniques. Here it is modelled as a set domainCSP.



INTERVAL PROPAGATION TO REASON ABOUT SETS 2337.1.1. Ternary Steiner problemThe ternary Steiner problem has its origins in combinatorial mathematics. It be-longs to the class of block theory problems which deal with the computation ofhypergraphs. A hypergraph is a graph with the property that some arcs connectcollections of nodes. This problem has only recently been addressed in computer sci-ence. (Beldiceanu, 1990a) addresses this problem for the �rst time. The approachconsists in representing the problem as an integer domain CSP in a constraintlogic programming (CHIP (Dincbas et al., 1988)), using the new concept of globalconstraints. The integer domain CSP modelling corresponds to the hypergraphrepresentation: the integer variables represent the nodes and the global constraintsrepresent the hyperarcs.Problem statement The statement is taken from (Beldiceanu, 1990a). A ternarySteiner system of order n is a set of T = n(n � 1)=6 triples of distinct elementsin f1; :::; ng such that any two triples have at most one element in common. Themathematical properties of this problem prove that n modulo 6 has to be equal to1 or 3 (Lindner and Rosa, 1980). One solution of Steiner 7 is for example:f1; 2; 6g; f1; 3; 5g; f2; 3; 4g; f3; 6; 7g; f2; 5; 7g; f1; 4; 7g; f4; 5; 6gThe integer domain CSPmodelling or hypergraph representation uses three nodes,or variables, ranging over f1; :::; ng to represent a triple fX;Y; Zg. The constraintsare (1) ordering constraints between the three nodes (X < Y < Z) so as to removeequivalent triples under permutations of the elements; (2), any triple must have atmost one element in common with the other triples of nodes. This amounts to con-straining each pair of a triple to be pairwise distinct from any other pair appearingin another triple. This requires constraining all the n(n� 1) possible pairs (6 pertriple [X, Y, Z]: [X,Y], [Y,X], [X,Z], [Z,X], [Y,Z], [Z,Y]) to be pairwise distinct. Thisapproach is sound but far too costly in variables and constraints. A global con-straint all_pair_diff has been de�ned in (Beldiceanu, 1990, Beldiceanu, 1990a)to free the user from specifying all the pairwise distinct pairs.If each set of three nodes, describing a triple, can be represented as one variable,then the modelling is simpler and requires less variables. Such a modelling corre-sponds to a set domain CSP approach. Also, the constraints applied between eachset of three nodes become one constraint between two triples (set variables). Thus,the set domain CSP models a hypergraph with respect to the integer domain CSPmodelling.Problem modelling Modelling the problem as a set domain CSP involves rep-resenting each triple as one set variable. Let Si; 1 < i < T denote the T set vari-ables which represent the triples. Their domains are initialized to the set domain[{},{1,...,n}].The constraint \any two triples have at most one element in common" is simplyrepresented by: #( Si /\ Sj) =< 1. The constraint generation is summed up inthe short program:



234 C. GERVETconstraints(Lsets) :- intersect_atmost1([]).card_all(Lsets, 3), intersect_atmost1([S1 |L]) :-intersect_atmost1(Lsets). distinctsfrom(S1, L),intersect_atmost1(L).card_all([], N).card_all([Set1|LSets], N) :- distinctsfrom(_S, []).#(Set1, N), distinctsfrom(S, [S1 | L]) :-card_all(LSets, N). #(S /\ S1, C), C =< 1,distinctsfrom(S, L).card_all constrains the cardinality of each set variable in the list Lsets to beequal to 3. The predicate intersect_atmost1 generates the main constraint to besatis�ed by each pair of triples.Problem solving The resolution makes use of the labelling procedure refine(S)for each triple S. If n = 7, the �rst set is instantiated to f1; 2; 3g. Then the systemtries to instantiate the second set by �rst adding the element 1 to its lower bound.This domain re�nement requires reconsidering the constraint #(S1 /\ S2, C).This results in a re�nement of the domain of S2 by a removal of the values 2and 3 from the upper bound of its domain. At this stage in the resolution, there�ned domains are:S1 = {1,2,3}, S2 `:: [{1},{1,4,5,6,7}],[S3,S4,S5,S6,S7] `:: [{},{1,...,7}].Computation results The problem was solved in 0.8 sec on a Sun4/40 for n =7. Six choice points were created during the solution step. (Beldiceanu, 1990a)says that 21 choice points were generated and 0.08 sec were su�cient to solve theproblem. This di�erence in choice points and time was surprising. Unfortunatelythe global constraint and the program developed were not available and so, in orderto make a sound comparison, we developed the same program as described in thepaper using the ECLiPSe integer domain library. The choice points and the timerequired were then similar to the Conjunto approach, but the program was muchless natural.The complexity of this problem grows exponentially with n. In (Beldiceanu, 1990a)the problem has not been tackled for larger values than 7. Indeed, it turned outthat using the same program to solve the problem when n = 9 leads to a combi-natorial explosion. We de�ned a labelling strategy which consists in constrainingeach element to belong to at most (n�1)=2 triples. Indeed, there are at most n�1distinct pairs containing one element i and a triple containing i must contain 2 ofthese pairs. In practice this labelling strategy corresponds to a simple occur checkbefore adding one element to a set domain. This does not help when n = 7 but forn = 9 it reduced the number of choice points from 7180 to 116 and consequentlythe computation time from 501 sec. to 18 sec.Remark. For one value of n there exists more than one solution. The search forall the possible solutions requires us to take into account the symmetries inherent



INTERVAL PROPAGATION TO REASON ABOUT SETS 235to the problem i.e., those which do not depend on the modelling. A permutation oftwo sets does not change the actual solution but corresponds, from a computationalpoint of view, to new instances of the set variables. In fact, the modelling of asearch problem as a set domain CSP removes the symmetries that come from aninteger domain CSP approach. Consequently, set constraints resemble some globalconstraints in terms of problem solving and pruning ability, but to cope with thisactual symmetries of the problem a global reasoning on sets is necessary.7.1.2. The set partitioning problemThe set partitioning problem (Gondran and Minoux, 1984) is an optimization prob-lem that comes from operations research. Consider a mapping from a set of elementsto a collection of equivalence classes each of which contains a subset of these ele-ments, and has a speci�c cost. The objective is to �nd a subset of the classes suchthat they are all pairwise disjoint, each element is mapped onto exactly one classand the total cost of the selected classes is minimal.This problem is currently tackled as a 0-1 integer linear programming problemusing the following mathematical model:minimize (c � x); (aij) � x = emwhere c is a cost vector 1 � n, (aij) is an m � n known matrix comprising 0 and 1values, x is an n � 1 vector of 0-1 variables and em is a vector of m entries equal to1. We have:8i 2 Dom;8j 2 f1; :::; ng; aij = � 1 if i 2 Sj ,0 otherwiseEach equivalence class is denoted by a set Sj .Example: A 0-1 modelling corresponds to the following system of constraints: minc1x1 + c2x2 + c3x3 + c4x4 + c5x5 + c6x6x1+ x3+ x5 = 1x1+ x2+ x3+ = 1x1+ x3+ x6 = 1x4+ x5+ x6 = 1x4+ x6 = 1Each column represents an equivalence class. Each line refers to one element inf1; ::; 5g. The equality constraints specify that an element can belong to exactlyone equivalence class.Problem statement The mathematical statement of the problem is depictedhere in terms of relations and set constraints. Consider a mapping R from Domto Ran which is constrained to be an application. Let the DS-domain be Dom =



236 C. GERVETf1; 2; :::;mg and the AS-range be a family Ran of n subsets of Dom such thatRan = fS1; :::; Sng where each Sj is an equivalence class (a ground set) and:[j2f1;2;:::;ngSj = DomA subset P0 of Ran is a partition of Dom if and only if:[j2f1;2;:::;ngSj = Dom ^ 8Sj ; Sk 2 P0; Sj \ Sk = ;A cost set Sc is associated to the elements Si of Ran by considering a weightedset composed of elements (Si; wi). The �nal problem is to determine a partitionP � such that:Xi wi is minimalThis statement corresponds to the approach used with the Conjunto language.Problem modelling Let a relation R on the ground sets Dom and Ran beconstrained to be an applicative mapping. Each successor set is constrained tobe a subset of the proposed sets. These constraints are not su�cient to solve theproblem. Two other requirements are necessary:� the �nal set P � of equivalence classes should contain only disjoint sets.� an instantiated successor set should also represent the successor set of all itspredecessors.This corresponds to adding two constraints which will be checked using the for-ward checking inference rule (i.e., once a successor set becomes ground). Informally,as soon as one successor set succ(R; i; fskg) becomes ground we must have:8j 2 Dom; succ(R; j; sj) � if j 2 sk; sj = fskgif j =2 sk; sj \ fskg = ; (1)Example: The statement of the previous example corresponds to the following setof constraints Conjunto constraints:R bin_r {1,2,3,4,5} --> {{1,2,3},{2},{1,2,3}, {4,5},{1,4},{3,4,5}},appl(R),succ(R, 1, S1), S1 `< {{1,2,3},{1,4}},succ(R, 2, S2), S2 `< {{1,2,3},{2}},succ(R, 3, S3), S3 `< {{1,2,3},{3,4,5}},succ(R, 4, S4), S4 `< {{4,5},{3,4,5}},succ(R, 5, S5), S5 `< {{4,5},{3,4,5}}.



INTERVAL PROPAGATION TO REASON ABOUT SETS 237Each element i 2 f1; :::; 5g is mapped to a set Si whose domain contains the possibleequivalence classes (ie. those which contain i). Note that columns 1 and 3 in theILP modelling correspond here to one equivalence class f1; 2; 3g.The search space associated to these problems is usually very large and sim-pli�cation rules are applied in order to reduce the initial problem size (e.g. in(Ho�man and Padberg, 1992, Padberg, 1979)). They consist in removing rows andcolumns in the adjacency matrix formulation. This corresponds to removing, ina deterministic manner, redundant sets from the successor set domains, and tobounding some successor sets to the same variable. The main operations amountto checking disjointness and/or inclusion of sets and to computing cliques over thesuccessor set domains. This is achieved in a very natural manner using Conjunto(for a full description of the modelling see (Gervet, 1995)).Problem solving One important strength of solvers based on constraint propa-gation techniques is their dynamic behaviour thanks to the delay mechanism. Inparticular, once the simpli�cation rules have been applied, their ripple e�ects onthe set of constraints allows to dynamically reduce the problem size. Linear pro-gramming solvers require the whole problem to be considered once again.A large application has been developed, in which it is necessary to look for anoptimal solution using the predicate min_max/5 and to consider a speci�c labellingstrategy. The strategy aims at selecting a set among the remaining ones whose costis the lowest.The labelling procedure considers each successor set Si in order. The set E whichbelongs to the upper domain bound of Si and which has the lowest cost is selected,and added to Si. A choice point is created and in case of failure the programbacktracks. The previous state is restored and the set E is removed from the domainof Si.labelling([], _).labelling([S1 | LSuccs], S) :- set(S1), !,labelling(LSuccs, S).labelling([S1 | LSuccs], S) :-lub(S, Lub),select_cheapest(S1, E, Lub),(E in S1;E notin S1),labelling([S1 | LSuccs], S).The optimization predicate for the set partitioning problem is:min_max((labelling(LSuccs, S), take_min(C)), C, Min, Max, %).take_min(C) is an integer domain predicate which binds an integer term C to itsminimal value. C is the weight of the set variable S.



238 C. GERVETTo solve the goal labelling(LSuccs, S), take_min(C), we �rst label all thesets, instantiate the weight of the set domain of S to its minimal value and thensearch for a better solution according to the criteria given.Computation results A set partitioning problem describing a 0-1 matrix ofsize 17x197 was implemented using the approach presented here. The completeprogram takes 200 lines of Conjunto code. The problem was taken from the(Ho�man and Padberg, 1992) library. The heuristics led to a simpli�ed prob-lem within 7 seconds and the optimal solution was found within 13 seconds ona Sun4/40. The proof of optimality required 31 additional seconds. (Ho�man andPadberg, 1992) make use of the simplex method combined with a tailored branchand cut search to tackle set partitioning problems (crew scheduling problems). Theoptimum solution to the 17x197 problem is found in 0.06 seconds on a VAX 8800.On the one hand, the 
exibility and conciseness of the Conjunto approach is astrength compared with existing mathematical models. On the other hand, con-straint propagation techniques are not competitive when compared with globalmethods like the simplex (e.g. in (Ho�mann and Padberg, 1992, Guerinik andVan Caneghem, 1995)). While completing this work, it appeared to us that theset domain CSP approach is promising when investigating feasibility issues thatare problematic with the simplex method. The simplex stops when the model isdetected to be inconsistent but it cannot detect the reasons for failure. The inher-ent incremental solving of local consistency techniques can be of a great help. Inaddition, the partitioning problem appears as a sub_problem in numerous real lifeapplications (eg. timetables, bus line balancing), which are currently solved usinginteger domain solvers. While integer domain CSP are well suited to the schedul-ing constraints of these problems, a set domain CSP can provide an easy way totackle the partitioning constraints. The cooperation between the solvers is not aproblem, provided that the constraints which involve set and integer variables canbe attached to both. A real life application is worth considering.7.2. E�ciency issues: A case studyThe previous section illustrated the applicability of the system for dealing with alarge class of search problems involving sets, relations, graded functions and opti-mization criteria. The question is: \can a gain in expressiveness be combined witha gain in e�ciency ?". From a pruning point of view, the one-to-one correspon-dence between a set variable ranging over a set domain and a vector of 0-1 variablesguarantees that if both sorts of variables are handled using the same labelling pro-cedure (cf. refine), the pruning will be exactly the same. If there is a gain,it might therefore come from the saving in memory utilization and consequentlyfrom the garbage collection time. This point is illustrated through an integer linearprogramming optimization problem: the bin packing problem.Problem description Bin packing problems belong to the class of set partitioningproblems (Garey and Johnson, 1979). A multiset of n integers fw1; :::; wng is given



INTERVAL PROPAGATION TO REASON ABOUT SETS 239that speci�es the weight elements to partition. Another integerWmax is given thatrepresents the weight capacity. The aim is to �nd a partition of the n integersinto a minimal number of m bins (or sets) fs1; ::; skg such that in each bin thesum of all weights does not exceed Wmax. This problem is usually stated in termsof arithmetic constraints over binary variables and solved using various operationsresearch or constraint satisfaction techniques over binary �nite domains. It requiresone matrix (aij) to represent the elements of each set, one vector xj to representthe selected subsets sk and one vector wi to represent the weights of the elementsaij . The cost function to be optimized is the total number of bins.The mathematical formulation in 0-1 CSP and set domain CSP is described inthe following �gure.0-1 CSP abstract formulation set domain CSP abstract formulationPmj=1 aij xj = 1 for all i 2 f1; ::; ng s1 \ s2 = fg; ::: ; sn�1 \ sm = fgs1 [ ::: [ sm = f(1; w1); ::; (n;wn)gwhere:xj = 0::1 � 1 if sj 2 fs1; :: ; skg0 otherwise sj 2 [fg; f(1; w1); ::; (n;wn)g]aij = 0::1� 1 if i 2 sj0 otherwisePni=1 aij wi �Wmax 8j 2 f1; :::;mg weight(i; wi) = wiP#glb(sj)i=1 weight(i; wi) �Wmax 8sjUnder these assumptions, the program to solve is to minimize the number ofbins:minx0 =Pmj=1 xj minx0 = #fsj j sj 6= fggProblem statement Let P = f (1; w1) ; :::; (i; wi); :::; (n;wn)g be a non emptyset of items i with a weight wi. The aim is to partition P into a minimal numberof N bins such that the sum of the wi in a computed subset of P does not exceeda limited weight Wmax. A bin is represented by a set variable with initial domain[fg; P ]. The union of all bins should be equal to P (represented using the all_unionpredicate). All the bins should be pairwise disjoint (all_disjoint predicate).pb_statement(N,Max,Sets) :- state_constraints(Sets, P) :-pieces(P), restrict_weight(Max,Sets),make_sets(N,P,Sets), all_disjoint(Sets),state_constraints(Sets,Max,P), all_union(Sets,P).make_sets(0,_Plub,[]). restrict_weight(_M,[]).make_sets(N,Plub,[Set| Sets]):- restrict_weight(Max,[S| Sets]) :-Set `:: [{},Plub], weight(S,W),N1 is N - 1, W =< Max,make_sets(N1,Plub,Sets). restrict_weight(Max,Sets).



240 C. GERVETProblem solving The labelling procedure makes use of the �rst �t descendingheuristic. This heuristic sorts the elements (i;Wi) in decreasing order of theirweight. Bins are then �lled one after another, which is more e�cient than �llingall the bins in parallel. The optimization predicate is the classical one for packingproblems which initializes the number of bins N to the value weight(P )=Wmaxand increases it at each call of goal predicate in case of failure. The solution is the�rst successful partition. This program was used to solve a large instance of 80items partitioned into 30 sets. The optimal solution was found in about 22 secondson a SUN 4/40.Experimental results and comparisons A comparative study was made witha integer domain (0-1) formulation implemented using the �nite domain library ofECLiPSe. For the encoding of sets and set constraints, we used respectively lists ofbinary variables and arithmetic constraints on the variables described previously.The arithmetic constraint predicates were handled using the ECLiPSe solver ofarithmetic constraints over �nite domains. It is based on consistency techniqueswhich perform a reasoning about variation domain bounds or about variation do-mains, depending on the constraint predicate. The 0-1 integer domain program wasencoded so as to use the same �rst �t descending heuristics and the same labellingprocedure as the set domain CSP program. The following array gives the resultsregarding time consumption together with space utilization.Criterion Conjunto program FD programglobal stack peak (bytes) 847 872 2 334 720trail stack peak (bytes) 126 968 987 136garb. collection number 27 77cpu time (sec.) 21.6 31.5garb. collection time (sec.) 1.21 6.28The two programs di�er in the data structure used, and thus in the constraintsapplied to these data. The �rst point to note is that this di�erence has an impactboth on the space usage (stack peaks where the peak value indicates what themaximum amount allocated was during the session) and on the cpu time. Thespace utilization comprises, among other stacks, the global stack and the trail stack.The data structure is largely responsible for the growth of the global stack peak.The di�erence in space utilization (stack sizes) between the two approaches comesfrom the set-like representation as a list of zero-one domain variables versus twosorted lists in Conjunto. The lists of zero-one variables are never reduced becauseretrieving an element from a set corresponds to setting a variable domain to zero.This is not the case with the set domain representation.The trail stack is used to record information (set domains or lists of zero-onevariables) that is needed on backtracking. The number of backtracks in the two



INTERVAL PROPAGATION TO REASON ABOUT SETS 241program execution is the same, so the di�erence comes from the amount of infor-mation recorded.The garbage collection number is the times garbage collections are performedwhich is closely linked to the global and trail stack because the garbage collectionon both at the same time. Thus, the di�erence in the garbage collection numbercomes again from the space utilization.The di�erence between the cpu times is due �rst to the time needed for garbagecollection which is a direct consequence of the size of the global and trail stacks;and secondly to the time needed for performing operations on the data.Pro�ling the cpu time consumption indicates that half of time spent in the FDprogram resolution is the time needed for performing arithmetic operations on thezero-one variables. The weight constraint applied to each set is one of the mostexpensive computations. The weight constraint ai1�w1+ai2�w2+ ::: ain�wn �wmax which is woken each time an aij is set to 1, consists of a Cartesian product oftwo lists. In the Conjunto program, it consists in constraining the sum of weightswi directly available from the elements (i; wi) of a domain upper bound. Anothercostly computation in the FD formulation, is the computation of the largest weightnot already considered for one set. This requires checking the value of the zero-onevariable, and if this value is one, considering the weight associated to this variable.A weight is not considered if the corresponding domain variable is not instantiated.In the Conjunto program, this computation corresponds to the di�erence of the twobounds of a set domain, and the resulting set contains the elements (i; wi) whichhave not yet been considered. Computing this di�erence is in fact the most timeconsuming step in the Conjunto program resolution, because it is also performedwhen computing disjoint sets, but it represents half of the cpu time consumptionof arithmetic operations.This application shows that set constraints together with set domains are expres-sive enough to embed the problem semantics, and to avoid encoding the informationas lists of binary variables or handling additional data (the list of weights). It alsoshows that consistency techniques for set constraints are e�cient enough to solvesuch combinatorial problems on sets.7.3. General remarksThese applications have illustrated how the solving of set-based optimization prob-lems is possible thanks to the graduated constraints (set cardinality and weightconstraints).With regard to an integer domain CSP, a set domain CSP approach contributestransparency with respect to the mathematical de�nition of set problems, and al-lows the user to go from a hypergraph to a graph representation, thus reducing thenumber of variables and simplifying the constraint statement phase. As far as e�-ciency is concerned, the �rst application (ternary Steiner problem) showed that thesolving of set constraint achieves a pruning identical to that of global constraints.The cpu were also similar.



242 C. GERVETThe second application (set partitioning) makes us of the one-to-one correspon-dence between a set variable ranging over a set domain and a 0-1 vector whichallows us to model 0-1 Integer Linear Programming (ILP) problems as set domainCSPs. The modelling of 0-1 ILP problems as set domain CSPs in a constraint logicprogramming language shows the programming facilities of logic programming andenhances the class of CSPs. In particular, a CSP view of 0-1 ILPs brings 
exibilityto the modelling and can be useful when (1) unpure 0-1 ILP problems are to betackled, (2) when their feasibility is problematical with ILP tools, (3) and whensmall 0-1 ILP problems are involved in some real CSP applications (eg. timetables,bus line balancing, etc).The last application (bin packing) showed how a 0-1 CSP can be modelled moreconcisely as a set domain CSP using Conjunto with a possible gain in e�ciency.The gain comes essentially from the time needed for garbage collection which ismore important in the 0-1 CSP approach which uses a larger amount of variables.Discussion and related worksToday, the Conjunto solver is available as a library in the ECLiPSe platform,developed at ECRC. Independently of our work, the concept of set domains wasbrie
y introduced in (Puget, 1992) and several set constraints are implementedin the ILOG solver (Caseau and Puget, 1994, Puget, 1996). Detailed comparisonswith the ILOG approach are di�cult since ILOG solver is an industrial implemen-tation not fully described in the public domain. However, personal communicationswith Jean-Fran�cois Puget indicate that the two approaches are similar but di�eron one main point: the generic algorithm used to handle set constraints. ILOGsolver uses AC-5 (Van Hentenryck et al., 1992) whereas we make use of propaga-tion methods based on the AC-3 algorithm (Mackworth, 1977).A related line of work concerns the class of CLP(Sets) languages, that we havepresented in the introduction (Walinski, 1989, Dovier and Rossi, 1993, Bruscoli etal., 1994). None of them is directly motivated by the class of applications we aredealing with; these approaches aim mainly at exploiting the expressiveness of con-structed sets. Our study of set-based logic programming and CLP(Sets) languagescame to the conclusion that complete solvers have severe e�ciency problems dueto the nondeterministic nature of the constructed set uni�cation and its exponen-tial complexity. Indeed, recent attempts have been made to tackle the bin packingproblem using set constraints over constructed sets; the exponential uni�cation pro-cedure of constructed sets led to a combinatorial explosion. Our approach |eventhough it adds a lower level of abstraction than the LP or CLP approaches based onconstructed sets| is more realistic and e�cient when one aims at solving set-basedsearch problems. The main di�erence is that we use variables with set domains andhence have a trivial uni�cation procedure.While our work has essentially aimed at de�ning a practical language towardsthe solving of applications, it has provided us with a matter for a formal de�-nition of the language. The formal framework distinguishes between the compu-tation domain of the constraint logic programming language, and the constraint



INTERVAL PROPAGATION TO REASON ABOUT SETS 243domain over which the computations are actually performed. These two levels ofdiscourse are linked together by approximations and closure operations. Up to now,the class of CLP(FD) languages are de�ned as constraint logic programming lan-guages, but their formal de�nition is still based on the formal framework de�nedby Van Hentenryck that is, embedding consistency techniques in logic program-ming (Van Hentenryck, 1989). The formal description of the Conjunto languagecan be used to give a formal de�nition of the class of CLP languages which embedconsistency techniques as main constraint solving techniques.We believe that some further research on applications and algorithms is needed.The concept of graduated constraints helps us with tackling set-based optimizationproblems, and studying the cooperation between two solvers (Conjunto and integerdomain solvers), but the search space of such problems is de�ned with set domainsessentially. The Conjunto language has not been used so far to tackle real life appli-cations de�ned over a search space containing also integer domains. Applicationsinvolving scheduling constraints and set constraints are still to be developed. Inparticular, they would allow us to �gure out whether it is possible or not to work ona mixed-search space. Time tables, bus line balancing, are some of the applications.Regarding the class of consistency methods we have been using, we have essen-tially considered node and arc consistency techniques applied to set and graduatedconstraints. It sounds interesting to go beyond this, to use path consistency algo-rithms, and to take into account the latest researchs on the topology of constraintgraphs. Some issues might be di�erent from those already established with respectto integer domain CSPs. In this respect, the study of the ratio complexity/pruningis very important.It would also be interesting to extend the set domain concept to that of latticedomains in order to cope with symmetry problems. For example, considering thelattice domains ff1; 3g; f1; 2gg and ff1; 2; 3gg, we have ff1; 3g; f1; 2gg v ff1; 2; 3gg.A set of constraints applied to variables ranging over lattice domains would ease themodelling and solving of set based problems dealing with the search for equivalenceclasses (partitioning, covering). They would remove the symmetries which comefrom permutations of instances of set variables. A solution to a set-based problemwould not be a list of instantiated set variables but the one value of a lattice vari-able. Thus the order of the sets which de�ne the lattice value would be irrelevant.Constraints over lattices would model a set domain CSP as a lattice domain CSP,and thus add a higher level of expressiveness with respect to set domains. On theother hand, the practical framework corresponding to embedding lattice intervalsin CLP requires further works describing the algorithms and studying the trade-o�between expressiveness and e�ciency.AcknowledgmentsThis paper is a revised version of my dissertation thesis carried out at ECRC un-der the supervision of Bruno Legeard and Mark Wallace. I am most grateful toBruno Legeard, Gabriel Kuper and Alexander Herold who proofread the prelim-
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