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Abstract. Local probing is a framework that integrates (a) local search
into (b) backtrack search enhanced with local consistency techniques, by
means of probe backtrack search hybridization. Previously, local probing
was shown effective at solving generic resource constrained scheduling
problems. In this paper, local probing is used to solve a network routing
application, where the goal is to route traffic demands over a communi-
cation network. The aim of this paper is (1) to demonstrate the wider
applicability of local probing, and (2) to explore the impact of certain
local probing configuration decisions in more detail. This is accomplished
by means of an experimental evaluation on realistic networking scenarios
that vary greatly in their characteristics. This paper yields a better un-
derstanding of local probing as well as a versatile local probing algorithm
for network routing.

1 Introduction

1.1 Local Probing

Due to its systematic nature and support of constraint propagation, backtrack
search enhanced with local consistency techniques (BT+CS) is effective at solv-
ing tightly-constrained problems with complex constraints. On the other hand,
the quality of local search’s (LS) total assignment is more easily measurable, by
comparison with the quality of conventional BT+ CS’s partial assignments. Also,
the absence of systematicity allows LS’s assignments to be modified in any order,
and so early search moves do not necessarily skew search to focus only on partic-
ular sub-spaces. This leads to LS’s superiority at optimizing loosely constrained
problems. However, while BT+CS algorithms are usually sat-complete (i.e. in
a finite number of steps, it either generates a solution, or proves that no solutions
exist) and can be made opt-complete (i.e. in a finite number of steps, it either
generates an optimal solution, or proves that no solutions exist), LS algorithms
are incomplete in both senses.

Local probing [10] is a sat-complete probe backtrack search framework (PBT,
[6]) that executes a slave LS procedure at the nodes of the master BT+CS search
tree. Local probing is designed to tackle practical constraint satisfaction prob-
lems (CSPs) and constraint satisfaction and optimization problems (CSOPs)
that are difficult solve by pure BT+CS or pure LS algorithms. Its strength is



derived from the combination of LS’s non-systematic search characteristic with
BT-+CS’s search systematicity. This enables local probing to satisfy complex con-
straints and prove infeasibility, while achieving good optimization performance,
as well as (in some configurations) prove optimality.

In local probing, the constraints of the CSP or the CSOP to be solved must
be divided into two sets, namely ‘easy’ constraints and ‘hard’ constraints.! The
slave LS procedure — the LS prober — solves sub-problems containing only
the ‘easy’ constraints, at the nodes of a master BT+CS search tree. The mas-
ter BT+ CS procedure eliminates possible violations of ‘hard’ constraints by
incrementally posting and backtracking additional ‘easy’ constraints.

The LS prober algorithm will return a solution to the ‘easy’ sub-problem. If
the LS prober’s solution happens to be feasible with ‘hard’ constraints also, a
feasible solution to the entire problem is found. If the LS solution for the ‘easy’
sub-problem violates any ‘hard’ constraints, one of them must be selected for
repair: A new ‘easy’ constraint, forcing the LS prober to avoid returning solutions
that violate the constraint in the same way, is posted to the ‘easy’ sub-problem.
If this leads to a failure (i.e. the new ‘easy’ sub-problem is unsatisfiable), the
negation of the selected ‘easy’ constraint is imposed instead. Then, the new
‘easy’ sub-problem is solved with LS, and in the case of further ‘hard’ constraint
violations, other ‘easy’ constraints are recursively imposed. This continues until
a solution is found, or until all possibilities of posting ‘easy’ constraints are
explored (i.e. a proof that no solutions exist is obtained). In the case of a CSOP,
the search can be continued again by using a cost bound like in other branch
and bound (B&B) methods.

A sat-complete local probing algorithm must satisfy the following conditions:

1. (a) Any ‘hard’ constraint must be expressible as a disjunction of sets of ‘easy’
constraints that apply to its variables (ESy, ESs,---, ESy), such that
every solution that satisfies one of the ‘easy’ constraint sets is guaranteed
to also satisfy the ‘hard’ constraint.

(b) No solution exists that satisfies the ‘hard’ constraint, but does not satisfy
any of the ‘easy’ constraint sets in this disjunction.?

For efficiency only, the next condition is also useful:

(¢) No solution to an ‘easy’ constraint set ES; in the disjunction is also a
solution to another ‘easy’ constraint set ES; in the disjunction.

2. If a ‘hard’ constraint is violated, it must be detected and scheduled for repair
by the master BT4+CS procedure within a finite number of steps.

3. The master BT+CS procedure must be capable of (eventually) unfolding all
possible sets of ‘easy’ constraints whose satisfiability would guarantee that
the ‘hard’ constraint is also satisfied.

4. Tt must systematically post ‘easy’ constraints (and on backtracking, their
negations) to the LS prober until either the ‘hard’ constraint is satisfied, or
it is proved impossible to satisfy.

! This decomposition should not be confused with hard/soft constraints.
2 We are theoretically guaranteed to find at least one partition satisfying 1 for any finite
CS(O)P (define ‘easy’ constraints to be variable assignments or their negations).



5. The neighbourhood operator of the LS prober must guarantee to satisfy the
posted ‘easy’ constraints if this is possible (and indicate infeasibility if it is
not), by being sat-complete w.r.t. the ‘easy’ constraints.

Additionally, opt-completeness can be achieved if (a) the cost bound con-
straint generated by a B&B process at the master BT+CS level can be captured
as an ‘easy’ constraint that is satisfied by the LS prober; or (b) the cost bound
constraint can be dealt with at the master BT+CS level as a ‘hard’ constraint,
ensuring the cost bound will be satisfied by the search if that is possible (which,
in fact, is the case in the local probing algorithm detailed in this paper).?

Related work. Local probing belongs to the LS/BT+CS hybridization class
where LS is performed in (all or some) search nodes of a BT+CS tree. In most
of these hybrids, the task of the LS procedure is to support somehow the master
BT+CS. They can be classified further as follows: A. Improving BT+CS partial
assignments using LS, e.g. [5,15]. B. Enhancing pruning and filtering by LS at
BT+CS tree nodes, e.g. [7,17]. C. Selecting variables by LS in a master BT+CS,
e.g. [14,19]. D. Directing LS by a master BT+CS, e.g. [3]°. Local probing has
aspects of B, C and D, although D is the key classification, since it is LS that
creates assignments, and the task of BT+CS is to modify the sub-problem that
LS is solving, directing LS to search regions where good solutions can be found.

In addition to LS/BT+CS hybrids, local probing belongs to the family of
PBT hybrid algorithms [1, 2, 6,12] (related ideas also in [8]). Typically, they use
LP or MIP, instead of LS, as the prober method to be hybridized with BT+CS.

1.2 Objectives of the Paper

In earlier work [10], we demonstrated that local probing can be effective at solv-
ing a generic scheduling problem. We showed how the local probing hybridization
framework can successfully marry the optimization strengths of LS and the con-
straint satisfaction capabilities of BT+CS, and we learned how it is possible
to construct an effective sat-complete local probing hybrid that performs well
when compared to alternative algorithms. However, several questions remained
unanswered.

Firstly, how readily applicable is local probing in different application do-
mains? In particular, is it possible to build efficient sat-complete local probing
hybrids for other applications?

Secondly, problem constrainedness can vary greatly. Can local probing be
easily configured to trade-off satisfaction performance against optimization per-
formance by changing the balance of effort between BT+CS and LS? Also, for
problem instances with similar levels of constrainedness, it is likely that certain

3 The local probing algorithm presented in [10] was not opt-complete.

* Other LS/BT+CS hybridizations either (a) perform BT+CS and LS serially as
“loosely connected”, relatively independent algorithms (dozens of published hybrids);
or (b) use BT+CS in the neighbourhood operator of LS (including operators of GAs),
e.g. [9,16]. An important sub-class of (b) is “shuffling” hybrids, e.g. [4, 18].

5 The results presented in [3] are particularly promising to local probing research.



local probing configurations are more effective than others. However, could a sin-
gle configuration remain competitive over problem instances that vary greatly
in constrainedness, or are adaptive configuration mechanisms necessary?

The main objective of this paper is to address these questions by means of
a detailed investigation of local probing performance on the selected network
routing problem. In the process of doing so, we will establish a new and ver-
satile family of algorithms based on local probing for solving this commercially
important problem.

Next, we introduce the application domain. Section 2 details the algorithm
to be used in the investigation study of Section 3. Section 4 concludes the paper.

1.3 Application Domain

The network routing problem solved here (NR) involves constraints including
capacity, propagation delay, and required demands. In the NR, we have:

— a network containing a set of nodes N and a set of directed links E between
them — each link (4,§) from a node i to a node j has a limited bandwidth
capacity ¢;; and a propagation delay d;; that is experienced by traffic passing
through it;

— a set of demands K, where each k € K is defined by:

e a source node sy, i.e. where the data is introduced into the network;

¢ a destination node t;, i.e. where the data is required to arrive;

e a bandwidth g, i.e. the bandwidth that must be reserved from every
link the demand is routed over; and

¢ a maximum propagation delay dy, i.e. the maximum source-to-destination
delay that is allowed for the demand k;

— a subset of the demands RK C K specifying which demands must have
paths in any solution.

The aim is to assign paths over the network to demands such that:

1. the total unplaced bandwidth, i.e. the sum of the bandwidth requirements
of the demands not assigned to a path, is minimized;
2. the following constraints are satisfied:
— If a demand k belongs to the set of required demands RK, it must have
a path.
— Every link in the network (i,j) has sufficient bandwidth to carry the
demands that traverse it.
— For any path Py assigned to a demand k € K, the sum of the propagation
delays of the links in the path does not exceed the maximum propagation
delay dj, for k.

Note that, when the set of required demands is exactly the set of all the
problem demands, i.e. RK = K, the problem is a pure CSP without any opti-
mization dimension: each demand must have a feasible path. On the other hand,
if RK is empty, it is always possible to find a trivial solution, because even an
empty set of paths is a solution.



For each demand k, we use a boolean y; to denote whether k is routed
(yr = 1) or not (yr = 0). Another set of booleans z;;; indicate whether a
demand k is routed through a link (4,5) (251 = 1), or not (z;;x = 0). Next, we
formally state the problem.

min ) (1 — yk) g, (1)
keK
s.t.
VEE€RK: yi=1 @)
Vke K\RK: y € {0,1} (3)
V(i,j) € E\Vk € K : Tijk € {0,1} 4)
Vke K
yu =14 (5)
P = ((Nhy s k) (Mg s Mg ) - -+ 5 (Mky_y s My )
where :
Nk, = Sk
ng, =tk
Y(nk,,nk,) in Py i (ng,,ni,) € E
alldifferent{nx, , Mky, - - -,k }
Y, =06 P = () (6)
V(i,j) € E,Vk € K :
zijr =1 < (i,7) in Py, (7)
ZTijk =0 & (i,7) not in Py, (8)
V(i,j) € E: Ypek Wik < Cij 9)
Vk € K : Z(i,j)eE dijzije < dg (10)

The objective function (1) to be minimized is the sum of the bandwidths of
the non-routed demands (i.e. those demands k with y = 0). The constraints of
(2) force demands in the set of required demands RK to have a path, and the
remaining demands can either have a path or not (3). The path constraints (5)
and (6) force, for any placed demand k, its path Py to be a connected loop-free
sequence of links from the source node s; to the destination node tj, and for
any non-routed demand, its path to be empty. The constraints in (7) and (8)
tie the link-demand booleans z;;; with the paths. The capacity constraints in
(9) ensure that for each link (i, j) the bandwidth reserved for demands passing
through it does not exceed its capacity c;;. The delay constraints (10) restrict
for each demand k the total delay of the links in its path to be no more than its
maximum propagation delay dy.

2 Algorithm Description

The problem decomposition and the master BT+CS of local probing are intro-
duced first. Then the LS prober and its neighbourhood operator are described.



2.1 Problem Constraint Decomposition into ‘Easy’ and ‘Hard’

The NR is a typical large-scale combinatorial optimization problem (LSCO) in
that it can be divided into different sub-problems. The constraints of the problem
are divided into the ‘easy’ and ‘hard’ constraints here as follows:

— ‘Hard’ constraints (not guaranteed to be satisfied by the prober):
e Capacity constraints: the sum of the bandwidth requirements of the de-
mands routed via a link must not exceed the bandwidth of the link (9)
— ‘Easy’ constraints (guaranteed to be satisfied by the prober):
e The sum of the propagation delays of the links in a path is less than or
equal to the mazimum propagation delay of the demand (10)
e ‘Easy’ constraints that the master BT+CS procedure can impose during
search (but might also exist in the original problem):
* If the demand k is dropped (y = 0), it cannot have a path (6).
* If the demand k is required (y = 1), it must have a valid path (5).
« If a link is forbidden (x;;r = 0) from a demand, its path is not
allowed to contain the forbidden link (8).
If a link is forced (xijr = 1) for a demand, its path must contain the
forced link (7).

*

2.2 Master BT+CS Level

The last four of the constraints above are used by the master BT+CS proce-
dure to repair violations on ‘hard’ constraints, i.e. link capacity constraints, in
the following way. Assume that the prober returns a probe (a set of paths for
all non-dropped demands), and the master BT+CS procedure detects that the
bandwidth usage on link (7, j) exceeds its capacity, and then selects this link to
be repaired (see Fig. 1). 1. The algorithm picks one demand k traversing (3, j),
and drops it, i.e. posts a constraint y; = 0. This first search branch does not
subsequently allow a path for the demand k. 2. If dropping k& does not lead to a
solution in the subsequent nodes, a constraint that requires that demand k has a
path, i.e. y = 1, and a constraint that forbids the link (7, j) from the demand k,
i.e. ;55 = 0, are posted to the sub-problem, and local probing continues having
these constraints present in all the search nodes within this second branch. 3. If
forbidding the link (4, j) from the demand k does not lead to a feasible solution,
the third choice is to require k and force it to use the link (4, j), i.e. z;;, = 1, at
the child nodes in the third branch. If this decision leads to failure as well, the
search backtracks to higher choice points in the tree. These three choices:

1. drop demand k,
2. require demand k but forbid it from using link (i, j), and
3. require demand % and force it to use link (4, 5),

fully partition the search space of the sub-problem at the master BT+CS tree
node.® This decomposition allows us to build a local probing algorithm that

5 The PBT decomposition above for network routing was initially suggested by Liatsos
et al, and it is used in a MIP-based PBT application. A version (that does not include
the first branch) of their algorithm is published in [12], which tackles a related
problem to NR (having all demands required and a different objective function).
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Fig. 1. Illustration of local probing for NR.

satisfies the conditions for sat-completeness and also for opt-completeness. When
a solution is found, a B&B cost bound CB, enforcing ), (1 — yx)qx < CB,
is imposed, and local probing is continued from the root of the search tree. Due
to the ‘easy’ constraint decisions y, = 0 and y = 1 (drop/require demand) and
the form of the objective function, we can immediately prune branches that are
infeasible w.r.t. the cost bound. Because the algorithm can deal with the cost
bound constraint as a ‘hard’ constraint, opt-completeness is achieved.

Several heuristics can be used in selecting the link (4, 7) to be repaired among
the violated links at a BT+CS search node, as well as in selecting the demand
k to be dropped/required. In this implementation, the procedure selects (1) the
link (4, j) that is most violated, i.e. its bandwidth availability is exceeded most;
and (2) the demand & (a) routed via (i, 5) and (b) having the largest bandwidth
requirement from the set of demands passing over (i,7) that are not forced to
use the link (i,7) (i-e. the set of demands that are not treated by an imposed
constraint ;;, = 1 at the master BT4+CS tree nodes). These heuristics were
chosen because they tend to lead the search quickly towards a feasible solution
or a failure, thus reducing the size of the master BT+CS tree. Also various
consistency checks are made before the local probing search is allowed to continue
in the branches (reasoning with the capacity constraints and the imposed master
level decisions for dropping/requiring demands and forbidding/forcing links).
2.3 Local Search Prober
The LS prober returns a probe, which is a set of paths to all non-dropped
demands.” As an LS strategy, simulated annealing (SA, [11]) is used because
it is easy to implement and can avoid local minima. At each search step, the
neighbourhood operator suggests for the sub-problem a candidate neighbour
that satisfies all the ‘easy’ constraints (recall Section 2.1).

2.4 Neighbourhood Operator of LS Prober
The neighbourhood operator procedure applies a “shuffle” approach.® First, a
subset of demands to be re-routed are selected, and heuristically ordered for re-

" Note that demands can be be dropped only by the master BT+CS search decisions.
& Another “shuffle”-based LS algorithm for network routing is presented in [13].



routing. Then, before evaluation, the selected demands are routed separately by
utilizing Dijkstra’s shortest path first algorithm. The neighbourhood operator
gives us the neighbour candidate in two sets of paths: (1) the first set S; is a set
of paths that together satisfy all the constraints - including capacity constraints,
and (2) the second set S» is a set of paths that satisfy all the ‘easy’ constraints
but were left outside of S; by the LS heuristics because they caused capacity
constraints to be violated. The procedure includes the following four steps:?

1. Select demands to be re-routed. From the current assignment, the paths
of (1) all the demands that had paths in S, and (2) a percentage fraction P of the
demands that had paths in S; are chosen for re-routing. In the latter case, paths
are selected in three stages, depending on how many demands the percentage
fraction allows us to select: for a randomly selected bandwidth-violated link,
randomly select paths from S; from the following sets until P paths have been
selected (start with the set D;, and move to the next set when it is empty):
1. Set D;: Paths traversing the selected link. 2. Set D»: Paths traversing any
of the links of the paths in D;. This tends to free bandwidth in the vicinity of
the problematic link. 8. Set D3: All the other paths in S;. The demands to be
re-routed are the demands of the selected paths.

2. Order demands to be re-routed. The selected demands to be re-routed
are ordered for routing in three groups (the order within each group is random-
ized): (1) required demands; (2) non-required demands that were in Sy in the
current assignment; and (3) non-required demands that were in S in the cur-
rent assignment. This robust heuristic is used, since we prefer finding feasible
solutions (routing required demands first) to optimization (minimizing unplaced
total bandwidth).

3. Re-route demands. Routing is carried out in two phases. Although capacity
constraints are relaxed in the LS sub-problem, the local probing performance
is dependent on the LS prober producing good quality probes. Therefore, the
first routing phase tries to route demands such that the links that do not have
enough bandwidth available are not seen by the single-demand routing procedure
used. If a path is found, the bandwidth availabilities of the links are updated
immediately, and the path is placed in S;. If a path is not found, the routing is
postponed to the second phase.

In the second phase, all the selected demands, still without a path, are routed
again in the same order as in the first routing phase, but now without taking the
capacity constraints into account, i.e. also bandwidth-infeasible links are seen
by the single-demand routing procedure used.!® This phase is guaranteed, for
each demand, to find a feasible path w.r.t. all constraints except the capacity
constraints. The set of paths generated in the second phase is Ss.

4. Evaluate. The value of the neighbour candidate is the sum of (1) the un-
placed bandwidth, which is the sum of the bandwidth requirements of the de-
mands that have paths in S2, and (2) the penalty component, which is the number

® The LS initialization includes slightly modified Steps 1 and 2, and Step 3 as it is.
10 This causes capacity constraint violations.



of required demands in Sy multiplied by a large constant. According to this value
and the SA strategy, the assignment may or may not be accepted as the new LS
assignment. (When the termination condition is met, the LS prober returns the
best set of paths found throughout this prober search (the best Sy |JS2).)

Single-demand routing component of neighbourhood operator. At Step
3 of the neighbourhood operator, a single demand is routed by using Dijkstra’s
shortest path first algorithm (SPF) that finds the shortest path between two
nodes in a graph. The “length” of a path is the sum of the metric costs of the
links in the path. The shortest path is the path where the sum of the edge
costs is the lowest. Here, SPF is run over a network that ezcludes (1) the links
that are forbidden for the demand to be routed, and (in the case the path
must made bandwidth-feasible) (2) the links that do not have sufficient capacity.
The default metric used for the cost of a link (i,j) € E is the propagation
delay d;; of the link. Since this may leave some areas of the sub-problem search
space unexplored during the LS prober,!! the propagation delays of the links are
occasionally replaced by random metrics in the first routing phase of Step 3 of
the neighbourhood operator (a resulting bandwidth-feasible path is immediately
re-calculated with the default metric if it is infeasible with the delay constraints).

Routing demands with forced links. On its own, SPF cannot guarantee to satisfy
forced link constraints. If SPF is run to get a path, and this path does not
contain all the forced links, then an additional procedure is applied as follows.
First, the forced links that are already in the path are identified. Then, the
ordering they are in the path is used to define a “partial forced-link sequence”
Seq. The remaining forced links are incrementally inserted in randomly selected
positions in Seq such that the insertion is backtracked on failure (all possible
positions in Seq are explored in the worst case). After each insertion of a forced
link, SFP is applied to connect the disconnected path segments. If the completed
path violates the delay constraint, backtracking to the previous insertion node
occurs. The first delay-feasible path containing all the forced links is returned. If
all extensions to Seq lead to failure, the same extension process is repeated for
other possible permutations of Seq (in random order). The complexity of this
procedure is exponential, even though the resulting path is not guaranteed to
be the shortest possible. However, the average complexity is low due to the high
probability of obtaining a valid path before the space is exhaustively searched.

3 Local Probing Configuration Investigation

The previous section showed a way of constructing a sat- and opt-complete
local probing algorithm for the NR problem. In this section, we seek answers to
the following questions: Q1: Can local probing be easily configured to trade-off
satisfaction performance against optimization performance? Q2: What is the
best computational balance between the BT+CS and LS components in terms
of satisfaction and optimization behaviour? For problem instances with similar
level of constrainedness, it is likely that certain local probing configurations are

11 Although they would eventually be explored due to the master BT+CS decisions.



more effective than others. Q3: Could a single configuration remain competitive
over problem instances that vary greatly in constrainedness, or are adaptive
configuration mechanisms necessary?

3.1 Algorithm Parameters

Controlling the computational balance between the BT+CS and LS
components: Over all the generated instances, we compared 12 local probing
algorithms with different prober termination conditions that vary the balance
of search effort between BT+CS and LS. The maximum number of neighbour
candidate evaluations in the LS prober was set to {1, 2, 3, 6, 12, 25, 50, 100, 200,
400, 800, 1600}. We denote the local probing algorithms with these termination
conditions by Probe(SA1), Probe(SA2), Probe(SA3), ... , Probe(SA1600), respec-
tively. This range of termination conditions covers a whole range of behaviours
from low (small amount of effort spent optimizing the probe by LS) to high
(large amount of effort spent optimizing the probe by LS). Within the timeout
selected, these configurations lead to thousands LS steps (see the averages in
Tables 1 and 2). Note that there is a key difference between Probe(SA1) and all
the other configurations. In Probe(SA1) the prober restores probe consistency
w.r.t. the ‘easy’ constraints, but does nothing else. However, all other variants
additionally perform a “shuffle” on heuristically selected demand subsets. At high
temperatures, the neighbours are always accepted. As temperature decreases SA
is more selective. Other parameters: In the experiments, we used a timeout of
1000 seconds. The initial temperature for the SA prober is 1000000000, and after
each neighbour evaluation, the temperature is reduced by multiplying it by the
cooling factor 0.9.12 The multiplier for the penalty term for penalizing infeasible
paths for required demands is the sum of the bandwidth requirements of all the
demands in the instance. The probability of using randomized metrics in the first
routing phase of the LS neighbourhood operator is 0.0001, and the percentage
affecting the neighbourhood size is 0.1%. The algorithms were implemented on
ECL!PSe 5.5, and the test were run on Pentium IV 2GHz PCs.

3.2 Problem Instances

The experiments are carried out on two different real-world network topologies,
named Network 1 and Network 2, with artificially generated demand data
that is based on realistic demand profiles. The Network 1 topology contains 38
nodes and 86 bi-directional links, whereas the Network 2 topology is larger: 208
nodes and 338 bi-directional links. The demands are generated randomly by
respecting a realistic bandwidth profile; features of the network topology; and
the network load factor. For each network, we apply three network load factors
(affecting the average bandwidth requirement), and generate 20 different sets of
demands for each factor, creating 60 demand sets. For the Network 1 instances,
a demand exists between each pair of nodes, ending up with 1406 demands. The

12' A neighbour candidate is accepted if it is better than the current assignment or
p< exp(C“”_C"“’)/T where: p is a random number between 0 and 1; Chey is the
cost of the neighbour candidate; Ceyrr is the cost of the current assignment; and T'
is the temperature.



Table 1. Overall satisfaction results, Network 1.

Configuration Av. no. of Solution Proved Timeout w/o Rank
LS steps found (#) infeasible (#) solution (#)
Probe(SAL) 965.70 499 110 51 7
Probe(SA2) 1845.48 501 113 46 2
Probe(SA3) 2623.46 500 116 44 1
Probe(SA6) 4403.40 501 113 46 2
Probe(SA12)  7013.62 500 114 46 2
Probe(SA25) 10219.10 500 112 48 5
Probe(SA50) 13621.08 500 108 52 8
Probe(SA100) 16569.83 501 109 50 6
Probe(SA200) 18950.45 500 103 57 9
Probe(SA400) 21057.47 497 93 70 10
Probe(SA800) 22456.14 491 82 87 11
Probe(SA1600) 24451.50 480 69 111 12

Table 2. Overall satisfaction results, Network 2.

Configuration Av. no. of Solution Proved Timeout w/o Rank
LS steps found (#) infeasible (#) solution (#)
Probe(SAL) 2176.39 479 31 150 6
Probe(SA2) 2604.19 499 37 124 2
Probe(SA3) 2819.54 495 42 123 1
Probe(SA6) 3183.90 494 41 125 3
Probe(SA12) 3691.76 495 36 129 4
Probe(SA25) 4378.13 489 32 139 5
Probe(SA50) 5074.26 479 27 154 7
Probe(SA100) 5525.13 457 23 180 8
Probe(SA200) 5878.84 443 22 195 9
Probe(SA400) 6512.35 424 11 225 10
Probe(SA800)  6883.67 400 7 253 11
Probe(SA1600) 6997.31 385 2 273 12

used network load factors were {0.6, 1.0, 1.4}. For the Network 2 instances, the
demands are generated for fewer pairs of nodes, resulting in 182 demands. The
network load factors used were {0.3, 0.4, 0.5}. The bandwidth profile used for
generating relative bandwidth requirements of demands was different for the net-
works. For Network 2, it resulted in more combinatorial problems: most demands
have a significant impact on the result, unlike in Network 1 whose results are
dominated by a small set of demands with very large bandwidth requirements.
Finally, for each demand instance we vary the proportion of required demands.
The number of required demands is the number of all the demands multiplied
by a constrainedness factor in the set {0, 0.1, 0.2, ... 1}. With these 11 factors
for each of the 60 instances, we end up with 660 instances for each network, and
a total of 1320 problem instances.

3.3 Constraint Satisfaction Results

Overall constraint satisfaction performance. First, we look at the overall
constraint satisfaction characteristics over all instances. We are interested in 1.
how often a configuration found a solution; 2. how often a configuration proved
infeasibility; and 3. how often an instance remained unsolved, i.e. how often the
algorithm was terminated because of a timeout before any solutions were found
(i.e. neither a solution nor a proof of infeasibility). The third measure is the
most revealing, since it represents what is left after the first two. We therefore
rank the algorithm configurations in terms of the number of timeouts. These are
shown over the Network 1 and Network 2 instances in Tables 1 and 2.
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1. Solutions found. In terms of solutions found for Network 1 (Table 1),
there is only a small variation between the best and worst configurations (21
instances). For Network 2 (Table 2), the variation is greater (114 instances). 2.
Infeasibility proofs. For the Network 1 instances, among the local probing
algorithms, the best configuration for proving infeasibility is Probe(SA3) (116
instances). The Network 2 results indicate the same: Probe(SA3) is the best
with 42 infeasibility proofs. For the Network 2 instances, Probe(SA1600) is able
to prove infeasibility only in 2 cases. 3. Timeouts without a solution. As
explained above, this is the best measure for ranking constraint satisfaction
performance, since it is an accurate measure of algorithm constraint satisfaction
failure. In Network 1 cases, the best algorithm is Probe(SA3) leaving 44 instances
unsolved. Probe(SA1) is seventh best, the worst configuration is Probe(SA1600).
Probe(SA3) is the best configuration for constraint satisfaction also in Network 2
cases, with 123 instances unsolved. In general, the main reason for Probe(SA3)’s
success in both networks, is its superiority on proving infeasibility rather than
on finding solutions when there are fewer differences between configurations.

Robustness of constraint satisfaction performance as constrainedness
varies. First, we want to know the the percentage of unsolved instances, when
the proportion of required demands vary. These are illustrated in Figs. 2
and 3.'2 The results indicate that, from constraint satisfaction perspective, hy-
bridization is useful since performance degrades at the extremes Probe(SA1) and
Probe(SA1600), but that only a limited investment in LS is sufficient to obtain

13 The rightmost graphs represent top-down views of the surfaces in the left graphs.



Table 3. Timeouts without solution over network load (number of unsolved instances).

Configuration [Network 1 Network 1 Network 1|Network 2 Network 2 Network 2
load 0.6 load 1.0 load 1.4 | load 0.3 load 0.4 load 0.5
Probe(SAL) 0 12 39 7 49 94
Probe(SA2) 0 12 34 2 32 90
Probe(SA3) 0 10 34 1 36 86
Probe(SA6) 0 10 36 1 30 94
Probe(SA12) 0 10 36 0 32 97
Probe(SA25) 0 10 38 1 33 105
Probe(SA50) 0 8 44 0 48 106
Probe(SA100) 0 9 41 1 57 122
Probe(SA200) 1 11 45 2 64 129
Probe(SA400) 4 12 54 5 80 140
Probe(SA800) 8 17 62 9 100 144
Probe(SA1600) 9 24 78 20 107 146

the best performance from a constraint satisfaction perspective (the same is not
true for optimization). The figures indicate that the best performing configura-
tion, Probe(SA3), remains effective as problem constrainedness varies.

The network load factor is another way of varying problem constrained-
ness. Table 3 shows the numbers of unsolved instances (out of 220) for each
network load factor. In the Network 1 instances, all local probing configurations
up to Probe(SA100) can find a solution or prove infeasibility for all instances
that have a network load of 0.6. The number of unsolved instances increases
with instances of larger network loads. The bigger the network load, the more
variation there is between the configurations, and fewer LS steps per prober are
required to obtain the best constraint satisfaction performance. This is true also
for Network 2 instances. However, the best constraint satisfaction configuration,
Probe(SA3), appears to be reasonably robust also in terms of network load.

3.4 Optimization Results

The solution quality graphs in Figs. 4 and 5 show the average unplaced band-
width!# for each constrainedness (proportion of required demands) subset over
the instances where all algorithm configurations found a solution, to enable a
fair comparison for optimization performance.'® In total, there were 477 such
instances for Network 1, and 372 for Network 2, each out of 660.

As expected, Probe(SA1) performs worst on optimization due to the loss of
LS’s optimization characteristic. In the Network 1 instances, the more LS neigh-
bour candidate evaluations performed during a prober, the better the results.
However, in the Network 2 instances, the results start to get worse again when
the prober evaluation limit increases beyond 12. This is due to the fact that,
in terms of the demand bandwidth distribution profile, the Network 2 instances
are more combinatorial (more demands significantly impact solution quality),
and therefore the differences between local minima are greater. The Network 2
instances indicate that local probing’s ability to force local search away from local

14 The quality is scaled to the interval [0,1] such that 0 represents the best quality (all
configurations routed all the demands), and 1 represents the worst quality.

5 As constrainedness increases, more demands are required, and the costs of solutions
fall because less bandwidth can be left unplaced.



0.90-1.00
£0.80-0.90
#0.70-0.80
#0.60-0.70
[0.50-0.60
[0.40-0.50
[@0.30-0.40
W0.20-0.30
@0.10-0.20
00.00-0.10

SSaupauleIsuoy

Max evals in prober - Max evals in prober

Fig. 4. Optimization, restricted subset of Network 1.

70.90-1.00
£0.80-0.90
20.70-0.80
#0.60-0.70
©0.50-0.60
[0.40-0.50
£0.30-0.40
#0.20-0.30
#0.10-0.20
0J0.00-0.10

ssaupauleljsuod

Max evals in prober

Max evals in prober -

Fig. 5. Optimization, restricted subset of Network 2.

minima leads to significant improvements in the optimization characteristics. As
the interaction of LS with BT+4CS decreases, by increasing the number of the
LS prober steps beyond 12, optimization performance degrades.

4 Conclusion

The main objective of this paper was to address questions on the applicability
and configuration of local probing, by means of a detailed investigation of local
probing performance on a new application, the NR. In the process of doing so,
we established a new and versatile family of algorithms based on local probing
for solving this commercially important problem.

This paper presented a sat- and opt-complete local probing hybrid for solving
the NR. The local probing configurations were evaluated in a detailed experimen-
tal investigation. The hybridization balance between BT+CS and LS compo-
nents was investigated by controlling the configuration of the LS prober termi-
nation condition. This successfully traded-off satisfaction performance against
optimization performance (Q1).16 Relatively low LS settings (Probe(SA3) for
satisfaction & Probe(SA12) for optimization) performed best overall — several
thousand LS steps were sufficient per run (Q2). In terms of either satisfaction
only or optimization only, each configuration’s relative performance remained
robust over different constrainedness levels (Q3). However, introducing adap-
tive behaviour for local probing may prove useful, because the (more BT+CS

16 Q1, Q2 and Q3 were described in the beginning of Section 3.



oriented) configuration that was best for pure satisfaction performance was dif-
ferent from the (more LS oriented) configuration that was best for pure opti-
mization performance. Future research will investigate alternative local probing
neighbourhood operators and compare performance with alternative strategies
for the NR problem.
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