
Bounds Consisteny TehniquesforLong Linear ConstraintsWarwik Harvey and Joahim ShimpfIC-ParImperial CollegeExhibition Road, London SW7 2AZ, UKwh�ipar.i.a.ukj.shimpf�ipar.i.a.ukAbstrat. We present a number of tehniques for eÆiently ahievingbounds onsisteny for linear onstraints with large numbers of variables.1 IntrodutionBounds onsisteny is a popular tehnique in onstraint programming over in-tegers and reals [3, 4℄. In this paper we examine how to eÆiently propagate alinear onstraint to ahieve and maintain bounds onsisteny. Our tehniquesare spei�ally aimed at onstraints with many variables, typially ahievingbounds onsisteny in sub-linear time. We do not address the issue of a moreglobal view of a system of onstraints, suh as onsidering multiple onstraintssimultaneously.Exept where noted, all the tehniques apply to either real or integer vari-ables, but see Setion 5.4 for a disussion of oating point rounding issues.This paper is organised as follows. In Setion 2 we start by presenting somenotation and the bounds onsisteny algorithm from [1℄ on whih we are improv-ing. In Setions 3 and 4 we present some re�nements to the basi propagationtehnique. In Setion 5 we disuss ombinations of algorithms, point out somepitfalls and suggest some areas for further investigation.2 Basi Two-Pass PropagationSuppose we wish to perform bounds propagation on a onstraintnXi=1 aixi � b (1)We assume for simpliity of exposition that the xi are distint variables and thatai > 0 for all i. If the xi are not distint then the propagation performed is likelyto be weaker than neessary, but no more so than with other approahes. If someCopyright 2002 IC-Par, Imperial College, London SW7 2AZ. All rights reserved.



of the ai are negative then some signs, bounds, et. will be swapped around butotherwise it is the same.For the urrent known lower (resp. upper) bound of the variable x we writex (resp. x). For onveniene we de�ne the interval Ii of variable xi (with respetto a given onstraint) as the ontribution the variable makes to the \variability"of the range of the LHS of (1), i.e.Ii = ai(xi � xi)Following (loosely) [1℄, let F = b� nXi=1 aixi (2)Then the bounds onsisteny ondition for the onstraint for any xj isxj � Faj + xj (3)Note that if F < 0 then the onstraint is unsatis�able (failure).As noted in [1℄, (2) and (3) allow us to ompute all the bounds imposed bythe onstraint in two passes over the onstraint: one to ompute F , and one toompute the (upper) bounds.In order to maintain bounds onsisteny, this omputation needs to be re-peated whenever one or more lower bounds have hanged. What we do in thefollowing is to investigate ases where this omputation step an be performedin sub-linear time.3 Re�nementsThe re�nements in this setion are based on the observation that ifxj � Faj + xji.e. Ij � F (4)then xj is already bounds-onsistent with respet to the onstraint (.f. (3)). Inpartiular, if F � maxj Ij (5)then no bound updates will our. Moreover, if it is not the ase, then thevariables a�eted are exatly those for whih the ondition (4) is violated.There are several ways we might try to exploit this. One is to try to detet(heaply) when no bound updates will our. Another is to try to determine



(heaply) whih bounds need to be updated (whih would yield the �rst aseif there are none). Of ourse neither of these approahes need be implementedexatly: the right trade-o� might be to use a (safe) approximation.In order to ahieve any signi�ant bene�t, any sheme ought to be able toahieve bounds onsisteny with respet to the onstraint in sub-linear time inat least some ases; otherwise it will be at best a onstant fator faster than basitwo-pass propagation. In partiular this means we annot a�ord to reomputeF every time we wish to propagate the onstraint.3.1 Maintaining FF is atually quite easy to update inrementally: whenever the lower bound ofa relevant variable (say xj) is modi�ed, simply adjust F aordingly:F := F � aj(new(xj)� old(xj))Note that the ost of maintaining this inrementally is linear in the numberof lower bound hanges sine the last time the onstraint was propagated. Itis possible that this ould be more than the number of the variables in theonstraint (making the ost super-linear). However, most solver implementationsalready inur a ost for notifying eah relevant onstraint on every bound updateanyway (meaning that maintaining F inurs at most a onstant fator penalty).3.2 Perfet PropagationConsider the set of variables xj suh that F < Ij . As noted earlier, these areexatly the variables whih need to be updated to ahieve bounds onsisteny.One way of quikly identifying these variables is to maintain a heap (priorityqueue) for every onstraint, with one heap entry for eah variable xj , using theorresponding interval sizes Ij for ordering (largest Ij on top). This heap givesonstant time aess to the xj with the largest Ij , and the variables needing abound update are those at the top of the heap. Indeed, if there are p variableswhih need bound updates, these an be identi�ed in o(p) time.The heap is an auxiliary data struture assoiated with the onstraint, andmaintained over the lifetime of the onstraint, i.e. until the onstraint is foundto be entailed or disentailed. The heap an be set up in linear time (see [2℄)during onstraint set-up, but obviously needs to be maintained as the Ijs shrinkduring the omputation. Whenever this ours (i.e. on every bound hange), thevariable's entry may need to be pushed down the heap, whih is O(logn). Theseupdate operations need to be undone on baktraking, whih an be done withthe same (or perhaps better) omplexity as the operations themselves.Note that if the variables are real (non-integer) variables or the oeÆientsare unit, then the heap does not even need re-balaning after propagation sineall the adjusted Ijs are idential. If the variables are integer and have non-unitoeÆients, then any bound update whih involved rounding may result in aheap adjustment being neessary.



3.3 Redued Frequeny PropagationThe ost of maintaining the heap as disussed above may be prohibitively ex-pensive. Fortunately, there are heaper ways to exploit the ondition (5). Forexample, we an just ahe the value of maxj Ij from the last time the on-straint was propagated and use this as an approximation of the atual urrentvalue of maxj Ij . As long as F is no smaller than the ahed value, no propa-gation is neessary. When it is smaller, then it may still be that no propagationis neessary, but we will not know without either reomputing maxj Ij or doingthe propagation. This tehnique allows us to skip the propagation in some ases(regardless of whether this propagation was to be performed using the basitwo-pass method or one of the other tehniques desribed below).We expet this to be of most bene�t when the onstraint is slak; that is,when F is signi�antly larger than maxj Ij . In suh situations, lower bounds (andthus F ) may be updated many times before F beomes less than the ahed valueof maxj Ij . Before that point, propagation is guaranteed not lead to any boundupdates and an therefore be skipped safely.3.4 Short-Ciruit Propagation (I)Another tehnique, whih would be most e�etive when the variables are booleanand the oeÆients vary, is to sort the onstraint by dereasing Ii when it is �rstset up, reording this initial interval for eah term. Then, when the onstraint isbeing propagated, one a term is reahed whih has reorded interval no largerthan F , there is no need to onsider any remaining terms (beause they areall guaranteed to satisfy (4)) and the propagation proess may stop. This ispartiularly e�etive for booleans sine a propagation pass �xes the values ofthe variables for some pre�x of the terms in the onstraints, and these termsdo not need to be onsidered again: next time a propagation is required, it anontinue from where it left o�. Note that this means suh a onstraint an bepropagated in O(n) time amortised over a forward exeution of the onstraint| albeit after an initial setup time of O(n logn).4 Entailment-based re�nementsWe now onsider the issue of entailment. LetE = nXi=1 aixi � bIf we know E as well as F then there are further interesting things we an try.Observe that if E � 0 then the onstraint is entailed and we need never onsiderit again (and need not maintain any information assoiated with it).4.1 Basi Entailment ChekWhen using basi two-pass propagation, during the �rst pass to ompute F , onean also ompute E, thus enabling entailment to be deteted.



4.2 Inremental Entailment DetetionWhen using one of the sub-linear propagation tehniques from Setion 3, we donot want to san the whole onstraint to hek entailment as this would destroythe sub-linearity. To overome this, we an maintain E in muh the same wayas we an F , by monitoring the relevant bounds and adjusting E aordinglywhen they hange, keeping everything sub-linear.4.3 Short-Ciruit Propagation (II)Next note that E + F =Xi Ii (6)Now suppose that we have \propagated" some set of variables T (updating Eappropriately), and that Xi2T Ii � E (7)Then we have that Xi62T Ii � FIn partiular, Ii � F; i 62 TThat is, we an skip propagating the rest of the onstraint beause none of theintervals are large enough to warrant adjusting.Another way of looking at it is that setting all the variables in T to their lowerbounds would result in the onstraint being entailed, and so for the remainingvariables all remaining elements of their domains are feasible (and hene annotbe pruned).Note that most bene�t an be derived from the ondition (7) if we onsiderthe variables with largest Ii �rst. As a heuristi we an sort the onstraint bydereasing Ii when the onstraint is set up (as in Setion 3.4), and when prop-agating, onsider them in this order. The rationale is that the smaller intervalsat the end of the list annot get any larger, so while the large ones at the frontmay get smaller, any large ones must still be towards the front of the list.If one is also using redued frequeny propagation (Setion 3.3) and thusahing maxj Ij , then it may be useful to start the propagation with the or-responding variable xj . In highly asymmetri onstraints it may be that thisinterval alone is as large as E, meaning propagation an be stopped withoutlooking at any other variables.



pre-sort IjsF E Ijs heap Appliable tehniquesno no no no Basi two-pass propagationBasi entailment heksyes no no no Redued freq. propagationShort-iruit entailment heksyes yes no no Redued freq. short-iruit (II) propagationInremental entailment detetionyes no yes no Redued freq. short-iruit (I) propagationShort-iruit entailment heksyes yes yes no Redued freq. short-iruit (I) & (II) propagationInremental entailment detetionyes yes no yes Perfet propagationInremental entailment detetionTable 1. Interesting ombinations of tehniques and their requirements4.4 Short-Ciruit EntailmentNote that we an also use (6) to derive a ondition whih allows us to short-iruit entailment heks (assuming we are not maintaining E inrementally).If we have proessed a set of variables T (during a propagation pass or expliitentailment hek) and we have Xi2T Ii > FThen we have that E >Xi62T Ii � 0and hene the onstraint annot be entailed.5 DisussionTable 1 summarises the interesting ombinations of the tehniques presented inthe earlier setions. We do not onsider the other ombinations interesting forthe following reasons:{ All the propagation approahes disussed in this paper require F so that weknow whether or not a bound we are looking at requires updating (and if soby how muh). If we do not maintain it we must reompute it, whih is o(n);thus the basi two-pass method (also o(n)) is optimal if F is not maintained.{ If we are using a heap to manage the Ijs, then sine we need to hek whetherthe heap needs adjusting on every bound update anyway, we might as wellmaintain E while we are at it: it is a onstant extra ost per upper boundhange, and it allows us to stop maintaining F and the heap one entailmentours.



{ Pre-sorting the onstraint based on initial Ijs not useful if we are going tomaintain a heap.5.1 EquationsEquations ould of ourse be implemented using a pair of mathed inequalities.However, it is obvious that this ould be improved upon. To begin with, anequation is never entailed until all the variables have beome ground. Thus thereis no point heking for entailment (one everything is ground, there is no workto save).Also, muh omputation an be shared between the two halves of the on-straint. For instane, if a heap is being used to manage the Ijs, then this heap isommon. Also, one half's E is the other half's F , so that options suh as short-iruit propagation (II) whih depend on E an be employed without inurringany additional maintenane ost.There is room for further exploitation here, but this is beyond the sope ofthis paper.5.2 Heuristi Method SeletionIt may be possible to selet one of the above methods as being suitable for apartiular onstraint at the time the onstraint is set up. For example, onsiderPni=1 xi � k where eah xi has domain f0; 1g. If k is small then the onstraint istight, and it may not be worth heking entailment: n� k upper bounds have tobe redued to 0 before entailment ours, saving at most k heks of (5) on lowerbound hanges. On the other hand, if k is lose to n then it probably is worthheking entailment: it introdues only O(n � k) extra work but ould save upto k heks of (5).5.3 SpeialisationsIn a number of ases, further bene�t ould be obtained by speialising the abovetehniques. In partiular, pseudo-boolean onstraints seem good andidates forthis, as do onstraints with only unit oeÆients.Some suh speialisations are obvious: for instane, if all oeÆients are unitand all variables are boolean (meaning all intervals are of size 1) then thereis no point having a heap, and the same e�et an be ahieved with a loweromplexity data struture (a list). Another ase, for booleans with arbitraryoeÆients, relates to the method presented in Setion 3.4: there is no need toreord the initial interval for eah variable, sine this is the same as the variable'soeÆient.5.4 Floating point onsiderationsIn priniple, all of the above tehniques (exept where noted) work for bothinteger and real oeÆients and variables. However, if oating point numbers



are being used to approximate reals, then oating point issues must be takeninto aount. Primarily, this involves making sure the results of oating pointoperations are rounded appropriately, so that (for example) F and E are al-ways overestimated, so that (for example) bounds imposed are onservative andentailment is never deteted when it shouldn't have been.With the methods that update values inrementally, the errors in these valuesan inrease as the omputation progresses. To maintain auray, the values anbe periodially re-omputed from srath.6 Future WorkFuture work inludes examining the open questions disussed above. This willrequire further theoretial analysis of the alternative algorithms, as well as im-plementing some of the more interesting approahes. An evaluation based onthese implementations should then provide insight into whih tehniques ouldbe useful under what irumstanes.We would also like to do a omparison with other tehniques for ahievingbounds onsisteny for linear onstraints, suh as indexials.Referenes1. Warwik Harvey and Peter J. Stukey. Constraint representation for propagation.In Mihael Maher and Jean-Franois Puget, editors, Proeedings of the Fourth In-ternational Conferene on Priniples and Pratie of Constraint Programming |CP'98, LNCS 1520, pages 235{249. Springer, 1998.2. Donald E. Knuth. The Art of Computer Programming. Volume 3: Sorting andSearhing. Addison-Wesley, seond edition, 1998.3. J-L. Lauri�ere. A language and a program for stating and solving ombinatorialproblems. Arti�ial Intelligene, 10:29{127, 1978.4. W. J. Older and A. Velino. Constraint arithmeti on real intervals. In Fr�ed�eriBenhamou and Alain Colmerauer, editors, Constraint Logi Programming: SeletedResearh, pages 175{196. MIT Press, 1993.


