
A Conservative Approach toMeta-Programming in Constraint LogicProgrammingPierre Lim and Joachim SchimpfEuropean Computer-Industry Research CentreArabellastra�e 17, 81925 M�unchen, Germanyfpierre,joachimg@ecrc.deAbstract. Constraint Logic Programming [4] extends Logic Program-ming by generalizing the notion of uni�cation to constraint solving. Thisis achieved by �xing the interpretation of some of the symbols in thelanguage. The two alternative mechanisms used in the currently imple-mented CLP systems to achieve this operation are: (1) �x the interpreta-tion before the program executes or (2) �x the interpretation at a pointduring program execution when it is used in a constraint. CLP(R) [5]and Prolog-III [1] take the �rst approach whereas CHIP [2] takes the sec-ond approach. The problem with the �rst approach is that interpretedterms cannot be manipulated syntactically. The problem with the secondapproach is that all constraint operations have to be made explicit andthis increases the di�culty of programming. We propose a synthesis ofboth approaches that overcomes their individual di�culties. Our methodis implemented in the ECLiPSe compiler system.1 IntroductionThe fundamental operation of uni�cation in Logic Programming (LP) has beengeneralized to constraint solving in Constraint Logic Programming (CLP) [4].Although this generalization greatly improves the e�ciency and utility of CLPlanguages compared to LP languages it also complicates meta-programming.The problem is to decide how and when to assign the �xed interpretations ofsome of the functors. For example, the functors 1, 2 and + in an arithmetic CLPlanguage are interpreted respectively as the arithmetic constants one, two andthe addition function. So the equation 1 + 2 = X + Y is equivalent to 3 = X+ Y. However, for meta-programming the symbols 1, 2 and + should be treatedsimply as uninterpreted symbols, so that the equation 1 + 2 = X + Y has thesolution f X = 1, Y = 2 g. It is not equivalent to 3 = X + Y which is unsatis-�able. The reconciliation of this overloading of functors is addressed by Heintzeet al. [3] in which they give a theoretical framework for the problem and discussa solution for the CLP(R) language. The problem with their method is that itis not conservative i.e. it does not preserve the current LP meta-programmingfunctionality, but rather it de�nes new functionality to replace that which waslost. The conservation of current functionality is important because it means

that tools, techniques and applications developed for LP systems are usable onCLP systems. On the other hand, CHIP which distinguishes constraints syntac-tically has no problem with meta-programming but every constraint operationhas to be made explicit, i.e all head uni�cations are syntactic not semantic. Thisis counter-intuitive if one expected, say, the + symbol to denote addition. More-over the requirement for explicit constraint operations places an extra burdenon the programmer.We present a simple syntactic transformation which achieves a synthesisof both approaches and overcomes their individual di�culties and provide animplementation in the ECLiPSe1 system. Our presentation is organized in thefollowing way. First, we de�ne the class of structures we are dealing with, i.e.those containing uninterpreted functors. The extensions to uni�cation requiredby CLP are then discussed. Next, the approach of [3] is briey reviewed. We usetheir theoretical basis in further discussions of the meta-programming problemand the solution. The CHIP approach is then discussed and be build on this ap-proach to develop our solution. Our solution and its implementation in ECLiPSeis then given. In sections 7 and 8 we present a comparison with the approach of[3] and give our solutions to their examples. Finally some concluding remarksare made and a summary of our results is given.2 Structures with uninterpreted functorsThe fundamental extension of LP to CLP is the assignment of a non-Herbrandinterpretation to some of the function symbols in the language and the inclu-sion of relations other than syntactic equality (according to a given algebraicdescription called the structure of computation). Of particular importance isthe structure of the Herbrand Universe (HU) since this is the core of the Prologprogramming language. In order to utilize Prolog programming techniques un-interpreted functors have to be included. We de�ne the class of structures withuninterpreted functors which we denote parametrically as HU(D) where D rep-resents the underlying algebraic structure e.g. rationals, reals, �nite domains.Prolog has the structure HU(?) since there is no structure under that of theuninterpreted functors.We now give some de�nitions and then proceed to consider the types inthese structures. A sort is a name of a type and a signature is a sequence of sorts.The alphabet of a CLP(HU(D)) language is partitioned into several classes.{ � is the set of uninterpreted (programmed) predicate symbols, e.g. laplace,fibonacci, nqueens.{ �D (�D \� = ;) is the set of interpreted predicate symbols and containsat least = (syntactic equality) in addition to any other predicates in D, e.g.for the rational arithmetic structure in CHIP the following symbols denote1 ECLiPSeis the platform on which work on constraint handling is being performedat ECRC. 2

the usual arithmetic equality and inequality relations: f $<=, $<, $>, $>=, $=g.{ � is the set of uninterpreted function symbols e.g. typeDevice, relay and[]. Constant symbols are 0-ary function symbols.{ �D (�D \ � = ;) is the set of interpreted function symbols, e.g. for therationals they are f+,-,*,/g [RC where RC is the set of constant symbolsfor the rational numbers.{ V is the set of variable symbols. We adopt the Prolog convention that allidenti�ers beginning with an uppercase letter or an underscore are variablesymbols.The �rst issue is to decide the range of variables. For this we have toknow what the types are. In HU(D) there are two types: D and FT . D is theparametric type, e.g. for HU(R) D is the structure of the rational numbers.D-terms are built from symbols in �D (respecting signatures). FT is the typeof �nite trees over D. FT -terms are built from symbols in � and D-terms, i.e.functors in � are constructors which can take as arguments either an (i) anuninterpreted constant, (ii) a D-term or (iii) an FT -term. The usual logicalvariables range over FT -terms. We introduce a new kind of variable called asolver-variable which ranges over D-terms. Note that solver-variables are atomicwithin FT -terms.3 Extended uni�cationFor the class of structures HU(D) we have to distinguish when to send equalitiesresulting from head uni�cation to the constraint solver for D. This extension issummarized in the table below: sv abbreviates solver-variable and unify denotesthe standard syntactic uni�cation operation. As one would expect the essentialoperations are: D-terms are sent to the constraint solver for D, uni�cationsbetween D-terms and FT -terms fail, both D-terms and FT -terms are bound tovariables and an equality between a solver-variable and an FT -term fails.Extended Uni�cation Table=$= �D � variable solver-variable�D send to solver fail bind send to solver� fail unify bind failvariable bind bind bind bind v ! svsolver-variable send to solver fail bind v ! sv send to solver4 The approach of Heintze et al.The approach of [3] is to extend the underlying structure of computation formeta-programming and this is accomplished as follows.3

{ For every interpreted function symbol a new uninterpreted function symbol(called the M-coded form) is added into �. For example, for �D = f +, -,*, / g we add the correspondingM-coded forms f +̂, -̂, *̂, /̂ g to �. We shallfollow the convention of [3] and denoteM-coded forms by placing a hat overthe symbol.{ The function quote maps an interpreted function symbol to its M-codedform.{ The function eval maps an M-coded form back to its interpreted symbol.The formal de�nitions (given by Heintze et al.) of quote and eval are givenbelow. The M-coded forms, quote and eval, and the axiom system below de�nea scheme of meta-programming structures of computation called M which canbe added to any CLP language. An instance CLP(R +M) is given by [3].quote(t) =8>>><>>>:V if t is the variable Vf̂(quote(t1); : : : ; quote(tn)) if t is f(t1; : : : ; tn),n � 0 and f is interpretedf(t1; : : : ; tn) if t is f(t1; : : : ; tn),n � 0 and f is uninterpretedeval(f̂(t1; : : : ; tn)) = f(eval(t1); : : : ; eval(tn)); n � 0eval(g(t1; : : : ; tn)) = g(eval(t1); : : : ; eval(tn)); n � 0eval(^quote(t)) = tUsing the meta-programming structure above we say that CLP(R) is aneval-quote language, i.e. all symbols are interpreted unless explicitly quoted.Thus to facilitate meta-programming CLP(R+M) provides the functions quoteand eval and the following functionality (tabulated below).Modi�ed Functionalitynonground/1 Fails if its argument has a unique valuenonvar/1 Succeeds if its argument is constrainedvar/1 Fails if its argument is constrainedrule/2 Like clause/2 of Prolog and produces FT -termsassert/1 Asserts the rule with the projection of the variables of therule (from constraint store) conjoined in the bodyretract/1 Retracts the rule using extended uni�cationNew Functionalitycoded ccs/1 Produces an M-coded term representing the constraintstoreground/1 Succeeds if its argument has a unique valuequoted rule/2 Like rule/2 but produces M-coded termsconstructed/1 Succeeds if its argument is bound to a structureunconstructed/1 Fails if its argument is bound to a structurearithmetic/1 Succeeds if its argument is a R-termsyntactic/1 Fails if its argument is a R-termquoted retract/1 Like retract but uses syntactic uni�cation only4

5 The CHIP approachCHIP [2] is a quote-eval language, i.e. all symbols are quoted unless explicitlyevaluated. However that there is no quote or eval function but instead theinterpreted predicates (denoted by symbols in �) evaluate their arguments.Note that the eval operation also marks (operationally the tag is changed) allvariables as solver-variables2. For example, for the CHIP constraint X + Y $= 6* Z involving the the rational arithmetic relation $=/2 the following steps areperformed.1. Both arguments are evaluated, i.e. eval(X + Y) and eval(6 * Z). Thishas the e�ect that the variables X, Y and Z are marked as solver-variablesand the binary functors + and * get assigned their arithmetic interpretation.2. The evaluated equality constraint is then added to the constraint store (i.e.the set of collected constraints) and a satis�ability check is made.Since all symbols are quoted, there is no problemwith meta-programming.However, this means that CHIP does not do semantic head uni�cation at all,unlike CLP(R). However, all semantic head uni�cations can be shifted into thebody where the interpreted predicates will evaluate correctly (see section 6.1 forthe transformation). For example, the transformation of a program to computeFibonacci numbers is given below where in CHIP the symbol $>= denotes therational arithmetic relation for greater-than-or-equal-to.The CLP(R) Fibonacci Program The CHIP Fibonacci Programfib(0,1). fib(X,Y) :- X $= 0, Y $= 1.fib(1,1). fib(X,Y) :- X $= 1, Y $= 1.fib(N,X1+X2) :- fib(N,Y) :-Y $= X1 + X2,N >= 2, N $>= 2,fib(N-1,X1), fib(N-1,X1),fib(N-2,X2). fib(N-2,X2).6 Our method and its implementation in the ECLiPSecompiler systemSince not all clauses in a CLP program will use extended uni�cation we make adistinction between those that have purely syntactic head uni�cation, which weshall refer to as ordinary clauses, and those that use extended head uni�cation,which we shall refer to as constraint clauses. In this way, we get the advantages ofthe eval-quote approach but with ordinary clauses we also get the usual LP termhandling capability. In CLP(R) all clauses are constraint clauses. We distinguishconstraint clauses in our language by a di�erent neck operator <-. (See section2 This operation is trailed and undone on backtracking5

8.2 for an example containing both kinds of clauses). Thus we can write theFibonacci program as follows.fib(0,1) <- true.fib(1,1) <- true.fib(N,X1+X2) <-N $>= 2,fib(N-1,X1),fib(N-2,X2).The ECLiPSe system contains CHIP constraint handling functionalityand is the platform currently used at ECRC to investigate constraint handling.Constraint clauses are handled by preprocessing with the objective of movingall extended uni�cations into the body. This is accomplished by using the globalmacro facility of the ECLiPSe compiler to expand all clauses with the <- neck(See Appendix A). However, a naive search for interpreted functors and replace-ment with a new variable produces incorrect results. Consider the followingexample. Since there are no interpreted functors in the head no preprocessing isdone at all. But the query max(1+3,1+1,2+2) incorrectly fails against the trans-formed program because a syntactic uni�cation is performed where a semanticuni�cation should have been done.Original CLP(R) Program Transformed ECLiPSe Programmax(X,Y,X) :- max(X,Y,X) :-X >= Y. X $>= Y.max(X,Y,Y). max(X,Y,Y) :-true.We now formally present our transformation and argue that it is correct.6.1 Transformation of constraint clausesWe split the description of our transformation into two cases. One where there issu�cient ground information to determine the type of uni�cation and the otherwhere there is not.Case 1: The head argument is not a variable. If a subterm in the head of aconstraint rule contains an interpreted symbol i.e. either an interpreted constantor an interpreted functor then we replace the term by a new variable and inserta solver call in the body. (See the example for the Fibonacci program above).Case 2: The head argument is a variable. Here we consider the problem of alias-ing. There are two cases, (i) where the call performs the alias and (ii) wherethe de�nition performs the alias. The �rst case occurs when the variable ap-pears only once in the head e.g. p(X,Y). In this situation we can simply perform6

a binding since the only \atomic" object that exists is the multiply-occurringD-term in the call i.e. there are no uni�cations between any head variables. Soclauses such as:p(X,Y) <- true.simply have <- replaced by :-.Case (ii) arises where a variable appears more than once in the head ofa constraint clause. In this case there could be a uni�cation between two headvariables. (See the example for max/3 above). Here we must move the extendeduni�cations between head variables into the body, i.e. the decision for a syntacticor semantic uni�cation is taken at runtime. For max/3 the transformed programis given below.max(X1,Y,X2) :-X1 =$= X2,X1 $>= Y.max(X,Y1,Y2) :-Y1 =$= Y2,true.7 Comparison with existing workCLP(R+M) modi�es the functionality of a number of standard Prolog builtinpredicates. The changes essentially involve extensions to the operations to coverthe cases where constraints are involved. Compared with our approach we do notmodify the builtins but instead can write new versions requiring the addition ofa few new builtin predicates. We shall go through the list of builtin predicatesthat are modi�ed in CLP(R +M) (the list is in section 4). If we assume thatvariables are instantiated if they have a unique value then there is no need tochange nonground/1. For modified var/1 we provide the following code.modified_var(X) :-var(X),!.modified_var(X) :-solver_variable(X).In a similar way to modified nonvar/1 we provide modified var/1.modified_nonvar(X) :-not(modified_var(X)).The code for modified rule/2, modified assert/1 and modified retract/1are given in Appendix B.Some of the new functionality provided in CLP(R +M) is redundantin ECLiPSe. ground(X) can be written as not(nonground(X)) where not/1 is7

negation-as-failure. quoted rule/2 is the same as clause/2. constructed(X)can be written as compound(X) and unconstructed(X) can be written asnot(constructed(X)). syntactic/1 is a simple term inspection predicate muchlike numbervars/3 which checks a term to make sure there are no (syntacticversions of the) interpreted functors in X and there are no solver-variables. (Forsolver-variables we need a new builtin, say solver variable/1, which simplychecks the tag). We have no need for explicit M-coded forms in FT -termssince all D-terms are atomic. arithmetic(X) is written as not(syntactic(X)).quoted retract/1 is the same as retract/1.Our approach has several advantages over that of [3].1. Since we are conservative of the standard meta-programming functionalityof Prolog, standard Prolog code will run without problems.2. We do not modify the standard semantics of any of the Prolog builtin pred-icates. Again, this has the advantage of the point above.3. Our approach is more exible because instead of hard-coding new function-ality into existing builtins we can write the required builtins at the user levelon top of existing functionality.4. Our approach conserves all existing Prolog optimizations including index-ing. Since the transformation moves all semantic uni�cations into the bodywhat is left in the head must be purely syntactic and so standard indexingtechniques can be used to discriminate between constraint clauses.5. Ordinary clauses not using constraints do not pay any performance penalty.6. Our scheme has the advantage that all syntactic uni�cations are scheduled�rst. Since calling the constraint solver for D is usually more expensive thansyntactic uni�cation, if the uni�cation fails due to some Herbrand constraintbeing violated then the D constraint solver will not be called.7. Our approach o�ers the user the possibility of tailoring the constraint han-dling mechanism since the transformation can be performed manually toachieve any degree of mixed syntactic and semantic head uni�cation han-dling.8. Thus we do not need explicitM-coded forms nor any explicit quote or evalfunction.8 ExamplesIn this section we examine several example that have been given by [3] anddiscuss their implementation in ECLiPSe.8

8.1 The standard meta-circular interpreterWe now compare the standard meta-interpreters as implemented for bothCLP(R+M) and ECLiPSe.CLP(R+M) meta-interpretergoal(true).goal((A,B)) :-goal(A),goal(B).goal(X) :-constraint(X).goal(X) :-rule(X,Z),goal(Z).constraint(A = B) :-A = B.constraint(A > B) :-A > B.
ECLiPSe meta-interpretergoal(true).goal((A,B)) :-goal(A),goal(B).goal(X) :-constraint(X).goal(X) :-clause(X,Z),goal(Z).constraint(A = B) :-A = B.constraint(A $= B) :-A $= B.constraint(A $> B) :-A $> B.The most noticeable di�erences are:{ We do not require a special version rule/2 of clause/2 in the fourth clauseof goal/1. This is because the semantic uni�cations have been moved into thebody where calls to the constraint solver for D can be treated like builtins.{ We add to constraint/1 a clause for semantic equality, i.e. $=.{ We use the ECLiPSe symbols (e.g. $>) for rational constraints in the de�ni-tion of constraint/1. The usual inequality symbols are already utilized bystandard Prolog arithmetics.8.2 Symbolic di�erentiationHeintze et al. [3] give a program in CLP(R+M) for the symbolic di�erentiationof a function in one variable as follows.diff(T,0) :-ground(T).diff(X,1) :-unconstructed(X),!.diff(quote(A + B), quote(DADX + DBDX)) :-diff(A, DADX), 9

diff(B, DBDX).diff(quote(A * B), quote(DADX * B + DBDX * A)) :-diff(A, DADX),diff(B, DBDX).?- Y = quote(X*X + 2*X + 1),diff(Y, DYDX),eval(DYDX) = 0,T = eval(Y),printf("Turning point: X = %, Y = % \n",[X,T]).In ECLiPSe the program is as follows.diff(T,0) <-ground(T).diff(X,1) <-unconstructed(X),!.diff(A+B,DADX+DBDX) :-diff(A,DADX),diff(B,DBDX).diff(A*B,DADX*B+DBDX*A) :-diff(A,DADX),diff(B,DBDX).?- Y = X*X + 2*X + 1,diff(Y,DYDX),DYDX $= 0,T $= Y,printf("Turning point: X = %d, Y = %d \n",[X,T]).The code for ground/1 and unconstructed/1 are as given earlier. Note that inthe third and fourth clauses there is no need in ECLiPSe to quote the argumentsin the head. We simply write them as ordinary clauses; this has the e�ect ofquoting all head arguments. Since = means Herbrand uni�cation there is noneed to quote the second argument of the �rst goal in the query. There is noneed to eval arguments in the third and fourth goals in the query because theD constraint solver automatically evaluates its arguments.8.3 Partial evaluationA technique of partial evaluation is also described by [3]. What is done is toexecute a query and then use the simpli�ed form of the answer to construct newrules. These new rules, of course, represent specializations w.r.t. the query. Theygive the following example. 10

resistor(V,I,R) :-V = I*R.?- resistor(V,I1,R1), resistor(V,I2,R2),I = I1+I2,assert(parallel_resistors(V,I,R1,R2)).This results in the following being asserted.parallel_resistors(V,I,R1,R2) :-I = V/R1 + V/R2.In ECLiPSe one can implement the above as follows.resistor(V,I,R) <-V $= I*R.?- resistor(V,I1,R1), resistor(V,I2,R2),I $= I1+I2,modified_assert(parallel_resistors(V,I,R1,R2) :- true).What modified assert/1 does is to get the variables in the head, performa projection of the constraint store w.r.t. these variables, append these con-straints into the body creating a new body B1 and then �nally add this newsyntactic clause into the dynamic database. Incidentally, it should be notedthat modified assert/1 corresponds to the CLP(R +M) assert/1 extendedto deal with constraints. The important point to note here is that instead ofhard-coding the meta-programming functionality we provide two new builtinssolver variable/1 and projection/23. Together with existing functionalitythis is su�cient to program whatever specialized versions of the existing builtinsis required at the user level. This makes our approach more exible and allowsbetter tailoring (of builtins) to application speci�cations.9 ConclusionThe incorporation of constraint handling into logic programming systems is animportant development and we have shown how it can be be integrated withexisting technology such that the existing functionality is preserved and thestandard environment, i.e. builtin predicates, is unchanged. We have discussedthe two possible approaches to implementing the mechanism that assigns the�xed interpretation i.e. quote-eval and eval-quote. Each of the alternatives hasdrawbacks but by combining both approaches through context we have a syn-thesis which overcomes the problems of the individual approaches. We have3 projection(V,C) binds C to a copy of the constraint store in which all variables notin the list V have been eliminated. This domain-speci�c builtin is provided by theuser. 11

presented an algorithm for implementing our method through a simple syntactictransformation, argued its correctness and given an implementation in ECLiPSe.Comparisons with existing CLP(R+M) meta-programming examples have beenmade. In summary, the advantages of our approach are as follows.{ Standard Prolog code runs unchanged.{ We do not require explicit quote or eval functions.{ We do not require a complex meta-programming constraint solver to dealwith equations explicitly containing calls to quote or eval as in CLP(R +M).{ Our approach is more exible (the user can perform the transformationmanually to tailor the system to application speci�cations).{ We do not alter the standard environment.{ Code not using constraints does not pay a penalty.{ We schedule (usually cheaper) Herbrand uni�cations �rst, thereby short-circuiting calls to the D-constraint solver in case of failure.{ We do not hard-code the meta-programming facilities into the system e.g.modified assert.AcknowledgementsWe thank Alex Herold, Mark Wallace, Mireille Ducass�e and Pascal Brisset fordiscussions and comments. This work was partially supported by Esprit Project5291 CHIC.References1. Alain Colmerauer, \Opening the Prolog-III Universe", BYTE Magazine, August,1987.2. Mehmet Dincbas, Pascal Van Hentenryck, Helmut Simonis, Abderrahmane Ag-goun, Thomas Graf and Fran�coise Berthier, \The Constraint Logic ProgrammingLanguage CHIP", Proceedings of the 1988 International Conference on Fifth Gen-eration Computer Systems, ICOT, 1988.3. Nevin Heintze, Spiro Michaylov, Peter Stuckey and Roland Yap, \On Meta-Programming in CLP(R)", Proceedings of the 1989 North American Conferenceon Logic Programming, Cleveland, Ohio, USA, October 16{20, 1989.4. Joxan Ja�ar and Jean-Louis Lassez, \Constraint Logic Programming", Proceedingsof the 1987 ACM Symposium on Principles of Programming Languages, Munich,January 1987, pp. 111{119.5. Joxan Ja�ar and Spiro Michaylov, \Methodology and Implementation of a CLPSystem", Proceedings of the 4th International Conference on Logic Programming,Melbourne, 1987, pp. 196{218. 12

Appendix A.%% Operator declaration for constraint clauses%:- op(1200,xfx,<-).%% Operator declarations for Rationals%:- op(700,xfy,$=).:- op(700,xfx,$<=).:- op(700,xfx,$<).:- op(700,xfx,$>).:- op(700,xfx,$>=).:- op(700,xfy,=$=).%% Interpreted functors for the Rationals%interpreted(X) :- integer(X).interpreted(_ + _).interpreted(_ - _).interpreted(_ * _).interpreted(_ / _).transform((Head <- Body), (NewHead :- NewBody)) :-functor(Head, F, A),functor(NewHead, F, A),find_semantic_unifs(A, Head, NewHead, [], SemUnifs, [],Varmap),find_aliases(Varmap, Aliases),add_goals(Aliases, Body, Body1),add_goals(SemUnifs, Body1, NewBody).find_semantic_unifs(0, _, _, Goals, Goals, Aliases, Aliases) :-!.find_semantic_unifs(N, Head, NewHead, Goals0, Goals,Aliases0, Aliases) :-arg(N, Head, Arg),arg(N, NewHead, Aux),find_semantic_unifs1(Arg, Aux, Goals0, Goals1,Aliases0, Aliases1),13

N1 is N-1,find_semantic_unifs(N1, Head, NewHead, Goals1, Goals,Aliases1, Aliases).find_semantic_unifs1(X, Y, Goals, Goals, Al, [X=Y|Al]) :-var(X),!.find_semantic_unifs1(X, Y, Goals, [Y $= X | Goals], Al, Al) :-interpreted(X), !.find_semantic_unifs1(X, X, Goals, Goals, Al, Al) :-atomic(X), !.find_semantic_unifs1(X, Y, Goals0, Goals, Al0, Al) :-functor(X, F, A),functor(Y, F, A),find_semantic_unifs(A, X, Y, Goals0, Goals, Al0, Al).find_aliases([], []) :- !.find_aliases(Aliases0, Aliases) :-sort(Aliases0, [First|More]),find_aliases(First, More, [], Aliases).find_aliases(X=X, [], Al, Al) :- !.find_aliases(X=Y, [X1=Y1|More], Al0, Al) :-(X == X1 ->Al1 = [Y =$= Y1|Al0]; X=Y,Al1 = Al0),find_aliases(X1=Y1, More, Al1, Al).add_goals([], Body, Body) :- !.add_goals([Goal|Goals], Body0, (Goal , Body)) :-add_goals(Goals, Body0, Body).:- define_global_macro((<-)/2,transform/2,[clause]).The =$= predicate is a user-level predicate that rei�es extended uni�cation. It isonly used in the case where there is a head uni�cation between two variables. Inthis case, both variables could be FT -terms requiring a combination of syntacticand semantic uni�cation. 14

Appendix B.interpreted(_ $= _).interpreted(_ $< _).interpreted(_ $> _).interpreted(_ $<= _).interpreted(_ $>= _).interpreted(_ =$= _).modified_clause(H,B) :-functor(H,F,A),find_semantic_unifs(A,H,NewHead,[],SemUnifs,[],VarMap),clause(NewHead,B),extended_unifs(SemUnifs),find_aliases(VarMap,Aliases),extended_unifs(Aliases).extended_unifs([]) :- !.extended_unifs([H|T]) :-call(H),extended_unifs([T]).get_vars(T,VarsSeen,NewVars) :-modified_var(T),!,NewVars = [T|VarsSeen].get_vars(T,VarsSeen,NewVars) :-functor(T,_,Arity),Arity > 0,!,get_vars_aux(Arity,T,VarsSeen,NewVars).get_vars(T,Vars,Vars).get_vars_aux(0,_,Vars,Vars) :- !.get_vars_aux(N,T,Vars0,Vars) :-arg(N,T,Arg),get_vars(Arg,Vars0,Vars1),N1 is N - 1,get_vars_aux(N1,T,Vars1,Vars).get_vars(T,V) :-get_vars(T,[],V1),sort(0,<,V1,V).modified_assert(H :- B) :-get_vars(H,V), 15

projection(V,C),add_goals(C,B,B1),assert(H :- B1).goals_only((G1,G2),G,O) :-goals_only(G1,G,O1),goals_only(G2,O1,O).goals_only(G,I,I) :-interpreted(G),!.goals_only(G,I,[G|I]).modified_retract(H :- B) :-functor(H,F,A),find_semantic_unifs(A,H,NewHead,[],SemUnifs,[],VarMap),clause(NewHead,Y),goals_only(B,[],BOnly),goals_only(Y,[],YOnly),B = Y,extended_unifs(SemUnifs),find_aliases(VarMap,Aliases),extended_unifs(Aliases),retract(NewHead :- Y).
This article was processed using the LaTEX macro package with LLNCS style16

