
An Improved Hybrid Model for the GeneriHoist Sheduling ProblemDaniel Riera (daniel.riera�uab.es)Universitat Aut�onoma de Barelona, SpainNeil Yorke-Smith (nys�ipar.i.a.uk)IC{Par, Imperial College, London, United KingdomAbstrat. The generi hoist sheduling problem is NP-hard and arises from auto-mated manufaturing lines. In reent work using the onstraint logi programming(CLP) formalism, a uni�ed model has been developed with the problem desriptionand solution method separated. We provide an improved model and new prepro-essing stages where, as before, solutions and proof of optimality are provided bya hybrid CLP{MIP algorithm. The new algorithm is more salable and robust. Wegive empirial results for a range of problem lasses on benhmark problems fromseveral soures.Keywords: hoist sheduling, hybrid methods, modelling, benhmarks1. IntrodutionHoist sheduling is an abstration of a ommon industrial problem.Computer-ontrolled hoists (or transport robots) are used in PCBeletroplating and other setors to move material through some �xedsequene of operations. The importane of optimising the hoist move-ments is that the same proedure is performed ontinuously for manyweeks, and a hange in the prodution run may require several weeksof downtime (Shapiro and Nuttle, 1988).The �rst solutions to the hoist sheduling problem used mathemat-ial programming (Phillips and Unger, 1976). Later, arti�ial intel-ligene tehniques in the forms of loal searh and onstraint logiprogramming (CLP) were applied (Baptiste et al., 1994; Lam, 1997).More reently, a hybrid tehnique that ombines MIP and CLP hasbeen developed (Rodo�sek and Wallae, 1998). In this paper, we elab-orate and generalise the hybrid approah, presenting a revised CLPmodel and new preproessing stages.Below we introdue and lassify the hoist sheduling problem (HSP)in more detail, and, in Setion 2, present the new model. Setion 3disusses the solvers used and the hybridization between them, andSetion 4 gives our results for a number of benhmark problems. Finally,we draw some onlusions in Setion 5.Published in Annals of Operations Researh 115 (2002). 2002 Kluwer AademiPublishers. Some minor oversights have been orreted in this version.



21.1. Hoist ShedulingThe simplest ase of the hoist sheduling problem is the basi problemintrodued by Phillips and Unger (1976). A single omputer-ontrolledhoist operates on a single trak above a sequential line of tanks. A largenumber of idential jobs are plaed at the initial stage of the line. Eahjob is to be proessed through the tanks and plaed at the far end.Hoist sheduling is distinguished from lassial sheduling problems,suh as owshop or jobshop, in that, �rst, no waiting of jobs during anoperation is permissible, seond, travel times of an operation are notnegligible, and third, there is no intermediate storage between tanks. Inaddition, to reet the industrial situation, the presribed proessingtimes in the tanks are bounded in a time window but need not be �xed.Jobs are assumed to be idential in the basi problem. If the jobsdi�er or fall into multiple types, the nature of the HSP hanges andthe algorithms are quite di�erent. The same ours if the arrival ofjobs is not known in advane (the dynami hoist sheduling problem(Lamothe et al., 1994)).In the yli hoist sheduling problem (CHSP), the same sequeneof operations is repeated. One omplete sequene is a yle, and thelength of time required for one yle is the period (or yle time ormakespan). In a single part problem, one job enters and one job leavesthe system in every yle. In a multi-part or r-part system, r jobs enterand leave in every yle (Kats et al., 1999). Generalising the CHSP, then-periodi hoist sheduling problem (Levner et al., 1995) has a yleomposed of n smaller repeated sequenes. The most ommon ase inindustry is the yli hoist sheduling problem with homogeneous jobs(Shapiro and Nuttle, 1988).The basi problem does not aount for all of industrial pratie.The most notable extension is to multiple hoists, whih may share onetrak or have one trak eah. If the number of hoists is greater thanthe number of traks, ollisions must be avoided, whih neessitateshoist assignment (how hoists are assigned to tanks). Other variationsfrom the basi problem inlude a single load/unload stage rather thanone stage at eah end, and multi-funtion tanks, those visited by a jobmore than one. Either of these possibilities entails bidiretional hoistmovement while arrying a job. Some tanks may be dupliated or havea apaity greater than one, in order to redue a bottlenek in the line.Varnier et al. (1997) give a partial survey of the literature on theforms of the HSP. To further aid in the lassi�ation, we propose anotation for the problem lasses similar to that used in queueing theory.Denote a lass of the HSP as F/H/T/A/r to indiate:� F: zero or more of the ags:



3� C: yli� D: dynami� H: heterogeneous jobs� N: non-sequential� H: the number of hoists, 1 (single) or M (multiple)� T: the number of traks, 1 (single) or M (multiple)� A: hoist assignment1, one of:� D (determined, i.e. partitioned)� C (ollision-based)� O (optimal)� r: the number of parts, 1 or an integer rTerms may be omitted where implied or irrelevant: for instane,we onsider only single-part problems so will omit the r term. Phillipsand Unger's problem PU12, introdued below, is lassi�ed as C/1/1,for example, whereas the most general problem onsidered by Rodo�sekand Wallae (1998) is C/M/M/C. The notation is easily extensible.1.2. Previous Work1.2.1. MIP ApproahesPhillips and Unger (1976) introdued the HSP and provided the now-famous benhmark problem, PU12. They used a MIP model to �nd theminimum yle time for this real-world twelve-tank problem2.Shapiro and Nuttle (1988) introdued a revised branh-and-boundproedure and used MIP on di�erent sub-problems to bound the searhspae. Levner et al. (1995) improved the upper bound for the period.Lei and Wang (1991) solved the HSP for two hoists on the sametrak. They introdued a new heuristi algorithm whih partitions theline of tanks into two ontiguous sets and assigns to eah hoist one set.Lei et al. (1993) gave an improved heuristi, where the hoists mustbe sheduled to avoid traÆ ollisions (no partitioning is used). Theywere not able to guarantee the optimal solution.There have been a number of works presenting progressively betteror broader MIP models (Armstrong et al., 1992; Chen et al., 1998; Yihet al., 1993; Leung et al., 1997) and branh-and-bound proedures (Leiand Wang, 1994; Ng and Leung, 1997). Bidiretional multiple hoistswere onsidered �rst by Manier (1994).1.2.2. CP ApproahesThe �rst approah to exploit onstraint programming was by Baptisteet al. (1992). They demonstrated that the versatility of CLP allowed



4the rapid development of omputational models for di�erent lasses ofhoist sheduling problems. Their results showed that CLP with a linearsolver is more e�etive than onstraint propagation over �nite domains.They were able to produe an optimal shedule for the problem PU12,with a revised model, in less than one minute.Varnier and others (Varnier et al., 1997; Manier et al., 2000)extended this work to model multiple hoists and non-sequential treat-ment, inluding multi-funtion and dupliated tanks but not higherapaity tanks. They resolved the hoist assignment in only a restritedform using heuristis.Cheng and Smith (1996) onsidered a multi-produt single-hoistHSP where eah job may require treatment in a subset of the tanks(tank skipping). Mak et al. (1998) used onstraint satisfation to solvethe single-hoist CHSP with multi-funtion and dupliated tanks and asingle load/unload stage.1.2.3. Hybridization and Hybrid ApproahesTsang et al. (1999) doument a range of diÆult ombinatorial prob-lems solved by exploiting integer programming (IP) and onstraintprogramming (CP) together in hybrid approahes. Hooker et al. (2000)provide a generi sheme for hybridization between optimisation andonstraint satisfation methods, emphasising the omplementarystrengths of the two methods respetively in searh and relaxation andin inferene and strengthening. Several researhers report on problemsnot solvable in reasonable time by either IP or CP alone, but whih fallto a ombined approah (Baptiste et al., 1998).A hybrid model was �rst applied to the HSP by Rodo�sek andWallae(1998). Their model was resolved using propagation and searh in theCLP platform ECLiPSe and linear solving in an external pakage. Theadvantage of hybridization for the HSP has been to extend the lassof problems that an be handled by a single model, to allow a singlesolver algorithm to work aross these lasses, and to provide proof ofoptimality in ases whih are beyond traditional methods.Rodo�sek and Wallae (1998) onsider a generi lass of CHSP withsingle or multiple hoists, traks, and tank apaities. In their hybrid,every onstraint is passed to a CLP solver and a MIP solver. Theyintrodued a harder thirteen-tank variant, PU13, of the Phillips andUnger problem, in whih jobs are moved from the load stage to the�rst tank by a separate mehanism. To be able to ompare results, wewill onsider PU13 rather than PU12.Other algorithmi approahes to the problemwere partially surveyedin Hall et al. (1997). For example, petri-nets (Denat et al., 2000),geneti algorithms for the single-hoist instane (Lim, 1997), and loal



5searh, notably simulated annealing (Lam, 1997). With the exeption ofertain restrited or simpli�ed ases, all the hoist sheduling problemsintrodued above have been shown to be NP-hard (Hanen, 1994).This paper ontributes a more salable and robust hybrid model,improving the work of Rodo�sek and Wallae (1998). We provide resultsanalysing the performane of the three main approahes to the HSPon known benhmark problems, and point out future enhanements forthe hybridization. 2. The ModelThe expressiveness of CLP allows the easy modelling of both the lin-ear and disjuntive onstraints in the HSP. We exploit the automatitranslation of Rodo�sek et al. (1997) to produe from the delarativeCLP model one suitable for a MIP solver.2.1. Variables and NotationThe following are all integers, with the deision variables in bold fae:N number of tanksR number of traksH number of hoistsJ number of simultaneous jobsT number of treatmentsS(i) tank for ith treatmentC(j) apaity of tank jm(j) minimum treatment time in tank jM(j) maximum treatment time3 in tank jE(j; k) time to move empty hoist from tank j to tank kF (j; k) time to move full hoist from tank j to tank kT (i) atual time of ith treatmentR(i) removal time upon ompletion of ith treatmentB(i) number of the hoist that performs the ith transfer operationP yle periodThe hoists and tanks are numbered from left to right; the load andunload tanks are onsidered to be tanks 0 and N +1 respetively4. Wetake the ith transfer operation as being from tank S(i) to tank S(i+1);



6hene T � N + 1 if every tank is used (strit inequality is possible inthe ase of multi-funtion tanks).For all tanks, E(j; k) = E(k; j). For non-dupliated tanks, E(j; j) =0, while for dupliated tanks, following Shapiro and Nuttle (1988),E(j; j) 6= 0 and we take E(j; k) = maxl(E(l)(j; k)), where E(l)(j; �)denotes the lth dupliated tank at position j.For those variables whih relate to tanks by absolute index ratherthan by treatment sequene, we write Ci for C(S(i)), Fi forF (S(i); S(i + 1)), et. For the other variables, Ri � R(i), et. We willonsider later only sequential treatments, that is when T = N + 1 andS(i) � i.In an industrial setting, the time to perform a transfer operation isgreater than the time to move the hoist between two tanks: we mustraise the job, allow it to drip o� above the tank, move, stabilise andlower. Without loss of generality, we inlude all this in the full times.Our model di�ers from previous CLP approahes in that we optimiseusing the removal times. Previous authors used both entry and removaltimes (Rodo�sek and Wallae, 1998), entry and treatment times (Varnieret al., 1997) or treatment and removal times (Mak et al., 1998). A sin-gle variable per treatment yields a smaller searh spae and simpli�edonstraints; the treatment times an be derived by:Ti = Ri � (Ri�1 + Fi�1)(1)Given a single-part yle, we suppose the system is in steady state;thus exatly one job enters and one job leaves the system in every yle.We seek values for the unknowns R(i), B(i), and P ; the period will beintegral sine the data is integral.2.2. ConstraintsThe onstraints for a simple single-part yli HSP with time windowsand tank apaities fall into four ategories: the treatment sequene,the 1-part yle, the tanks, and the hoists.First, the yli struture and tank apaities are linked. If a tankis full to its apaity, the �rst job that entered (we assume �rst-in,�rst-out) must be removed before the arrival of the next job. Hene,onsidering tank i with tank apaity C(i), a job must be removedbefore the arrival of the job whih is C(i) yles behind it in theprodution sequene. We derive:R1 < P � C1Ri < P � Ci +Ri�1 + Fi�1(2)In the ase of simple apaities, the same holds with Ci � 1.



7The yli struture leads to a seond onstraint, sine in every yleall T operations must be performed one. It follows that the proesstime for a job annot be greater than the produt of the number ofjobs and the period: RT + FT � J � P(3)Third, the treatment time for every tank must be bounded by thegiven data. Using (1), we have:mi � Ri � (Ri�1 + Fi�1) �Mi(4)Finally, we have onstraints on the hoists. Sine eah hoist anperform only one ation at a time, we must avoid: removal of jobsfrom multiple tanks at one, removal of a job from a tank while thehoist is transporting another job, and the movement of the hoist fasteror slower than the spei�ed translation times.Assuming a 1-part system, more subtly, a resoure lash on a hoistwill our if we ask it to perform a task on a job at time � , and a taskis being performed on another job at time �+P . Here, the lash will bebetween the �rst task on one job and the seond task on the followingjob. Generalising, we must rule out two tasks for any pair of times �and � + kP , where 0 < k < J .It follows that at the entre of the HSP model is a three-variabledisjuntive onstraint: exatly one ofRi + Fi +Ei+1;j � Rj + k � P(5)or Rj + Fj +Ej+1;i + k � P � Ri(6)must hold, for all k = 1; : : : ; J � 1; i; j = 1; : : : ; T ; j < i.2.3. Boolean Variables and PreproessingWe use a boolean variable to denote, given any two tanks i > j, whetherthe hoist either goes �rst to i (when (5) applies) or to j (when (6)applies). For eah pair of tanks i > j and distane k between jobs inthe prodution sequene, let Bi;j;k be a boolean variable suh that (5)holds i� Bi;j;k = 1. Then onstraint (5) beomes (with (6) similarly):Ri + Fi +Ei+1;j � Rj + kP + (1�Bi;j;k) � 
(7)where 
 is an integer that dominates the expression (a `big-M' term).Let us now assume sequential treatment. It is possible to eliminateertain ontraditory situations in advane by a preproessing step,



8initialising some of the Bi;j;k. Consider a job m in tank i and a jobm + k, 1 � k < J , in tank j = i � 1. With unit tank apaities it istrivially not possible to move job m + k before m; that is, the hoistmust visit i before j, or equivalently, Bi;j;k = 1.More generally, for 2 � i � T and 1 � j; k;m < T ,(j = i�m ^ k � m)) Bi;j;k = 1(8)The redution in boolean variables redues the searh spae and thenumber of ative onstraints, and sharpens the relaxation bounds. Withfour-job PU13, for example, the redution is from 234 to 98 variables.2.4. Further HSP Classes2.4.1. Multiple Hoists, Multiple TraksThe same model applies for C/M/M as C/1/1 but with some onstraintsremoved. We assume that eah treatment tank S(i) is assigned to onehoist B(S(i)) whih will handle the tank for the ith transfer. Sine eahhoist has a dediated trak, ollisions are not possible. Hene, if twotanks are handled by di�erent hoists, neither (5) nor (6) applies.As before, we expliitly unfold the disjuntion with an auxiliaryboolean, in order to be able to perform some preproessing. For eahpair of tanks i > j, introdue Ci;j suh that the disjuntion appliesonly if both tanks are handled by the same hoist:Bi 6= Bj , Ci;j = 1(9)Hene, (5) beomes:Ri + Fi +Ei+1;j � Rj + kP + (1�Bi;j;k + Ci;j) � 
(10)Without loss of generality, we assignB(1) = 1 to remove symmetries.It is not possible to similarly set R1 = m1; this may prevent the optimalperiod from being found.2.4.2. Hoist AssignmentBefore we an present the model for C/M/1/x, we must disuss theproblem of hoist assignment. Varnier et al. (1997) desribe the threepossibilities in the literature. In order of generality:1. Disjoint zones (Lei and Wang, 1991). Eah hoist is assigned a on-tiguous set (or zone) of tanks, and moves only within this set. Setsare disjoint between hoists exept for boundary tanks.2. Collision-based (Hanen and Munier, 1994; Lei and Wang, 1994;Manier, 1994). The sets for eah hoist need not be disjoint, noreven ontiguous. The hoists must be managed to avoid ollisions.



93. Optimal (Kats and Levner, 1997; Levner et al., 1995). Rather than�xing the number of hoists then assigning tanks, �nd the minimalnumber of hoists that an ahieve a given period, or the minimalperiod.The third lass, C/M/1/O, is a very diÆult problem. It has beensolved by non-CP methods only when other restritions have beenplaed on the HSP (Kats and Levner, 1997; Lei et al., 1993), suhas �xed proessing times rather than time windows. With CP, we an�nd the number of hoists that minimises P , by labelling H upwardsfrom the lowest value in its domain, until the period found with H +1hoists is the same as that with H hoists.Varnier et al. (1997) onsider the seond lass, C/M/1/C, but withsome restritions. They assume, reasonably, that overlap tanks areaessed only by adjaent hoists, and, more restritively, that eahhoist has at least one tank that it alone aesses. Their solution usesheuristis and is not guaranteed to be optimal. Below, we make the �rstassumption but not the seond, thus giving the optimal ollision-basedhoist assignment.2.4.3. Multiple Hoists, Single TrakWe assume again sequential treatment. First, the additions to the basimodel for C/M/1/D. Every hoist has a set of tanks that it handles, andthe intersetion with the other zones is null exept for boundary tanks.To ahieve this, a system of onstraints related with the B(i) variablesis added: B(i� 1) + 1 � B(i) � B(i� 1) (i = 2; : : : ; T � 1)(11)The domains of the B(i) an be redued by eliminating unreahabletanks (sine hoists may not pass eah other). Observe that the �rsttank an be reahed by the �rst hoist alone, the seond tank by the�rst and the seond hoists only, et. By symmetry, B(1) 2 f1g; B(2) 2f1; 2g; : : : ; B(N�1) 2 fH�1;Hg; B(N) 2 fHg. Further, as in C/M/M,we need no onstraint for those tanks handled by di�erent hoists, butnow the relation for the Ci;j is linear: Ci;j = Bi �Bj .Seond, ollision-based hoist assignment, C/M/1/C. We must on-sider three new possibilities:� B(i) = B(j): tanks i and j are handled by the same hoist; thedisjuntive onstraint remains unhanged.� B(i) > B(j): the disjuntive onstraint is unneessary, beausetanks i and j are handled by hoists whih will never meet.



10� B(i) < B(j): the disjuntive onstraint must be modi�ed to ensurethe �rst hoist to move retires in time for the seond.Introduing additional boolean variables Di;j , we obtain:Bi > Bj , Ci;j = 1Bi < Bj , Di;j = 1(12)and onstraint (5) now beomes, for i > j and Æ1 = Ei+1;j�1 �Ei+1;j:Ri + Fi +Ei+1;j � Rj + kP + ((1 �Bi;j;k) + Cij) � 
� Æ1 �Di;j(13)2.4.4. Dupliated and Multi-funtion TanksDupliated tanks are often used in industry to remove a bottlenek onthe line: for instane for a drying stage that takes 10 times longer thanany other stage. We have instead onsidered higher apaity tanks.Multi-funtion tanks are those that are visited more than one bythe same job. From suh a non-monotoni treatment sequene, it fol-lows that jobs will have to be transported both right and left, whihadds onsiderably to the omplexity of the problem, partiularly inhoist assignment. Combining load and unload stages also introduesbidiretional hoist movement; Mak et al. (1998) examine this ase andshow a small hange in the onstraint model they give is suÆient.3. The SolversTo �nd solutions to the onstraint model given in the previous setions,we implemented solvers for the three main approahes to the HSP |pure CP, pure MIP and hybrid| using the Prolog-based ECLiPSe plat-form (IC{Par, 2001). ECLiPSe implements a number of CLP shemesand provides an interfae to internal and ommerial solvers. For theonstraint propagation, we used the fd �nite domain solver built-in toECLiPSe. For the MIP solving, we used the CPLEX pakage.Initial bounds for the unknowns, the period P and removal timesR(i), are ruial to the MIP solver (onstraint propagation will inferthe bounds in the CP solver). For the period, the bounds are:&PTk=1mk +PTk=1 FkN ' � P(14)and P � TXk=1 (mk + Fk)(15)



11The seond inequality (15) is obtained by supposing we proess onejob at a time, but is not the tightest known; Levner et al. (1995) give analgorithm based on a merge-sort of interval sets. For PU13, for example,the bound is 933 rather than 1472 (Mak et al., 1998). However, sinethe CP searh begins from the lower bound of the period, the upperbound is of little relevane to the CP solver.For the removal times, the bounds are:m(1) � R(i) � TXk=1Mk + T�1Xk=1 Fk (i = 1; : : : ; T )(16)The �nal sum is only to T � 1 beause the time to move the jobfrom the last treatment tank to the unload station is irrelevant to theremoval times.3.1. CP SolverThe onstraints, those desribed in Setion 2, are onsidered only bythe fd solver; propagation is performed over �nite domains. Heuristisan be applied easily in CP to deisions suh as the order of labellingof the variables and the order of value seletion. We evaluated variouspossibilities before settling on that whih performed best overall.First we label the period, P , starting from the lowest value in itsdomain. If onstraint propagation yields a onsistent situation fromthe andidate value of P , we attempt to label the other variables. Bylabelling P from the lowest value, the �rst solution found will be theoptimal solution; no separate proof of optimality is neessary.After P , we label the assignment of hoists to transfer operations(in multi-hoist problems), then the removal times, R(i), and �nally theauxiliary booleans. This order gives maximum onstraint propagationand searh tree pruning. We used no in-searh symmetry breaking.For the problem C/M/1/D, we applied a redundant onstraint: atmost T�H+1 treatments an be handled by a single hoist (sine eahhoist must perform at least one treatment not to be redundant). Thisonstraint furthers propagation a little, and is also applied to the CPomponent of the hybrid solver.3.2. MIP SolverThe onstraints are passed to the MIP solver via the eplex interfae ofECLiPSe. Searh is performed within the MIP pakage, by the defaultlinear solving algorithm hosen by the CPLEX heuristis.MIP performane is very dependent on the number of variables andon the bounds for the objetive. The preproessing steps of boolean



12variable redution, symmetry removal and hoist assignment domainredution give a marked improvement, examined in Setion 4. Theoptimal period and whole solution is returned to ECLiPSe.For the problem C/M/1/C, we performed a two-stage solution. The�rst solves the same problem but with partitioned hoist assignment.This is muh simpler than ollision-based assignment but | sine theperiod for the latter, being less onstrained, annot be larger than theformer | this �rst step provides a greatly improved upper bound onthe period. With this upper bound, we then solve the full problem.This tehnique was also used for the hybrid solver.3.3. Hybrid SolverThe onstraints here are onsidered by both solvers, with searh ontrolhandled by ECLiPSe. Information obtained by one solver is immedi-ately available to the other via shared bounds and variable domains.We �rst perform onstraint propagation on �nite domains, poten-tially yielding new upper and lower bounds on the variables. Seond,the LP solver is invoked on the ontinuous relaxation (integer ondi-tions omitted). When the relaxed problem is solved, ontrol returns toECLiPSe with the lower bound on P improved.Third, we label the period P , as in Setion 3.1. If a andidate valueis aeptable after propagation, we attempt to label the other variables(hoist assignment and then removal times) by domain splitting. Shouldthis sueed, we have the optimal solution; should it fail, we baktrakto label P further.In the previous hybrid method (Rodo�sek and Wallae, 1998), theLP solver was invoked on the relaxed problem eah time the bounds onP hanged. Our experimentation showed that the information gainedby subsequent invoations did not outweigh the ost overhead of theLP solver runs. While the simpler hybrid performs better overall, theargument an be made for a greater LP involvement in some ases.Indeed, Rodo�sek and Wallae show that both �nite domain and LPfailures are neessary to prune the searh spae, and that there is aertain amount of orthogonality between the two methods. The hybridalgorithm gains from the LP solver global onsisteny of the ontinuousrelaxation, an improved lower bound on the period, and (although wedo not make use of them) suggested values for the other variables.Most important to the hybrid is the quality of the bound providedby the relaxation. We disuss in Setion 5 the formulation of the hybrid,o-operation between the solvers, and quality of the relaxed bound.



13Table I. Hoist sheduling problems from Rodo�sek and WallaeRW1 PU13 with four jobsRW2 RW1 with tank apaity twoRW3 RW1 with two hoists and one trak, ollision basedRW4 RW1 with two hoists and two traksTable II. Results for the instane PU13Parameters Solution Time (ses)hoists traks apaity jobs period p mip hybrid1 1 1 4 521 1.95 2.61 4.901 1 2 4 521 27.20 2.88 69.962 2 1 4 379 6.45 101.72 11.362 2 1 8 219 * * 352.253 3 1 11 155 * 8550 311.914 4 1 11 151 7207 13.88 11.192 1 1 4 395 1192 7.65 89.642 1 1 7 251 * 620.83 36013 1 1 10 196 * 15910 *4 1 1 11 152 9092 2612 645.764. Results and Analysis4.1. Empirial ResultsWe give the results of the three solvers, pure CP, pure MIP and hybrid,for a range of data sets and problem parameters. The results wereobtained on a 450MHz Pentium II with 384MB memory, using ECLiPSeversion 5.1. The times given below are in seonds to �nd the optimumand prove optimality. CPLEX version 7.0 was the LP solver used, withdefault settings and propagation.The �rst results are those for variants of the PU13 problem. Table Ishows the four benhmark problems onsidered in Rodo�sek andWallae(1998), and in our results, given in Table II, these orrespond to thelines with four jobs. The other lines in Table II give the number of jobsfor whih the minimal period is �rst ahieved; * denotes more than18,000 seonds (�ve hours) of CPU time.Figure 1 shows our results for PU13 with four hoists and four traks.An extended timeout of 40,000 seonds was used. The hardest instanes
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Figure 1. Solvers ompared: PU13 with four hoists and four traksare with 9 and 10 jobs, when only hybrid �nds a solution. It appearsthat 7 jobs is easier than 6 or 8, but the general trend is that theproblem moves from easy to hard to easier again.Our results for optimal period agree with previous work where theproblems have been onsidered before. To �nd the number of jobsfor whih the period is minimal has not been previously done usinga hybrid method, and to our knowledge not been done by any methodfor C/M/1/C. Three traks, one hoist appears the hardest lass of thosewe examined and, for large numbers of jobs, all of the solvers struggle.In the question of hoist assignment, partitioning the line simpli�esthe situation greatly. We found that every instane of C/M/1/D ouldbe onsistently solved by MIP, for example, in less than one minute,and often in a few seonds with any solver. C/M/1/C is a muh harderproblem but gives orrespondingly lower yle times | for instane,with three hoists and ten jobs, 196 ompared to 217.We examined our results in light of those reported by Rodo�sek andWallae. A loser onsideration of their onstraint model reveals a aw:the following illegal possibility is permitted. A hoist arrying a job jdesends to a tank ontaining some other job k, releases j and piksup k in the same instant. Clearly this is not possible unless there issome intermediate storage. This possibility annot our in our modelbeause the inequality in (2) is strit.5We produed benhmarks with the three solvers on other problems.Firstly, we used three data sets appearing in the literature: SZS5, LKS9



15Table III. 100 randomly-generated instanes of RW4literature hybridminimal time 167 0.13maximal time 1146 34.18mean time 314 8.71and DEGEM. None of these presented any hard problem instanes forthe HSP lasses we onsider. Were, for instane, the multi-part HSP tobe onsidered, then these prodution lines with fewer tanks may beomeinteresting. Details and timings obtained are given in the Appendix.Seondly, we introdued a new problem, RYS16, with sixteen tanks,and tested the solver performane. The size of the new problem gavemany hard instanes. The results, broadly, are in aordane with thosefor PU13. For simpler instanes, there is little to hoose between thesolvers. For harder instanes, the hybrid is often at an advantage. Forexample, with four hoists and traks, four jobs is solved quikly by allsolvers but �ve jobs proves diÆult for MIP. We do not give detailedtimings here.Thirdly, we used a randomly generated problem following Lei andWang (1991). Minimal and maximal proessing times are generated foreah tank by mrand(i) = m(i)� 10+ 20r1 and Mrand(i) =M(i)� 10+20r2, and the full travel times are Frand(i; i+1) = E(i; i+1)+15+10r3,where r1; r2; r3 are U[0; 1℄ random variables.Table III ompares the results given in Rodo�sek and Wallae (1998)with our hybrid solver, for 100 random instanes with two hoists, twotraks and four jobs. The times given are to prove optimality; theliterature results were obtained on a Sun Spar/20. The results indiatethe robustness of the hybrid approah.For the problems C/1/1 and C/M/M, our solver proved to be ap-proximately 2{5 times faster than that of Rodo�sek and Wallae, sup-posing idential hardware. For instane, to prove optimality with fourjobs, two hoists and two traks took 11.4s ompared to 289s, and fourjobs, two hoists and one trak took 90s ompared to 2105s. This maybe attributed to the simpli�ed onstraint model and the improvedhybridization.4.2. AnalysisThere are two key fators in the HSP: the ombinatorial omplexity andthe onstrainedness. We onsider an instane of the HSP to be easy if



16the number of jobs is at most twie the number of hoists; otherwise,we onsider the instane to be hard .For easy problems, the fastest solutions are found using pure CP,although the di�erene with the other solvers is not notable. Using fdonly, most of the searh tree is pruned. For hard problems, the fastestsolutions are usually found using the hybrid solver: with oasionalexeptions, the hybridization avoids the prohibitive CPU time the othersolvers may require.Multiple-apaity tanks are handled far better by MIP than CP orhybrid. However, we found no interesting instanes among the data setswhere the extra apaity improved the solution, most likely beausethe limiting resoure in the long PU13 prodution line is not the tankapaities but the hoists.Seondly, there is a distintion between highly onstrained and weaklyonstrained problems, by whih we mean onstrainedness in the lassi-al CP sense, not in terms of feasible set. C/M/1 is more onstrained,for example, than C/M/M.We observe that highly onstrained problems are solved quikly byCP (if they are not hard problems). A large number of onstraints en-sures rapid fd propagation, whih is the main element of the CP solver.In ontrast, weakly onstrained problems are solved more quikly byMIP, beause its e�ort is dominated by the size of the branh-and-bound searh tree, whih depends on the number of integer variablesrather than the number of onstraints. The hybrid method, therefore,gives at least reasonable performane provided the orthogonality of thehybridization is e�etive. 5. ConlusionIn this work, we onsidered a revised hybrid approah to the hoistsheduling problem. The new model is more robust and salable thanthe old, performing well aross a range of problem lasses and benh-mark data. We used new preproessing steps, in the ase of sequen-tial treatment, to redue the searh spae, and we suggested a novelnotation for the lasses of the HSP.5.1. Hybridization and the Hoist Sheduling ProblemIn some instanes of the HSP, the pure CP solver works well; in others,the pure MIP solver. Neither is able to perform onsistently arossthe range of problems we examined. Our MIP solver provides betterperformane than our CP solver for weakly onstrained hoist problems,



17DiffiultyEasy HardWeak MIP Hybrid/MIPConstrainedness Strong CP HybridFigure 2. HSP solvers ompared: onlusionand overall, the results showed it handles more problem lasses inreasonable time. Figure 2 summarises our omparison of the solvers.We have seen that CLP is easily adapted to the di�erent HSP lasses,with hanges in the onstraints only, and has a searh proedure thatis straight-forward to desribe and easy to modify.The performane of the hybrid approah an be attributed to twofators. First, the early detetion of di�erent failures by the omponentsolvers (for whih CP and linear solvers are orthogonal), and seond,the omplementary strength of LP in guiding searh towards the globaloptimum and of CP in handling disjuntions. Thus our experiene inthe HSP is in line with the theory given by Hooker et al. (2000).In the previous hybrid formulation, the linear solver was invoked ateah node in the CP searh. We found that, overall, the ost of theseinvoations outweighed their usefulness, and that a simpler hybrid withsingle LP invoation gave better performane.In sequening problems, to whih HSP is related, it is ommon forboolean formulations to have weak relaxations. If it were possible to�nd simple utting inequalities, some of the auxiliary boolean variableswe use ould be omitted | an approah that has worked in otherappliations of hybrid methods. The orrespondingly smaller relaxationthen ould be solved at more nodes in the searh for both hybrid andMIP approahes.6We have seen that hybridization retains the modelling advantage ofCP while leading to a more robust solver. For larger problems, in par-tiular, the hybrid solver an often �nd solutions and prove optimalitywhen neither our CP or MIP solvers an do so. In almost every ase,the hybrid solver is better than the previous hybrid approah, and ourresults overall are ompetitive with the best of those obtained so farby any approah in the literature.5.2. Further WorkThree areas appear promising for future work on hybrid HSP. First,improving the existing hybrid solver. It may be appropriate to invoke



18the LP solver subsequently one fd has progressed by some degree. Itis the ase that more symmetries ould be removed than at present.In the lass C/M/1, the problem an be deomposed into two parts:hoist-tank assignment as a master problem and hoist sheduling as asubproblem. When the subproblems are independent, a tighter formof hybridization than we have used, notably Benders deomposition(Eremin and Wallae, 2001), may give better results; this independeneis so for C/M/1/D but not for ollision-based assignment.Our ombined use of expliit and automated onstraint linearization,hoie of problem variables and presolving of the partitioned problemhave together yielded an eÆient MIP model. Even so, there is roomfor improvement. For instane, using the better upper bound of Levneret al. (1995) for C/M/1/D should yield the solution more quikly (andwould give some aid to the hybrid, too). In addition, the automatedtranslator of Rodo�sek et al. (1997) has been reently extended (Ottos-son and Thorsteinsson, 2000); this may allow us to exploit more of themodelling features of CLP and to tighten the linear relaxation.Seond, the model given in Setion 2 holds for multi-funtion tanksand non-sequential treatment, although as noted, some of the prepro-essing steps do not (it would be neessary to relax expressions in whihS(i) ours as a subsript). Constraint-based solutions to the HSPwith these extensions have already been demonstrated (Mak et al.,1998; Varnier et al., 1997), but a hybrid solver not yet applied.Other possible extensions inlude a single load/unload stage (whihwould be straight-forward), multi-part yles (hallenging, but per-mits better solutions) and C/M/1/O optimal hoist alloation (veryhallenging, perhaps heuristis would be neessary).Third, there appears to have been no work to date on the HSP withH hoists and R traks where 1 < R < H and H � 3. This inreasesthe omplexity, with the new problem of how to assign hoists to traksas well as to transfer operations. To re�ne and apply the CLP{MIPhybrid to suh problems seems a natural step.AppendixAs disussed in Setion 1.2, PU13 is a variant of the lassi benhmarkproblem PU12 in whih the tanks are thought of as arranged in a irle.Spei�ally, an extra tank is added at the front of the line, with minimaltreatment time 120 and maximal treatment time unbounded. Jobs areautomatially entered into this �rst tank, and travel times from it tothe others are as from the load stage to the tanks in PU12.We onsidered three other previously known data sets:



19Table IV. Results for the real-world problem DEGEMParameters Solution Time (ses)hoists traks apaity jobs period p mip hybrid1 1 1 1 693 0.01 0.01 0.011 1 1 2 347 0.02 0.03 0.061 1 1 3 250 0.05 0.05 0.091 1 1 4 250 0.08 0.07 0.122 2 1 2 347 0.04 0.19 0.152 2 1 3 250 0.07 0.23 0.192 2 1 4 250 0.15 0.30 0.233 3 1 3 250 0.07 0.22 0.193 3 1 4 250 0.15 0.18 0.222 1 1 2 347 0.22 0.03 0.062 1 1 3 250 0.04 0.05 0.092 1 1 4 250 0.08 0.07 0.123 1 1 3 250 0.05 0.05 0.093 1 1 4 250 0.08 0.07 0.12� SZS5: �ve tank test problem from Song et al. (1993)� LKS9: nine tank problem from Levner et al. (1996)� DEGEM: seven tank real-world proess from Kats et al. (1999)We did not use the ten tank benhmark problem `SSZ' quoted inKats et al. (1999) beause it ontained non-integer travel times. Asdisussed in Setion 4, none of these data sets were hallenging. Forinstane, Table IV gives the results for the problem DEGEM.RYS16 is a sixteen tank problem of our onstrution, based looselyon PU13. The data for the problem is as follows, with the empty traveltimes given in Table V:m(i) = [0; 120; 150; 100; 120; 90; 200; 25; 60; 0; 60; 45; 130; 120; 90; 30; 30℄M(i) = [0;1; 200; 120; 195; 125; 200; 40; 120;1; 120; 75;1;1; 120; 60; 60℄F (i; i+ 1) = [0; 31; 22; 22; 20; 25; 10; 23; 22; 50; 22; 22; 46; 27; 22; 30; 30℄AknowledgementsWe are grateful to Mark Wallae for many wise insights, and thankAndrew Eremin and the anonymous reviewers for their suggestions.The �rst author is supported by CICYT grant TAP98-0364.



20 Table V. Empty travel times in RYS160 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 170 0 11 14 16 14 19 10 24 26 29 6 8 10 11 4 5 5 01 11 0 2 5 2 8 12 13 15 17 10 3 1 11 6 4 7 62 14 2 0 2 0 5 8 10 13 15 12 6 3 14 8 5 9 103 16 5 2 0 2 3 5 8 10 13 15 8 6 16 10 6 7 34 14 2 0 2 0 5 9 10 13 15 12 6 3 14 12 7 9 145 19 8 5 3 5 0 3 5 7 10 18 11 9 19 14 8 11 106 10 12 8 5 9 3 0 2 5 7 20 14 11 22 16 16 13 107 24 13 10 8 10 5 2 0 2 5 23 16 14 24 18 17 11 98 26 15 13 10 13 7 5 2 0 2 25 19 16 26 20 18 9 89 29 17 15 13 15 10 7 5 2 0 0 21 19 29 22 19 11 710 6 10 12 15 12 18 20 23 25 0 0 7 9 6 24 20 13 711 8 3 6 8 6 11 14 16 19 21 7 0 2 8 26 26 15 1112 10 1 3 6 3 9 11 14 16 19 9 2 0 10 28 27 13 2013 11 11 14 16 14 19 22 24 26 29 6 8 10 0 26 28 12 1414 4 6 8 10 12 14 16 18 20 22 24 26 28 26 0 28 12 1415 5 4 5 6 7 8 16 17 18 19 20 26 27 28 28 0 12 1416 5 7 9 7 9 11 13 11 9 11 13 15 13 12 12 12 0 1417 0 6 10 3 14 10 10 9 8 7 7 11 20 14 14 14 14 0Notes1 In the ase of multiple hoists on a single trak.2 In fat, the solution they published is not optimal. Phillips and Unger found theoptimum for three simultaneous omponents (jobs), but a solution of lower periodexists with four jobs.3 It is permissible for this value to be unbounded.4 It may be that the two physially oinide, that is, a single load/unload stage.5 A further onsequene of this is that the time for the hoist to return to theload stage, having deposited a �nished job at the unload stage, annot be zero. ForPU13, whih would otherwise permit this possibility, the period ould therefore beone seond shorter in ertain ases, namely 11 jobs with 3 or 4 hoists and traks.6 We are grateful to an anonymous reviewer for this observation.ReferenesArmstrong, R., L. Lei, and S. Gu: 1992, `A Bounding Sheme for Deriving the Min-imal Cyle Time of a Single-Transporter N -Stage Proess with Time-WindowConstraints'. GSM Working Paper 92-07, Rugters University.Baptiste, P., Y. Caseau, T. K�ok�eny, C. Le Pape, and R. Rodo�sek: 1998, `Creating andEvaluating Hybrid Algorithms for Inventory Management Problems'. Journ�eesNationales sur la R�esolution Pratique de Probl�emes NP-Complets.Baptiste, P., B. Legeard, M. Manier, and C. Varnier: 1994, `A Sheduling ProblemOptimisation Solved with Constraint Logi Programming'. In: Pro. of the Intl.Conf. on Parallel Arhitetures and Compilation Tehniques. pp. 47{66.
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