
Baltzer Journals November 11, 1998A New Approach to Integrating Mixed IntegerProgramming and Constraint Logic ProgrammingRobert Rodo�sek, Mark G. Wallace and Mozafar T. HajianIC-Parc, Imperial CollegeLondon SW7 2AZ, EnglandE-mail: {rr5, mgw, mh10}@doc.ic.ac.uk
This paper represents an integration of Mixed Integer Programming (MIP) andConstraint Logic Programming (CLP) which, like MIP, tightens bounds ratherthan adding constraints during search. The integrated system combines compo-nents of the CLP system ECLiPSe [7] and the MIP system CPLEX [5], in whichconstraints can be handled by either one or both components.Our approach is introduced in three stages. Firstly we present an automatictransformation which maps CLP programs onto such CLP programs that anydisjunction is eliminated in favour of auxiliary binary variables. Secondly wepresent improvements of this mapping by using a committed choice operator andtranslations of pre-de�ned non-linear constraints. Thirdly we introduce a newhybrid algorithm which reduces the solution space of the problem progressively bycalling �nite domain propagation of ECLiPSe as well as dual simplex of CPLEX.The advantages of this integration are illustrated by solving e�ciently di�cultoptimisation problems like the Hoist Scheduling Problem [23] and the ProgressiveParty Problem [27].Keywords: Constraint Logic Programming, Mixed Integer Programming.1 IntroductionMany applications can be naturally de�ned using a logical formalism, in a way similar tofunctional or logic programming. In declarative programming, or any runnable speci�ca-tion language, a default evaluation algorithm turns the logical formalism into a runningprogram [4]. There are many drawbacks of a default algorithm, e.g, poor performance onmany (indeed most) programs and frequent failure to terminate at all.In constraint programming, by contrast, the behaviour of the constraints is equallyas important as their de�nition. Constraints have two features, de�nition and behaviour,and these can be handled separately. The practical consequence is that the programmercan concentrate on modelling of the problem and the problems with performance andtermination can be ironed out afterwards. Unfortunately, any disjunction in the logicprogram, expressed by multi-clause predicates, leads to the enumeration of di�erent al-ternatives [10]. The evaluation algorithm, which is based on the implicit enumeration, iscomplete but not always e�cient.The contribution of this paper is represented in two parts. In the �rst part we



R. Rodo�sek et. al. / A New Approach to Integrating MIP and CLP 2present an e�cient evaluation algorithm to turn the logical formalism with constraintsinto a running program on a set of only linear equalities and inequalities. In the secondpart we present an integration of the MIP solver and the CLP solver.The proposed evaluation algorithm allows an integration of MIP with CLP using aunique model for a problem. Disjunctions appearing in a CLP program are mapped to0/1 auxiliary variables. The program is translated into a generic MIP model which can beinstantiated to a speci�c model as soon as the unknown data are supplied. The evaluationalgorithm has an important property that avoids any implicit enumeration.The derived conjunction of linear equalities and inequalities can be hence treatedeither by the MIP solver, the CLP solver or by both solvers. In CLP, many di�erentlocal consistency algorithms can be used. They reduce domains of variables or detectan infeasibility if the domain of a variable becomes empty. The algorithms represent ane�cient local constraint propagation [9]. For instance, constraint propagation on �nitedomains of variables is successful in solving problems arising in planning and scheduling,resource allocation, and more recently even in solving more complex numerical problems[22, 28]. In MIP, a simplex algorithm is used to solve the continuous relaxation of theproblem, giving either an infeasibility, or a lower bound on the objective function. Simplexrepresents an e�cient global constraint propagation [32]. MIP is a technique that hasbeen applied to a wide range of complex optimisation problems [31]. Although a lot ofcombinatorial problems can be modelled in CLP as well as in MIP, the performances ofthe techniques may be very di�erent [27].We present an integration of the MIP solver with the CLP solver giving more pow-erful constraint reasoning: local and global constraint propagation. The integrated solvercombines our CLP solver, ECLiPSe, with a commercial MIP solver, CPLEX. However,we con�ne our use of the commercial solver to the linear constraints, only using the dualsimplex solver of the CPLEX. In e�ect we return to a system quite similar to CLP, butuse an external solver for the linear rational constraints instead of an internal one. Thisis possible within our framework because the translation has enabled us to post all thelinear constraints at the root of the search tree: the search is now reduced to the labelling(or alternatively domain splitting) of integer variables. Therefore, unlike CLP(R) [17],we do not require a linear constraint solver that can handle the incremental posting ofconstraints. The empirical results show that this combination o�ers genuine practical ad-vantages over both the MIP and CLP solver. For example, we use a single program bothto �nd and prove the optimality of the solution to the Progressive Party Problem [27].The rest of this paper is organised as follows. Section 2 presents the handling ofconjunction and disjunction within a possibly recursive CLP program. Section 3 presentsa translation of a given CLP program to a generic model. Section 4 integrates the MIPsolver with the CLP solver. Experimental results are demonstrated in Section 5. Finally,Section 6 concludes the paper.2 Modelling in CLPMany experimental systems concern logic and 0-1 inequalities [14, 31]. A systematicprocedure for transforming a set of logical statements or logical conditions into an equiv-alent mathematical formulation has been presented by Williams [29, 30], and McKinnon



R. Rodo�sek et. al. / A New Approach to Integrating MIP and CLP 3and Williams [16]. Recently, a computer support for this task within a MathematicalProgramming modelling system was given by Hadjiconstantinou et. al. [12]. The syntaxof a Mathematical Programming language is extended to incorporate propositional logicterms with linear algebraic forms. A transformation of the operators like implies, or, and,atmost k, exactly k into a conjunction of linear constraints over 0-1 variables is describedin [12]. The method is regarded as a bottom-up approach since the constraints have tobe expressed using prede�ned operators.In CLP the constraints are not restricted on prede�ned operators. CLP is more pow-erful as a representation language than Mathematical Programming, since it allows therepresentation of constraints in a more natural and compact way [26]. The problem canbe represented by high level pre-de�ned and user-de�ned constraints. The modelling rep-resents a top-down approach since the constraints are de�ned with further constraints.This property of constraints allows an additional insight to the structure of the prob-lem [6]. For instance, the modelling can be used to recognise that there are many equallyoptimal solutions which can be cut o� at an early stage of the CLP solution process.In this section we present an e�cient evaluation algorithm to turn the logical for-malism with constraints into a running MIP program on a set of linear inequalities. Theevaluation algorithm is performed in two steps. The �rst step represents an automatictranslation of a given CLP program to a generic version of it. The syntax of CLP pro-grams is de�ned in Subsection 2.1 while the translation directives are represented inSubsection 2.2. The second step carries out the unfolding algorithm described in Subsec-tion 2.3 to derive a MIP model.2.1 Conjunction and Disjunction Within a Recursive CLP ProgramAn atom is denoted by p(t1; :::; tn) where p is an n-ary predicate symbol and t1, ..., tnare terms where each variable appears only once in any term. We distinguish betweentwo kinds of atoms: \user atoms" and \constraints". The user atoms are de�ned by theprogrammer while the constraints are linear or type constraints. A linear constraint X �Y represents a linear inequality where X and Y are linear expressions 1. The conjunctionof linear constraintsX � Y and Y � X is denoted byX = Y to represent a linear equality.The type of variables is de�ned by a type constraint using 1-ary predicate symbols binary,integer and real to represent binary, integer and real variables, respectively.A program P is de�ned by a set of clauses in which each clause has a head and abody. The notation for a clause isp(Args) : � q1(Args1); :::; qk(Argsk):where the head is a user atom p(Args) and the body is the conjunction of atoms q1(Args1),..., qk(Argsk).1An expression A1 � V1 + :::+Ak � Vk is called a linear expression i� Ai is a constant and Viis a variable (or a constant) for every i, 1 � i � k.



R. Rodo�sek et. al. / A New Approach to Integrating MIP and CLP 4Example 2.1A program to check whether the di�erence between two numbers chosen from 1 to 10 isgreater than or equal to 2 can be de�ned in the CLP language as follows:prog(X; Y) : � integer(X); 1 � X; X � 10;integer(Y); 1 � Y; Y � 10;diff(X; Y):diff(X; Y) : � Y+ 2 � X:diff(X; Y) : � X+ 2 � Y:A program is executed by \unfolding" its clauses in response to a query. For instance,query ?-prog(X, Y) causes the de�nition of prog(X; Y) to be unfolded into constraintsinteger(X), 1 � X, X � 10, integer(Y), 1 � Y, Y � 10, and, in turn, the de�nition ofdiff(X; Y) to be unfolded into constraint (Y+ 2 � X or X+ 2 � Y). The result of theunfolding is a set of constraints. However, the unfolding of diff(X; Y) introduces a dis-junction which cannot be directly handled by MIP. 22.2 Translation to a generic modelThe contribution of our translation is a rede�nition of each atom p(Args) which is de�nedby more than one clause (see atom di�(X,Y) in Example 2.1). Since any disjunction inthe program is represented by two or more clauses with the same head, we translate suchclauses into clauses with unique heads. The translation is based on the idea of addingan auxiliary binary variable B as a new argument to atom p(Args). We say that thetranslated atom p(Args;B) is equivalent to p(Args) if B = 1. If B = 0, then p(Args;B)is always true.A generic program, gen(P ) is a program which is translated from P using translationdirectives: (i) on the goal in the language of P ; (ii) on the clauses of the program; (iii)on the linear constraints; and (iv) on the type constraints in the body of those clauses:Directive 1: If an atom p(Args) is a goal in the language of P , then the atom p(Args; 1)is introduced: p(Args) : � p(Args; 1):Directive 2: If an atom p(Args) is de�ned by r clausesp(Args1) : � q11(Args11); :::; q1k(Args1k)::::p(Argsr) : � qr1(Argsr1); :::; qrk(Argsrk):then we introduce r auxiliary binary variables and for every n-ary predicate symbol of theclause an (n + 1)-ary predicate symbol. The clauses are then translated to the followingclauses, p(Args; B) : � p1(Args; B1); :::; pr(Args; Br); B1 + :::+ Br = B:



R. Rodo�sek et. al. / A New Approach to Integrating MIP and CLP 5p1(Args1; B1) : � q11(Args11; B1); :::; q1k(Args1k; B1); binary(B1)::::pr(Argsr; Br) : � qr1(Argsr1; Br); :::; qrk(Argsrk; Br); binary(Br):If an atom in the body of a clause is a linear constraint, then it has to be translatedby adding auxiliary binary variable B into another linear constraint which is equivalentto the original constraint if B is instantiated by 1, and it is true if B is instantiated by 0.Directive 3: A linear constraint X � Y is translated into a linear constraintX+ M � B � Y+ Mwhere B is an auxiliary binary variable and M is a large enough constant,e.g. M = maxf(upper(X)� lower(Y )); (upper(Y )� lower(X))g where upper(X) repre-sents the upper bound of X and lower(Y ) represents the lower bound of Y .Directive 4: Type constraints are translated into the same type constraints.We show that the proposed directives preserve the set of all solutions of a givenprogram. A solution of a program with goal p(Args) is de�ned by an assignment ofvalues to the variables of Args returned by the usual evaluation of CLP programs [9].Lemma 2.2If p(Args) is a goal in the language of a program P , then it has the same set of solutionswhen evaluated against P and against gen(P ).ProofTo satisfy program P , called by p(Args), one of the clauses with head p(Args) has to besatis�ed. Let r be the number of such clauses. Using Directive 1, atom p(Args; 1) has tobe satis�ed. If r = 1, then Directive 2 implies that atoms q11(Args11; 1), ..., q1k(Args1k ; 1)have to be satis�ed. If r > 1, then Directive 3 derives equality B1+ :::+Br = 1 which hasto be satis�ed. Without loss of generality, let B1 = 1. It follows that atoms q11(Args11; 1),..., q1k(Args1k; 1) of the clause with head p1(Args; 1) have to be satis�ed. At the end ofthe translation there are only atoms of the form q0(Args0; 1) to satisfy. Since every atomq0(Args0; 1) has the same set of solutions as the original atom q(Args) of P , goal p(Args)has the same set of solutions when evaluated against P and against gen(P ).Since each clause of a program is translated only once, the complexity of the trans-lation is O(m) time where m is the number of clauses in the program.2.3 Unfolding to an MIP modelWhen the input data of a given program are supplied, the generic program is automaticallyunfolded into a conjunction of linear and type constraints. An important consequence forthe execution of practical applications is that the unfolding algorithm proceeds withoutbacktracking.



R. Rodo�sek et. al. / A New Approach to Integrating MIP and CLP 6Lemma 2.3For a given input data of a program with goal p(Args) the generic program is unfoldedinto a conjunction of constraints only:p(Args) : � constraint1; :::; constraints:ProofBy using the directives, every user atom of the generic program occurs in the head ofone clause. Furthermore, every constraint is a conjunction of other user atoms and/orconstraints. When the input data has been supplied, the generic program is unfolded intoa conjunction of constraints only.The proposed translation to a generic CLP program and the unfolding to an MIP modelis illustrated using the problem in Example 2.1.Example 2.4A program to check whether the di�erence between two numbers is greater than or equalto 2 has been de�ned in Example 2.1. The program is �rst translated to the genericprogram: prog(X; Y) : � prog(X; Y; 1):prog(X; Y; B) : � integer(X); B � X; X+ B � 11;integer(Y); B � Y; Y+ B � 11;diff(X; Y; B):diff(X; Y; B) : � diff1(X; Y; B1); diff2(X; Y; B2); B1 + B2 = B:diff1(X; Y; B1) : � Y+ 2+ 11 � B1 � X+ 11:diff2(X; Y; B2) : � X+ 2+ 11 � B2 � Y+ 11:The generic program is now unfolded into the following conjunction of constraints:prog(X; Y) : � integer(X); B � X; X+ B � 11;integer(Y); B � Y; Y+ B � 11;Y+ 11 � B1 � X+ 9; X+ 11 � B2 � Y+ 9; B1 + B2 = 1: 23 Improving the ModelThe proposed automatic translation in Section 2 does not necessarily achieve the mostcomputationally e�cient model. We present several improvements of our translation.First, using data/control-ow properties of programs [21], the number of the introducedauxiliary 0/1 variables can be reduced. Second, the proposed translation can also beextended to pre-de�ned constraints. Third, it is not necessarily to translate the whole



R. Rodo�sek et. al. / A New Approach to Integrating MIP and CLP 7program, since the user can decide which predicates should be considered by the CLPsolver and which predicates by the MIP solver.3.1 Data/control-ow properties of programsIn many programs the arguments of predicates are lists of constants and variables. Theclauses usually satisfy data/control-ow properties [21] which lead to a simpli�cation ofthe proposed translation.If a problem is speci�ed in detail, so that each predicate de�nition consists of animmediately determinable division into cases and each case breaks down the problemrepresented by the predicate into slightly smaller sub-problems, then execution can pro-ceed with little or no need for backtracking. With this programming style it is possibleto write programs which are both algorithmic and declarative.Maher [21] presents a class of languages ALPS and some results which formalise theseobservations. Instead of clauses, a program is a �nite set of rules of the formH , G j B;where H is a user atom (the head), and G (the guard) and B (the body) are conjunctionsof atoms. The symbol j is called the commit operator. The operational semantics of thecommit operator is that a constraint H can commit to a given rule if the guard of just onerule with head H can be satis�ed. Thus, the program of rules prevents alternative choicesalong the execution. If the head H can be satis�ed with one rule, then it represents a"don't care" choice, otherwise it represents \don't know" choices since atom H can besatis�ed by more than one clause.Directive 5: A rule R is translated to R.The consequence of this directive is such that the auxiliary binary variables are onlygenerated for the clauses but not for the rules.Let us demonstrate the proposed directives on a simple program where the goal is toguarantee a di�erence greater than or equal to 2 between a variable X and each elementof a list L: test(X; L) , L = [] j true:test(X; L) , L = [YjR] j diff(X; Y); test(X; R):diff(X; Y) : � X+ 2 � Y:diff(X; Y) : � Y+ 2 � X:The program is translated using Directive 5 for test-atoms and Directive 2 for diff-atoms. The number of auxiliary variables for a given problem becomes smaller since theauxiliary variables are not introduced for the rules. If the length of the list L is k, then thetranslation of the committed-choice program generates only k auxiliary variables insteadof 2k when using the program without rules.Another example is a recursive program which de�nes a linear constraint betweenevery two variables of a list containing k variables. If the program has no guards, thenthe translation introduces k(k + 1)=2 auxiliary variables. By adding appropriate guards



R. Rodo�sek et. al. / A New Approach to Integrating MIP and CLP 8into the program, the number of auxiliary variables introduced by the translation can bereduced to 0.3.2 Replacement of pre-de�ned constraintsIn the previous section the constraints were restricted to linear and type constraints. Thede�nition of programs is usually extended to allow other pre-de�ned constraints besidesthe linear and type constraints. For such constraints the user de�nes a translation tolinear constraints. The restriction on integer variables to take only two values (0 or 1),is a property of most MIP models [27, 31]. The practical consequence of such models isusually better performance of the MIP solver [32].We consider three pre-de�ned constraints:1. V ::Lo..Hi, which presents the �nite domain fLo; :::; Hig for an integer variableV .2. link(B; V1; V2), which presents the equivalence that variables V1 and V2 are equalif and only if binary variable B is equal to one.3. alldistinct(V ars), which does not allow the same value for any two variables ofset V ars.The language of programs is extended by a predicate symbol replace. This predicatesymbol denotes that a pre-de�ned constraint is replaced by type and linear constraintsas follows:Replacement 1: A constraint replace(V ::Lo..Hi) is replaced by the conjunction oftype and linear constraintsbinary(BLo); binary(BLo+1); :::; binary(BHi);BLo + :::+BHi = 1where every binary variable Bi represents value i for variable V .Replacement 2: A constraint replace(link(B; V1; V2)) is replaced by type and linearconstraints binary(B0); binary(B00); B +B0 +B00 = 1;V1 + 1 +M �B0 � V2 +M; V1 +M �B � V2 +M;V2 + 1 +M �B00 � V1 +M; V2 +M �B � V1 +M;where M is a su�ciently large number w.r.t. the bounds of variables V1 and V2.Replacement 3: A constraint replace(alldistinct(fV1; :::; Vng)) is replaced by theconjunction of linear constraints B11 + :::+Bn1 � 1;:::B1k + :::+ Bnk � 1;



R. Rodo�sek et. al. / A New Approach to Integrating MIP and CLP 9where every binary variable Bij represents the assignment of value j to integer variableVi, and k is the size of the domain of the variables.Consider the last replacement rule, alldistinct constraint in a CLP program is replacedby the conjunction of linear constraints over binary variables. If the binary variables arede�ned in the program, then it is enough to apply the last rule Replacement 3. Otherwise,we have to apply all three replacement rules.The replacement rules enable us to handle di�erent constraints of a model by di�erentsolver. For instance, alldistinct constraint is usually handled by the CLP solver whilethe generated linear constraints are handled by the MIP solver. Two kinds of problemsappear by such replacements.First, during the unfolding process we need a global access to each unique binaryvariable Bij representing value j for variable Vi. The maximum number of such binaryvariables is the product of the number of integer variables by the size of the largestinteger domain. Note, the domain of variable Vi is recognised by constraints d1 � Vi andVi � d2 where d1 and d2 are constants. Therefore, the size of the domain for variable Viis determined by d2 � d1.Second, the replacement directives require us to de�ne link constraints between integerand new binary variables like link(Bij ; Vi; j). Unfortunately, an automatic translation ofthese constraints to linear constraints does not lead to an e�cient mathematical model forsimplex. To overcome these di�culties we use two strategies. The �rst strategy replacesthe original constraints with linear constraints over binary variables and handles the linkconstraints, for example, by the CLP solver where they can \easily" be handled by the FDpropagation. The second strategy simply ignores the link constraints and uses the globalpropagation just to check the infeasibility of the problem. For example, this strategy canbe used for symmetry constraints over integer variables. The symmetry constraints arevery helpful to prune the search tree when using the FD propagation, but they are notnecessary for simplex to recognise an infeasibility.3.3 Constraints for the CLP and/or MIP solverWe modify the proposed translator to specify which constraints should be considered bythe MIP solver, the CLP solver or by both solvers. Such a translation can be useful forsolving the problems which represent a combination of di�erent types of problems. Anexample is the Video Broadcast Service (VBS) problem [25] which is a combination ofscheduling and broadcast network routing. The empirical results show that the problemis tackled better if the MIP solver is only used on the routing and CLP on the schedulingpart of the problem [24].We de�ne two stores of constraints. The CLP-store represents the CLP part of themodel and the MIP-store represents the MIP part. The whole model of the problem isthen represented by both stores:Model = (CLP-store; MIP-store):To denote which constraints should be handled by a particular solver, new types of thepredicate symbols are introduced to the language. Every linear constraint with predicatesymbol # � is put into the CLP store and every linear constraint with the predicate



R. Rodo�sek et. al. / A New Approach to Integrating MIP and CLP 10symbol $ � is put into the MIP store.Replacement 4: A constraint X#$ � Y is replaced byX# � Y; X$ � Y:Replacement 4 allows the user to send a constraint to the both solvers. The proposedextensions of the CLP language in this section leads to a new de�nition of a program.A program P is rede�ned by a set of clauses and rules such that the heads of clauses donot have common predicate symbols with the heads of rules. A generic program gen(P )is a program with the rules and translated clauses of P using the de�ned directives andreplacements. We show that the translation of such rede�ned programs preserves the setof all solutions.Theorem 3.1If p(Args) is a goal in the language of a program P with rules and clauses, then it hasthe same set of solutions when evaluated against P and against gen(P ).ProofEvery predicate is de�ned by clauses or by rules or it is already a constraint. If it isde�ned by clauses, then the result follows by Lemma 2.2. Otherwise, using the operationalsemantics of the commit operator, the constraint commits exactly one rule and it doesnot change the set of solutions of the translated program.Let us demonstrate the bene�t of program rules by an example:Example 3.2A program to check if the di�erence between ANY two numbers of a given set is greaterthan or equal to two can be de�ned as follows:test all(V) , V = [] j true:test all(V) , V = [XjR] j binary(X); 1 � X; X � 10; test(X; R); test all(R):test(X; L) , L = [] j true:test(X; L) , L = [YjR] j diff(X; Y); test(X; R):diff(X; Y) : � Y+ 2 � X:diff(X; Y) : � X+ 2 � Y:The program is translated to the generic program:test all(V) , V = [] j true:test all(V) , V = [XjR] j binary(X); 1 � X; X � 10; test(X; R); test all(R):test(X; L) , L = [] j true:test(X; L) , L = [YjR] j diff(X; Y); test(X; R):



R. Rodo�sek et. al. / A New Approach to Integrating MIP and CLP 11diff(X; Y) : � diff(X; Y; 1):diff(X; Y; B) : � diff1(X; Y; B1); diff2(X; Y; B2); B1 + B2 = B:diff1(X; Y; B1) : � Y+ 2+ 11 � B1 � X+ 11:diff2(X; Y; B2) : � X+ 2+ 11 � B2 � Y+ 11:For a set V with three variables X , Y and Z, the generic model is unfolded into type andlinear constraints:integer(X); 1 � X; X � 10;integer(Y); 1 � Y; Y � 10;integer(Z); 1 � Z; Z � 10;Y+ 11 � B11 � X+ 9; X+ 11 � B12 � Y+ 9; B11 + B12 = 1;Z+ 11 � B21 � X+ 9; X+ 11 � B22 � Z+ 9; B21 + B22 = 1;Z+ 11 � B31 � Y+ 9; Y+ 11 � B32 � Z+ 9; B31 + B32 = 1: 24 Combining MIP and CLP SolversThe second part of our paper represents an integration of the CLP solver and the MIPsolver by using the generated model as the result of the proposed translation in theprevious sections. The integration is based on combining e�cient components of bothsolvers: the �nite domain handling as a local constraint propagation by CLP, and simplexas a global constraint propagation by MIP. Using ECLiPSe to control the search andapplying both constraint propagations on decisions during the search, our approach isbased on the following constructive search strategies:CONSTRUCTIVE SEARCH STRATEGIESStep 0 Unfold the set of constraints from the generic model of a given problem.Step 1 Control the search by ECLiPSe using the local constraint propagation on �nitedomains and the global constraint propagation by simplex on the continuousrelaxed problem.In this section we show that our approach is di�erent to other solution techniquesand that the CLP solver and the MIP solver are only instances of the constructive searchstrategies. Furthermore, we present a constructive search strategy combining both solversand show the solution results on an example.4.1 Comparison to other solversThe techniques on combining CLP and MIP solvers can be split into three groups.The �rst group represents techniques which are based on the CLP solver strategy.Backer and Beringer [1] have shown how to use a linear relaxation of disjunctive con-straints to reduce the solution space of problems having a natural \geometric" formu-



R. Rodo�sek et. al. / A New Approach to Integrating MIP and CLP 12lation. There are also some techniques on how to use linear algebraic forms on someclasses of constraints. For example, Barth and Bockmayer [2] investigated the class ofpseudo-Boolean constraints while Hooker [14] generalised resolution for linear inequalitiesinvolving only 0-1 variables.The second group consists of techniques which are based on the MIP solver strategy.Little and Darby-Dowman [20] discussed the ability to improve the MIP solver by addinglocal cuts as a form of intra-processing (not pre or post but carried out during the MIPsearch). Ho�man and Padberg [15] demonstrated the Branch and Cut technique on largeairline crew-scheduling problems.The third group represents techniques which use the CLP and MIP solver to solvethe problem. Hajian et. al. [11] demonstrated how to use a feasible solution from the CLPsolver to \warm-start" the MIP solver on the Fleet Assignment Problem.We combine the CLP and MIP solvers using the local constraint propagation on�nite domains and the global constraint propagation using simplex on the continuousrelaxed problem. The basis of the CLP and MIP solvers is in fact quite close; choice ofvariable and choice of value, but in CLP, the choice of value comes from an enumerationprocess while MIP uses the value as a part of an imposed constraint. In particularly,when dealing with binary variables in an MIP model, the branching in the search treecorresponds precisely to the assignment of 0 or 1 to a chosen variable.Furthermore, CLP can control the search not only by assigning values to variablesand adding new bounds, but also by identifying speci�c heuristics used for this problem.It is also possible to use the experts experience in how they would go about solving theproblem or where to look for an optimal solution. Notice that the tree search in MIP isbased on the �xed strategies provided by the MIP solver.Consider the set of auxiliary variables which are generated by the translation: thesame �ne control over the execution of the original program can be produced as it isgiven by the implicit enumeration of the default evaluation algorithm. The search treeof the original program can be reproduced by labelling on the auxiliary variables of thetranslated program. Since the translated linear constraints represent the whole problemthe problem can be solved by only the MIP solver, or by only the CLP solver, or byhybrid algorithms which combine both solvers.In the following we represent three instances of the constructive search strategies: theCLP solver, the MIP solver and an hybrid algorithm. We show that the hybrid algorithmhas the good characteristics of both solvers.4.2 Constructive search using local constraint propagation: the CLP solverIf we use only local constraint propagation (e.g., the propagation on �nite domains), thenthe constructive search strategy characterises the CLP solver: a solution is found throughenumeration, where values from the domains are assigned to the variables, while ensuringthat the constraints are continually satis�ed, until all the variables have been given avalue [9]. Enumeration generates a search tree. Constraints can force a variable to havean empty domain, indicating that no value is possible, given the current assignments,satisfying all the constraints. Therefore, enumeration in such a branch of the tree isstopped. Then backtracking takes place and during this process, variable bindings anddomain reductions will be undone automatically as they do not lead to a feasible solution.



R. Rodo�sek et. al. / A New Approach to Integrating MIP and CLP 13Within the same solution framework, it is possible to go beyond a �rst feasible solu-tion to �nding an optimal one. The process of �nding an optimal solution �ts into theCLP solver method by adding a new cost constraint each time a better feasible solutionis found. Better solutions, if they exist, are repeatedly found and appropriate tighterconstraints added until the whole solution space has been e�ectively covered. This is aCLP implementation of the Branch and Bound technique, applied to reduce the amountof searching required by identifying as early as possible parts of the search tree which willnot lead to a better cost.The algorithm below is an algorithm of the CLP solver which will be used on our testproblems in the following section.CONSTRUCTIVE SEARCH USING ONLY LOCAL CONSTRAINT PROPAGATION [10](the CLP solver)Step 0 Unfold the set of constraints from the generic model of a given problem.Step 1 Choose an unlabelled most-constrained variable v in the underlying structureof the problem.Step 2 Choose a new value to v.Step 3 Update the cost and the domains of other variables using the local constraintpropagation on �nite domains. If an infeasibility is recognised, then backtrackto Step 2. If all variables are instantiated and the solution has the minimalcost, then the algorithm terminates, else go to Step 1.The key to the performance of the CLP solver is determined by three factors. The�rst is the number and the size of the �nite domain variables introduced in the model.The solution space is usually kept as small as possible. The second factor in determiningperformance is the choice and number of constraints. Generally, the more constraints,the greater the search reduction which can take place. The third factor is in the searchstrategy. The routing of the search corresponds precisely to the choice of next variableand the choice of value to assign. The strategies are often based on mathematical charac-teristics of the domains at that time, e.g., to select the domain variable with the smallestdomain or the variable which has most constraints attached to it.4.3 Constructive search using global constraint propagation: the MIP solverGlobal constraint propagation is represented by solving the continuous relaxed problemusing, e.g., the simplex algorithm. The relaxed problem is simply de�ned by replacinginteger and binary type constraints in the MIP store by real type constraints. Instead ofthe implementation of simplex in ECLiPSe, the linear constraints of the MIP store are putto CPLEX. When the global propagation is called, ECLiPSe sends bounds of variables toCPLEX and simplex returns an optimal solution of the relaxed problem. The solution ofthe relaxed problem helps to solve the whole problem using, e.g., the Branch and Boundtechnique for MIP. This technique was established as the dominant solution technique forsolving discrete optimisation problems [18].The solution method for Branch and Bound involves checking whether the solutionbecomes integer given successive splitting of the solution space. This segmentation of thesolution space is achieved by selecting one of the violating variables v from the relaxed



R. Rodo�sek et. al. / A New Approach to Integrating MIP and CLP 14problem, e.g., a variable which has a fractional value but is required to be integer. Twonew subproblems are generated by adding inequalities v � ds(v)e and v � bs(v)c to theoriginal problem, respectively. In case that the chosen variable is a binary variable, thenthe two new subproblems are generated by �xing the chosen variable to 1 in one and to 0in the other subproblem. A search tree is built by selecting one of the violated variablesto branch on and chose a subproblem to relax and solve. The tree search continues toseek optimality, but any node in the tree for which the relaxed problem gives a solutionworse than the current best integer solution, is discarded along with that branch.The algorithm below is an algorithm of the MIP solver which will be used on our testproblems in the following section.CONSTRUCTIVE SEARCH USING GLOBAL CONSTRAINT PROPAGATION ONLY [8](the MIP solver)Step 0 Unfold the set of constraints from the generic model of a given problem. Ifthere is no unique type constraint for each variable, then the algorithm reportsan error. Let s be the solution of the continuous relaxed problem using simplex.If s satis�es all the integer restrictions, then it is the optimal solution of theproblem, and the algorithm terminates. If an infeasibility is recognised, thenthe problem does not have a solution and the algorithm terminates in failure.Step 1 Choose a variable v with a non-integer solution value s(v).Step 2 Split the problem into two subproblems by adding the linear constraints v �ds(v)e and v � bs(v)c, respectively. Choose one of these subproblems.Step 3 Compute the solution s of the continuous relaxed subproblem by using simplex.If an infeasibility is recognised, then backtrack to Step 2 and choose the othersubproblem. If every variable v has an integer solution value s(v) and thesolution has a minimal cost, then the algorithm terminates. If there is avariable with a non-integer value s(v), then go to Step 1 else go to Step 2 andchoose the other subproblem.The search strategy in terms of variable choice and branch choice is important indetermining how the tree develops and consequently how quickly the �rst feasible solutionis found, how good it is and what is the time taken to �nd the optimal solution. It isoften the case that di�erent search strategies are built into the MIP software. These arebased on the choice of variable and branch according to mathematical characteristics ofthe solution tree at that point. The strategies can be, for example, to select the variablewith a value of the relaxed problem closest to an integer number and the highest costvalue. There can be a wide variation in performance of a strategy from one problem toanother [8]. Therfore, the most suitable strategy can be derived by trying all possiblestrategies. However, [8] categorises the problem such that a suitable strategy can bechosen with regard to a speci�c problem structure in advance.4.4 Constructive search using local and global constraint propagation: a hybrid CLP &MIP solverThe main idea of our integration of MIP with CLP is to make decisions as late as possible.Using local and global constraint propagation the solution space of a problem can be



R. Rodo�sek et. al. / A New Approach to Integrating MIP and CLP 15reduced more than by using one type of propagation only. In the hybrid algorithm, thesearch is controlled by allowing a dynamic choice of variable and value ordering, andapplying simplex as well as the �nite domain propagation at each node in the search tree.If simplex recognises an infeasibility, then the CLP solver does not need to search for afeasible solution, which is done by performing only the CLP solver.CONSTRUCTIVE SEARCH USING LOCAL AND GLOBAL CONSTRAINT PROPAGATIONStep 0 Unfold the set of constraints from the generic model of a given problem. Ifthere is no unique type constraint for each variable, then the algorithm reportsan error. Let s be the solution of the continuous relaxed problem using simplex.If s satis�es all the integer restrictions, then it is the optimal solution of theproblem, and the algorithm terminates. If an infeasibility is recognised, thenthe problem does not have a solution and the algorithm terminates in failure.Step 1 Choose an unlabelled most-constrained variable v in the underlying structureof the problem.Step 2 Choose the nearest integer value to s(v) for variable v.Step 3 Update the cost and the domains of other variables using local constraintpropagation on �nite domains. If an infeasibility is recognised, then go toStep 4. If all variables are instantiated, then go to Step 3a, else go to Step 1.Step 3a If the solution has the minimal cost, then the algorithm terminates, else go toStep 4.Step 4 Choose a new value for v, otherwise backtrack to Step 1.Step 4a Compute the solution s of the continuous relaxed subproblem using simplex.If an infeasibility is recognised, then go to Step 4, else go to Step 2.In Step 2, the algorithm instantiates the most-constrained [9] variable v by using thenearest integer number to the real value s(v), where s is the optimal solution of the relaxedproblem. If the instantiation causes an infeasibility by applying the local constraintpropagation, then variable v is instantiated in Step 4 by another value. In this situationsimplex is performed. In the worst case, the algorithm can require more computationtime than required by the MIP or CLP solver alone. A comparison between the MIP,CLP and CLP&MIP solvers is given on four problems in the following section.5 Computational results on di�erent problemsIn this section we present the empirical results of the proposed integration MIP with CLPon di�erent problems. For each problem we present the time to derive the �rst feasiblesolution, the time to derive an optimal solution and the time to prove its optimality.We show that the combination of both solvers derives the optimal solution and provesoptimality to each problem in reasonable time, while the CLP solver and the MIP solverare not able to achieve the same performance. The problems are de�ned in the nextsubsection and the result on modelling and solving them are represented in the followingtwo subsections. Finally, we compare the results of di�erent solvers on di�erent models.



R. Rodo�sek et. al. / A New Approach to Integrating MIP and CLP 165.1 ProblemsWe consider four problems which are di�cult for the CLP or MIP solver.1. k-Hoist Scheduling Problem [23]: The problem, denoted by k-HSP, occurs whena component must be allotted a sequence of tanks during its manufacture. Thecomponent must remain in these tanks for periods of time lying within speci�cbounds. k hoists are to be programmed to place components into tanks, removecomponents from tanks, and transport components between tanks, so as to maximisethe throughput of the production line.2. Progressive Party Problem [27]: The problem, denoted by PPP, arises in the contextof organising a \progressive party" at a yachting rally with 42 yachts. Some yachtsare to be designated hosts; the crews of the remaining yachts visit the hosts for sixsuccessive half-hour periods. A guest crew cannot revisit the same host, and twoguest crews cannot meet more than once. Additional constraints are imposed bythe capacities of the host yachts and the crew sizes of the guests. The problem isto minimise the number of host boats.3. Cabinet Assignment Problem [20]: The problem, denoted by CAP, arises in the con-text of producing speci�ed numbers of di�erent types of telecommunication cabinetsover a �xed time period. Each cabinet type requires a di�erent set of elementarysequential operations, each taking the same time to be carried out. The manufac-turing process involves a number of identical unit cells linked together to form apipeline machine capable of carrying out the tasks. Each unit cell is capable ofexecuting all operations to build any particular type of cabinet. A machine witha particular number of cells is allowed only for manufacturing cabinets when thenumber of operations is a multiple of the number of cells. For example, a two-cellmachine is only suitable for building cabinet types with 2, 4, 6, ... separate op-erations. The problem is to allocate each task to a machine such that the totalproduction is completed as early as possible.4. Set Partitioning Problem [15]: The problem, denoted by SPP, is to collect a set ofM subsets of N , M � 2N , such that they are pairwise disjoint, their union is N ,and the sum of the weights of the subsets is minimal. (We consider the examplewith 197 subsets over 17 elements [15].)These benchmarks are chosen for a number of reasons:Phillips and Unger [23] have demonstrated that the MIP solver derives the optimalsolution to the 1-Hoist Scheduling Problem very quickly. Unfortunately, the e�ciencyquickly diminishes as the number of tanks and hoists in a given system increases. Schedul-ing two or more hoists expands the solution space, and makes the task of searching forthe global optimal solution extremely di�cult. For instance, Lei and Wang [19] have pro-posed a heuristic algorithm for the 2-Hoist Scheduling Problem to derive feasible solutionswithout proof of optimality.Smith et al. [27] have shown that the di�erence in the performance of the CLPsolver versus the MIP solver on the Progressive Party Problem is particularly marked.The MIP model is too large to be solved using linear programming techniques, whereasconstraint programming can succeed through careful choice of heuristics to direct its



R. Rodo�sek et. al. / A New Approach to Integrating MIP and CLP 17search. Although a solution with 13 hosts is derived quickly, constraint programminghas di�culties in recognising the optimal solution. On the other hand, simplex easilyrecognises the infeasibility for 12 hosts.Little and Darby-Dowman [20] have shown that the CLP solver solves the CabinetAssignment Problem quicker than the MIP solver. The MIP solver reaches an integersolution equal to the optimum, but is not able to prove its optimality.Ho�man and Padberg [15] have demonstrated that the MIP solver solves the SetPartitioning Problem very e�ciently. The di�erence in the performance of the CLPsolver versus the MIP solver on this problem is particularly marked.5.2 ModellingProblems in CLP are modelled in terms of �nite domain variables and the constraintsover them. Almost all of the mentioned problems are represented in a very natural wayusing non-binary variables. By performing the proposed translation of CLP programs,two sets of constraints are derived: a set of constraints representing the CLP store, and aset of linear constraints representing the MIP store. We show three di�erent models foreach problem:1. the CLP store of constraints2. the MIP store of translated constraints3. the CLP store and the MIP store.To perform a hybrid algorithm, both CLP and MIP stores are generated. Each of thestores does not need to represent the whole problem. For instance, the CLP store cande�ne the whole problem while the MIP store can contain only some translated linearconstraints.The number of constraints and variables of di�erent models for the problems aregiven in Tables 1-3. Table 1 gives the number of all variables, all constraints, onlydisjunctive constraints and only binary variables of the CLP store for the CLP solver.Tables 2 and 3 represent the number of rows, columns, non-zeros and binary variablesof the mathematical model in CPLEX after crossing the linear constraints from the MIPstore. In Table 2, the MIP store is the result of the automatic translation using auxiliaryvariables.Modelling of the k-Hoist Scheduling Problem: The problem can be represented by dis-junctive constraints over non-binary variables. For every two tanks i and j, the followingdisjunctive constraints are de�ned:disj(Hi; Hj; Ti; Tj; T) : � Ti + f(i) + e(i+ 1; j) � Tj + k � T:disj(Hi; Hj; Ti; Tj; T) : � Tj + k � T+ f(j) + e(j+ 1; i) � Ti:disj(Hi; Hj; Ti; Tj; T) : � Hi + 1 � Hj:disj(Hi; Hj; Ti; Tj; T) : � Hj + 1 � Hi:Variables Hi and Hj represent the hoists which transport components from tank i andtank j, respectively. Variables Ti and Tj represent the removal time of the components



R. Rodo�sek et. al. / A New Approach to Integrating MIP and CLP 18from tank i and tank j, respectively. Variable T represents the period of the the produc-tion line. The goal of the problem is to minimise this variable. Constant f(i) denotesthe transport time of the components from tank i to the next tank i+1. Constant e(i; j)denotes the time of hoists (when empty) to move from tank i to tank j. By unfolding theCLP program, the constraints of the problem are stored into the the CLP store and theMIP store (see Tables 1-3 for the 2-Hoist Scheduling Problem).Modelling of the Progressive Party Problem: The problem can be represented by dis-junctive constraints over non-binary variables (using alldistinct constraint), capacityconstraints over binary variables (i.e., linear equalities and inequalities) and link con-straints to link binary variables and non-binary variables (using link constraint). Sincethe problem has many equivalent solutions such symmetries in the problem can vastlyincrease the size of the search space. Symmetry is avoided, or at least reduced, by addingsymmetry constraints to eliminate equivalent solutions.By unfolding the CLP program for this problem, all mentioned constraints are derivedand stored into the CLP store (see Table 1). This model is appropriate for the CLP solver.A model for the MIP solver is derived by using our translator (see Table 2). The mainreason for a large number of translated constraints and variables for the Progressive PartyProblem is the translation of link constraints between binary and non-binary variables.The hybrid CLP&MIP solver is performed on a model which is derived by usingthe replaced and translation directives on the disjunction, capacity and link constraints,which are su�cient to de�ne the problem. The symmetry constraints are helpful for theCLP solver but they are usually not needed for the MIP solver. We do not translate them.The disjunctive constraints are replaced by linear constraints on binary variables. Sincethere are no other constraints over non-binary variables we did not need to translatethe constraints linking binary variables to non-binary variables. The set of translatedconstraints becomes much smaller than the translation of the whole program (see Table 3).Modelling of the Cabinet Assignment Problem: All three models are generated on thesame way as the models of the Progressive Party Problem (see Tables 1-3).Modelling of the Set Partitioning Problem: The whole problem is represented by con-straints over binary variables. All three models are equivalent since the constraints arelinear equalities over binary variables.Table 1: The CLP store of the CLP models.CLP store 2-HSP PPP CAP SPPVars. 507 4806 98 198Constr. 974 5861 118 18Disj. constr. 641 5281 97 184Bin. vars. 493 4632 84 198



R. Rodo�sek et. al. / A New Approach to Integrating MIP and CLP 19Table 2: The MIP store of the MIP models.MIP store 2-HSP PPP CAP SPPRows 1328 14592 294 198Columns 2146 24593 511 18Non-zeros 7861 108134 1158 184Bin. vars. 1314 14418 280 198Table 3: The MIP store of the CLP&MIP models.MIP store 2-HSP PPP CAP SPPRows 1328 4632 84 198Columns 2146 1035 109 18Non-zeros 7861 7980 530 184Bin. vars. 1314 4632 84 1985.3 SolvingWe have implemented the integration of CLP with MIP by using the ECLiPSe constraintlogic programming platform and the CPLEX mathematical programming package. Thisallows CPLEX to be used to solve problems modelled in ECLiPSe. The control of thesearch process and the local constraint propagation is handled by CLP, while the globalconstraint propagation is handled by MIP. The local propagation is performed by a consis-tency algorithm on �nite domains and it represents a component of the ECLiPSe package.On the other hand, the global propagation is performed by the simplex algorithm whichis a component of the CPLEX package. We apply the following tasks:� the CLP solver on the original CLP constraints (see Table 1)� the MIP solver on the translated CLP constraints (see Table 2)� the hybrid CLP&MIP solver on the original CLP constraints (see Table 1) and onthe partially translated CLP constraints (see Table 3).Let us discuss the empirical results of the hybrid solver relative to the results of the CLPand MIP solvers on each problem. We say that a problem is solved by a solver if thissolver derives an optimal solution to the problem and proves its optimality. The resultsshow that the Cabinet Assignment Problem is easy for the CLP solver and hard for theMIP solver. The Set Partitioning Problem is hard for the CLP solver and easy for theMIP solver. The 2-Hoist Scheduling Problem and the Progressive Party Problem are hardfor the CLP solver and for the MIP solver. However, all test problems are easy for thehybrid solver. The empirical results in Table 4 demonstrate that the hybrid algorithmderives an optimal solution and proves its optimality to each problem, which cannot beachieved by the CLP solver or the MIP solver. All times are in CPU seconds running on



R. Rodo�sek et. al. / A New Approach to Integrating MIP and CLP 20a SUN-SPARC/20.Solving the 2-Hoist Scheduling Problem: The CLP model contains 974 constraints over507 variables and the CLP solver does not derive a solution within 5 minutes. The MIPsolver on the translated CLP model is also an ine�cient approach to solve this problem.By applying the CLP&MIP solver on the CLP store (see Table 1) and on the MIP store(see Table 3), simplex and the constraint propagation on �nite domains helped to derivean optimal solution and to prove its optimality in 102.65 sec. It follows that the local andglobal constraint propagation are very useful procedures, cutting the solution space andderiving an optimal solution to the hoist problem in reasonable time.Solving the Progressive Party Problem: The CLP model contains 5861 constraints over4806 variables and the CLP solver derived a solution with 13 hosts in 171:03 sec. Thiswas an optimal solution of the problem, but the CLP solver did not recognise it withintwo hours. By translating the program, the MIP store contains 24593 constraints over14592 variables. The MIP solver did not succeed in deriving a solution with 13 hostswithin two hours. It needed 509 sec. to even recognise an infeasibility for 12 hosts.By applying the CLP&MIP solver on the CLP store (see Table 1) and the MIP store(see Table 3), the local propagation on �nite domains helped to derive a solution with 13hosts, while simplex helped to recognise infeasibility for 12 hosts. An optimal solution ofthe problem was derived in 211.69 sec.It follows that the CLP solver is good at deriving a solution with 13 hosts while theMIP solver is good at recognising infeasibility for 12 hosts and, hence, at recognisingthat the solution of the CLP solver is an optimal solution. Furthermore, the proposedtranslation of the whole problem can lead to a very ine�cient simplex algorithm. Itcon�rms the claim that putting e�ort on the modelling part is indeed a step towards ane�cient running program.Solving the Cabinet Assignment Problem: The CLP solver derives an optimal solutionwhile the MIP solver �nds a solution with the optimal cost but it has di�culties inproving optimality. By applying the CLP&MIP solver, the number of backtrack stepswas reduced from 287 to 122 w.r.t. the CLP solver. This shows that simplex helps a lotto reduce the number of decisions and, hence, the size of the search tree.



R. Rodo�sek et. al. / A New Approach to Integrating MIP and CLP 21Table 4: Characteristics of the solvers on di�erent models.The CLP Solver on the CLP store:2-HSP PPP CAP SPPTime (1st solution) > 5 min 24.51 2.15 42.38Time (optimal solution) > 5 min 171.03 8.24 59.93Time (proof of optimality) > 5 min > 5 min 9.27 64.68Best Solution - 13 55.8 11307FD fails > 15000 > 15000 287 1611The MIP Solver on the MIP store:2-HSP PPP CAP SPPTime (1st solution) > 5 min > 5 min 0.34 0.15Time (optimal solution) > 5 min > 5 min 5.12 0.18Time (proof of optimality) > 5 min > 5 min > 5 min 0.18Best Solution - - 55.8 11307Nodes processed > 15000 > 15000 400 4The CLP&MIP Solver: 2-HSP PPP CAP SPPTime (1st solution) 20.40 38.51 7.31 0.71Time (optimal solution) 41.23 211.69 10.52 0.71Time (proof of optimality) 102.65 303.23 13.21 0.71Best Solution 251 13 55.8 11307FD fails 2377 3283 122 0LP fails 1598 5327 63 0Solving the Set Partitioning Problem: This problem is solved faster using the MIP solverwhich generated only 4 nodes to derive an optimal solution in 0.18 sec. For instance,simplex derived a relaxed optimal solution with 172 integer values and only 4 non-integervalues. On the other hand, the CLP solver needed 64.68 sec to solve the problem. Byapplying the CLP&MIP solver, an optimal solution was derived without backtracking.Simplex was called only once, and by using the suggested integer values, the local prop-agation on �nite domains causes an instantiation of integer values for all other variables.5.4 A comparison: the CLP solver on the translated CLP model versus the MIP solveron the translated CLP modelThe proposed automatic translation does not guarantee the \best" model either for theMIP solver or for the CLP solver. An example of such a model for the MIP solver isthe MIP store of the translated CLP constraints for the Progressive Party Problem (seeTable 2). The main reason for such a large number of constraints and variables was theautomatic translation of the link constraints between binary and non-binary variables.



R. Rodo�sek et. al. / A New Approach to Integrating MIP and CLP 22By applying the CLP solver on the MIP store of the translated CLP constraints,the local constraint propagation is signi�cantly less e�cient when reducing the domainsof variables. Let us demonstrate the ine�ciency on disjunctive constraint (X + 2 �Y or Y +2 � X), where X and Y are integer variables with the domain 0::10. If the CLPsolver chooses a value for variable X , e.g., X = 5, then the �nite domain propagation onthe disjunctive constraint reduces the domain of Y to f0; :::; 3; 7; :::; 10g, while it does notmodify the domain of Y by considering the translated constraints.5.5 A comparison: the CLP solver on the pure CLP model versus the hybrid CLP&MIPsolver on the partially translated CLP modelThe empirical results have shown that the hybrid CLP&MIP solver derives optimal solu-tions faster if the CLP constraints are replaced and translated to linear constraints overbinary variables. The link constraints and symmetry constraints are not translated. Thisgenerally improves performance, most signi�cantly �nding optimality within the limitednumber of decisions. However, the optimal solution is not necessarily derived faster thanwhen using the CLP solver. For example, the results on the Progressive Party Problemand the Cabinet Assignment Problem have shown that the times were still inferior to thetotal CLP approach. On the other problems, the hybrid algorithm was faster than theCLP solver since simplex e�ectively reduced the solution space by solving the relaxedproblem. It seems that if a problem has not been identi�ed as being suitable for an CLPsolution, the decision of which hybrid algorithms is most adequate is still unclear.5.6 The best and the worst performance in relation to the problem characteristicsWe have presented problems which are relatively easy for the CLP solver and hard for theMIP solver (e.g., the Cabinet Assignment Problem), as well as problems which are hardfor the CLP solver and easy for the MIP solver (e.g., the Set Partitioning Problem). Theempirical results show that the hybrid CLP&MIP solver successfully derives an optimalsolution and proves its optimality in all problems.The structure of a given problem can help to determine when CLP should be chosenin preference to MIP. All problems in this section, except the k-Hoist Scheduling Problem,have the common characteristic that they contain alldistinct constraints and capacitylinear constraints (i.e., Pi civi � C). The empirical results demonstrate that the CLPsolver is faster than the MIP solver if values ci, 1 � i � n, are di�erent (e.g., theProgressive Party Problem and the Cabinet Assignment Problem).6 ConclusionsThe CLPmodelling ensures that the encoding of a correct model of the problem can indeedbe a step towards an e�cient running program. CLP allows the de�nition of constraintsin a more natural and compact way. If CLP is also used to control the search by usingthe local and global constraint propagation, the consequences can be revolutionary - withprogrammers actually taking modelling seriously.



R. Rodo�sek et. al. / A New Approach to Integrating MIP and CLP 23We have presented an e�cient translation to derive a generic model and furtherspeci�c MIP models for di�erent input data. The translation is performed only on thepart of the program not satisfying data/control-ow properties. The translated programenables us not only to use di�erent solution techniques (the CLP solver or the MIP solver),but also to combine them into more powerful mechanisms (hybrid CLP&MIP solvers).The results of such an integration of two programming paradigms are represented bythe Progressive Party Problem and the 2-Hoist Scheduling Problem, which can be solvede�ciently, while the CLP solver or the MIP solver are not able to solve them in reasonabletime. The integration allows comparisons between the two approaches to give a cleareridea of when CLP should be chosen in preference to MIP, and when an integrated solveris faster than the CLP solver or the MIP solver.References[1] B. deBacker and H. Beringer, A CLP language handling disjunctions of linear constraints,in: Proceedings of the ICLP, Budapest, 1993, pp. 550-563.[2] P. Barth and A. Bockmayer, Modelling mixed-integer optimisation problems in constraintlogic programming, Technical Report, MPI-I-95-2-011, Max-Planck-Institut f�ur Informatik,Saarbr�ucken, 1995.[3] N. L. Biggs, Discrete Mathematics, Oxford Science Publications, 1994.[4] I. Bratko, Prolog Programming for Arti�cial Intelligence, Addison-Wesley Publishing, 1990.[5] CPLEX, Using the CPLEX callable library, Ver3, CPLEX Optimisation Inc., Suite 279,Tahoe Blvd, Bldg. 802, Incline Village, NV 89451-9436, 1995.[6] J. David and C. Tat-Leong, Constraint-based applications in production planning: examplesfrom the automative industry, in: Proceedings of the Practical Application of ConstraintTechnology, Paris, 1995, pp. 37-51.[7] ECLiPSe 3.5 user manual, ECRC, Munich, 1995.[8] M. T. Hajian, Computational methods for discrete programming problems, PhD Thesis,Department of Mathematics and Statistics, Brunel University, Uxbridge, UK, 1993.[9] P. V. Hentenryck, Constraint Satisfaction in Logic Programming, Logic Programming Series,MIT Press, Cambridge, 1989.[10] P. V. Hentenryck, Constraint logic programming, The Knowledge Engineering Review 6(3)(1991) 151-194.[11] M. T. Hajian, H. El-Sakkout, M. G. Wallace, J. M. Lever and E. B. Richards, Towardsa closer integration of �nite domain propagation and simplex-based algorithm, TechnicalReport ICPARC-95/09-01, IC-Parc, Imperial College, London, 1995.[12] E. Hadjiconstantinou, C. Lucas, G. Mitra and S. Moody, Tools for reformulating logicalforms into zero-one mixed integer programs, European Journal of Operational Research72(2) (1994) 262-276.[13] C. Holzbaur, A specialized, incremental solved form algorithm for systems of linear inequal-ities, Technical Report, TR-94-07, Austrian Research Institute for Arti�cial Intelligence,Vienna, 1994.[14] J. N. Hooker, Generalized resolution for 0-1 linear inequalities, Annals of Mathematics andArti�cial Intelligence 6 (1992) 271-286.[15] K. L. Ho�man and M. Padberg, Solving airline crew-scheduling problems by branch-and-cut,Technical Report, George Mason University and New York University, USA, 1992.[16] K. I. M. McKinnon and H. P. Williams, Constructing integer programming model by thepredicate calculus, Annals of Operations Research 21 (1989) 227-246.



R. Rodo�sek et. al. / A New Approach to Integrating MIP and CLP 24[17] A. D. Kelly, A. Macdonald, K. Mariott, H. Sondergaard, P. J. Stuckey and R. H. C. Yap,An optimizing compiler for CLP(R), in: Proceedings of the First International Conferenceon Principles and Practice of Constraint Programming, Cassis, 1995, pp. 222-239.[18] A. Land and A. Doig, An automatic method for solving discrete programming problems,Econometrica 28(3) (1960) 497-520.[19] L. Lei and T. J. Wang, The minimum common cycle algorithm for cycle scheduling of twomaterial handling hoists with time window constraint, Management Science 37(12) (1991)1629-1639.[20] J. Little and K. Darby-Dowman, The signi�cance of constraint logic programming to op-erational research, Technical Report, Brunel University, Department of Mathematics andStatistics, Brunel University, Uxbridge, UK, 1995.[21] M. J. Maher, Logic semantics for a class of committed-choice programs, in: Proceedings ofthe ICLP, Melbourne, 1987, pp. 858-876.[22] C. L. Pape, Implementation of resource constraints in ILOG scheduling: a library of thedevelopment of constraint-based scheduling systems, Intelligent Systems Engineering 3(2)(1994) 55-66.[23] L. W. Phillips and P. S. Unger, Mathematical programming solution of a hoist schedulingprogram, AIIE Transactions 8(2) (1976) 219-225.[24] D. Pothos, Broadcast network routing using constraint logic programming, Technical Re-port, IC-Parc, Imperial College, London, 1995.[25] B. Purohit, T. Clark and T. Richards, Techniques for routing and scheduling services on atransmission network, BT Technology Journal 13(1) (1995) 64-72.[26] J. Puget, A comparison between constraint programming and integer programming, in:Proceedings of the Applied Mathematical Programming and Modelling Conference, BrunelUniversity, Uxbridge, UK, 1995.[27] B. M. Smith, S. C. Brailsford, P. M. Hubbard and H. P. Williams, The progressive partyproblem: integer linear programming and constraint programming compared, in: Proceed-ings of the First International Conference on Principles and Practice of Constraint Pro-gramming, Cassis, 1995.[28] M. Wallace, Applying constraints for scheduling, Constraint Programming, NATO ASI Se-ries, eds. B. Mayoh, E. Tyugu and J. Penjam, Springer-Verlag, 1994, pp. 153-172.[29] H. P. Williams, Logic problems and integer programming, Bulletin of the Institute of Math-ematics and its Applications 13 (1977) 18-20.[30] H. P. Williams, Linear and integer programming applied to the propositional calculus,International Journal of Systems Research and Information Science 2 (1987) 81-100.[31] H. P. Williams, Model Building in Mathematical Programming, John Wiley and Sons, 1990.[32] H. P. Williams, Model Solving in Mathematical Programming, John Wiley and Sons, 1993.


