
Hybrid Benders De
omposition Algorithmsin Constraint Logi
 ProgrammingAndrew Eremin and Mark Walla
eIC-Par
London, UKfa.eremin, mgwg�i
par
.i
.a
.ukAbstra
t. Benders De
omposition is a form of hybridisation that al-lows linear programming to be 
ombined with other kinds of algorithms.It extra
ts new 
onstraints for one subproblem from the dual values ofthe other subproblem. This paper des
ribes an implementation of Ben-ders De
omposition, in the ECLiPSe language, that enables it to be usedwithin a 
onstraint programming framework. The programmer is sparedfrom having to write down the dual form of any subproblem, be
auseit is derived by the system. Examples are used to show how problem
onstraints 
an be modelled in an unde
omposed form. The programmerneed only spe
ify whi
h variables belong to whi
h subproblems, and theBenders De
omposition is extra
ted automati
ally. A 
lass of minimalperturbation problems is used to illustrate how di�erent kinds of algo-rithms 
an be used for the di�erent subproblems. The implementation istested on a set of minimal perturbation ben
hmarks, and the results areanalysed.1 Introdu
tion1.1 Forms of HybridisationIn re
ent years, resear
h on 
ombinatorial problem solving has begun toaddress real world problems whi
h arise in industry and 
ommer
e [1{3℄. These problems are often large s
ale, 
omplex, optimisation (LSCO)problems and are best addressed by de
omposing them into multiplesubproblems. The optimal solutions of the di�erent subproblems are in-variably in
ompatible with ea
h other, so resear
hers are now exploringways of solving the subproblems in a way that ensures the solutions are
ompatible with ea
h another - i.e. globally 
onsistent. This resear
htopi
 belongs to the area of \hybrid algorithms" [4, 5℄, but more spe
if-i
ally it addresses ways of making di�erent solvers 
ooperate with ea
hother. Following [6℄ we shall talk about \forms of hybridisation".An early form of hybridisation is the 
ommuni
ation between global 
on-straints in 
onstraint programming, via the �nite domains of the sharedvariables. Di�erent subproblems are handled by di�erent global 
on-straints (for example a s
heduling subproblem by a 
umulative 
onstraintand a TSP subproblem by a 
y
le 
onstraint [7℄), and they a
t indepen-dently on the di�erent subproblems yielding domain redu
tions. This is



a 
lean and sound hybridisation form be
ause a domain redu
tion whi
his 
orre
t for a subproblem is ne
essarily 
orre
t for any larger problemin whi
h the subproblem is 
ontained.1.2 Hybridisation Forms for Linear ProgrammingMaster Problems and other Subproblems LSCO problems in-volve a 
ost fun
tion, and for performan
e reasons it is important to �ndsolutions qui
kly that are not only feasible but also of low 
ost. Usuallythese 
ost fun
tions are linear, or 
an be approximated by a linear orpie
ewise linear fun
tion. Linear programming o�ers eÆ
ient 
onstraintsolvers whi
h 
an qui
kly return optimal solutions to problems whose 
ostfun
tion and 
onstraints 
an be expressed using only linear expressions.Consequently most industrial LSCO problems involve one or more linearsubproblems whi
h are addressed using linear programming as availablein 
ommer
ial produ
ts su
h as XPRESS [8℄ and CPLEX [9℄.Whilst global 
onstraints 
lassi
ally return information ex
luding 
ertainassignments from any possible solution, linear solvers 
lassi
ally returnjust a single optimal solution. In 
ontrast with global 
onstraints, theinformation returned by a linear solver for a subproblem does not ne
es-sarily remain true for any larger problem in whi
h it is embedded. Thuslinear solvers 
annot easily be hybridised in the same way as global 
on-straints.Nevertheless several hybridisation forms have been developed for linearsolvers, based on the 
on
ept of a \master" problem, for whi
h the op-timal solution is found, and other subproblems whi
h intera
t with themaster problem. In the simplest 
ase this intera
tion is as follows. Thesubproblem examines the last optimal solution produ
ed for the masterproblem, and determines whether this solution violates any of the 
on-straints of the subproblem. If so the subproblem returns to the masterproblem one or more alternative linear 
onstraints whi
h 
ould be addedto the master problem to prevent this violation o

urring again. Oneof these 
onstraints is added to the master problem and a new optimalsolution is found. To prove global optimality ea
h of the alternatives areadded to the master problem on di�erent bran
hes of a sear
h tree. Thesealternatives should 
over all possible ways of �xing the violation.A generalisation of this form of hybridisation is \row generation" [10℄,where a new set of 
onstraints (\rows") are added to the master problemat ea
h node of the sear
h tree. Unimodular probing [11℄ is an integrationof a form of row generation into 
onstraint programming.Column Generation Another form of hybridisation for linear pro-gramming is 
olumn generation [12℄. In this 
ase the master problem isto �nd the optimal 
ombination of \pie
es" where ea
h pie
e is itself asolution of another subproblem. A typi
al appli
ation of 
olumn gener-ation is to 
rew s
heduling: the assignment of 
rew to a bus or 
ights
hedule over a day or a month. There are 
omplex 
onstraints on thesequen
e of a
tivities that 
an be undertaken by a single 
rew, and these
onstraints are handled in a subproblem whose solutions are 
omplete



tours whi
h 
an be 
overed by a single 
rew over the time period. Themaster problem is the optimal 
ombination of su
h tours. The masterproblem 
onstraints enfor
e that ea
h s
heduled bus trip or 
ight mustbelong to one tour. Ea
h tour is represented in the master problem by avariable, whi
h 
orresponds to a 
olumn in the matrix representing theproblem.In the general 
ase, ea
h 
all to another subproblem returns a solutionwhi
h has the potential to improve on the 
urrent optimum for the masterproblem. Ea
h 
all to a subproblem adds a 
olumn to the master problem,and hen
e the name \
olumn generation".A number of appli
ations of 
olumn generation have been reported inwhi
h the subproblem is solved by 
onstraint programming [13, 14℄. A
olumn generation library has been implemented in the ECLiPSe 
on-straint logi
 programming system, whi
h allows both subproblem, 
om-muni
ation of solutions and sear
h to be spe
i�ed and 
ontrolled fromthe 
onstraint program.While 
olumn generation utilises the dual values returned from 
onvexsolvers to form the optimisation fun
tion of a subproblem, a 
losely re-lated te
hnique exploits them to approximate subproblem 
onstraintswithin the optimisation fun
tion of the master problem. This te
hniqueis known as Lagrangian relaxation and has been used for hybridising 
on-straint programming and 
onvex optimisation by Sellmann and Fahle [15℄and Benoist et. al. [16℄ in[17℄.Other Hybridisation Forms Besides optimal solutions, linear solvers
an return several kinds of information about the solution. Redu
ed 
ostsare the 
hanges in the 
ost whi
h would result from 
hanges in the valuesof spe
i�
 variables. These are, in fa
t, underestimates so if the redu
ed
ost is \-10" the a
tual in
rease in 
ost will be greater than or equal to10. In 
ase the variable has �nite domain, these redu
ed 
osts 
an be usedto prune values from the domain in the usual style of a global 
onstraint.(A value is pruned from the domain if the asso
iated redu
ed 
ost is sobad it would produ
e a solution worse than the 
urrent optimum). Inthis way linear programming 
an be hybridised with other solvers in theusual manner of 
onstraint programming. Indeed the te
hnique has beenused very su

essfully [18℄.1.3 Benders De
ompositionBenders De
omposition is a hybridisation form based on the master prob-lem/subproblem relationship. It makes use of an important and elegantaspe
t of mathemati
al programming, the dual problem [19℄. BendersDe
omposition is appli
able when some of the 
onstraints and part ofthe optimisation fun
tion exhibit duality. The master problem need notuse mathemati
al programming at all. The subproblems return informa-tion whi
h 
an be extra
ted by solving the dual. The new 
onstraintsthat are added to the master problem are extra
ted from the dual valuesof the subproblems.



We have implemented Benders De
omposition in ECLiPSe and used itto ta
kle several 
ommer
ial appli
ations in transportation and tele
om-muni
ations. The te
hnique has proved very su

essful and has outper-formed all other hybridisation forms in these appli
ations.For the purposes of this paper we have also used Benders De
ompositionto ta
kle a set of ben
hmarks originally designed to test another hy-bridisation form, Unimodular Probing [11℄. Whilst our results on theseben
hmarks have not been so striking as the appli
ations mentionedabove, they ni
ely illustrate the use of Benders De
omposition and the
ombination of linear programming with a simple propagation algorithmfor the master problem. From these ben
hmarks we also make some ob-servations about the kinds of problems and de
ompositions that are mostsuited to the hybrid form of Benders De
omposition.1.4 ContentsIn the following se
tion we introdu
e Benders De
omposition, explainand justify it, and present the generi
 Benders De
omposition algorithm.In se
tion 3 we show how it is embedded in 
onstraint programming. Wedes
ribe the user interfa
e, and how one models a problem to use BendersDe
omposition in ECLiPSe. We also des
ribe how it is implemented inECLiPSe. In se
tion 4 we present the appli
ation of Benders De
ompo-sition to a \minimal perturbation" problem, its de�nition, explanationand results on a set of ben
hmarks. Se
tion 5 
on
ludes and dis
ussesthe next appli
ation, further work on modeling and integration, and openissues.2 Benders De
ompositionBenders de
omposition is a 
ut or row generation te
hnique for the so-lution of spe
ially stru
tured mixed integer linear programs that wasintrodu
ed in the OR literature in [20℄. Given a problem P over a set ofvariables V , if a subset X of the variables 
an be identi�ed for whi
h �x-ing their values results in one or more dis
onne
ted SubProblems (SPi)over the variable sets Yi : Si Yi = V � X whi
h are easily soluble |normally due to some stru
tural property of the resulting 
onstraints |it may be bene�
ial to solve the problem by a two stage iterative pro
e-dure.At ea
h iteration k a Relaxed Master Problem (RMPk) in the 
ompli
at-ing or 
onne
ting variables X is �rst solved and the solution assignmentX = Xk used to 
onstru
t the subproblems SPki ; these subproblems arethen solved and the solutions used to tighten the relaxation of the masterproblem by introdu
ing Benders Cuts, �ki (X).The subproblems optimise over redu
ed dimensionality subspa
es DkYiof the original problem solution spa
e obtained by �xing the variablesX = Xk, while the master problem optimises over the optimal solutionsof these subspa
es augmented by Xk guided by the 
uts generated.In 
lassi
al Benders De
omposition both the master and subproblems



are linear and are solved by MILP algorithms, while the 
uts are de-rived from Duality theory. In general however, we are free to use anyappropriate solution methods for master and subproblems | all that isrequired is an assignment of the master problem variables X = Xk to
onstru
t 
onvex subproblems, and a pro
edure for generating valid 
utsfrom subproblem solutions. The most naive su
h s
heme would merelyresult in the master problem enumerating all assignments of X, whilemore informative 
uts 
an result in substantial pruning of the masterproblem sear
h spa
e.2.1 Classi
al Benders De
ompositionConsider the linear program P given by:P : min fTx+ IXi=1 
Ti yisubje
t to Gix+Aiyi � bi 8ix 2 DXyi � 0 8i (1)When x is �xed to some value xk we have linear programs in yi whi
hmay be spe
ially stru
tured or easy to solve, prompting us to partitionthe problem as follows:P : minx2DX (fTx+ IXi=1 �min�
Ti yi : Aiyi � bi �Gix;yi � 0	�)= minx2DX (fTx+ IXi=1 (max fui(bi �Gix) : uiAi � 
i;ui � 0g))(2)where the inner optimizations have been dualised. Given that Ui = fui :uiAi � 
i;ui � 0g is non-empty for ea
h i either there is an extremepoint optimal solution to ea
h inner optimization or it is unboundedalong an extreme ray; letting u1i ; : : : ;utii and d1i ; : : : ;dsii be respe
tivelythe extreme points and dire
tions of Ui we 
an rewrite (2) as the mixedinteger Master Problem MP:MP : min z = fTx+ IXi=1 �isubje
t to �i � uki (bi �Gix) 8i 8k0 � dli(bi �Gix) 8i 8lx 2 DX (3)Sin
e there will typi
ally be very many extreme points and dire
tionsof ea
h Ui and thus 
onstraints in (3) we solve relaxed master problems
ontaining a subset of the 
onstraints. If for some relaxed master problemRMPk the optimal relaxed solution (zk;xk) satis�es all the 
onstraintsof (3), then (zk;xk;yk1; : : : ;ykI ) is an optimal solution of (1); otherwise



there exists some 
onstraint or Benders Cut in (3) whi
h is violated forx = xk whi
h we add to RMPk to form RMPk+1 and iterate.To determine su
h a 
ut or prove optimality we obtain the optimal so-lution (�ki ;uki ) of the Subproblems SPki formed by �xing x = xk in (2):SPki : max �ki = ui(bi �Gixk)subje
t to uiAi � 
iui � 0 (4)If any subproblem SPki has an unbounded optimal solution for some xkthen the primal of the subproblem is infeasible for xk; if any subproblemSPki is infeasible for some xk then it is infeasible (and the primal ofthe subproblem is infeasible or unbounded) for any x sin
e the (empty)feasible region Ui is independent of x. In either 
ase we pro
eed by 
on-sidering the Homogeneous Dual of the primal of the subproblem:max ui(bi �Gixk)subje
t to uiAi � 0ui � 0 (5)This problem is always feasible (ui = 0 is a solution), having an un-bounded optimum pre
isely when the primal is infeasible and a �niteoptimal solution when the primal is feasible. In the unbounded 
ase we
an obtain a 
ut uki (bi �Gix) � 0
orresponding to an extreme dire
tion of U 0i = fui : uiAi � 0;ui � 0g.The 
omplete Benders de
omposition algorithm pro
eeds as follows:Algorithm 1 The Benders De
omposition Algorithm1. Initialisation step: From the original linear program P (1) 
onstru
tthe relaxed master problem RMP0 (3) with the initial 
onstraint setx 2 DX and set k = 0.2. Iterative step: From the 
urrent relaxed master problemRMPk withoptimal solution (zk;xk) 
onstru
t RMPk+1 with optimal solution(zk+1;xk+1): �x x = xk in P, and solve the resulting subproblemsSPki (4); there are three 
ases to 
onsider:(a) SPki is primal unbounded for some i | halt with the originalproblem having unbounded solution.(b) yki ;uki are respe
tively primal and dual optimal solutions of sub-problem SPki with obje
tive values �ki for ea
h i | there aretwo 
ases to 
onsider:i. PIi=1 �ki = zk halt with (zk;xk;yk1; : : : ;ykI ) as the optimalsolution to the original problem.ii. PIi=1 �ki > zk add the Benders Cuts �i � uki (bi �Gix) toRMPk to form the new relaxed master problem RMPk+1set k = k + 1 and return to (2).(
) SPki is dual unbounded or both primal and dual infeasible forsome i | �nd an extreme dire
tion dki of the homogeneous dualleading to unboundedness; add the 
ut dki (bi �Gix) � 0 toRMPk to form the new relaxed master problem RMPk+1 setk = k + 1 and return to (2).



2.2 Hybrid Benders De
ompositionThe 
lassi
al linear Benders De
omposition 
an be generalised to 
overproblems in whi
h the 
onstraints and obje
tive fun
tion are nonlinear,using any appropriate solution method for RMPk and SPki | we re-quire only a pro
edure for generating valid lower bounds �ki (x) from thesolutions of SPki . In its most general form we have the original problem:P : min f(f1(x;y1); : : : ; fI (x;yI))subje
t to gi(x;yi) � bi 8ix 2 DXyi 2 DY 8i (6)whi
h we de
ompose into the master problem:MP : min z = f(x; �1 : : : ; �I )subje
t to �i � �ki (x) 8i 8k0 � �li(x) 8i 8lx 2 DX (7)and subproblems: SPki : min fi(xk;yi)subje
t to gi(xk;yi) � biyi 2 DY (8)In parti
ular when we 
an identify one or more distin
t sets of variablesin whi
h the problem 
onstraints and obje
tive fun
tion are linear and a
ompli
ating set of variables, it will be useful to de
ompose the probleminto a nonlinear relaxed master problem and linear subproblems.3 Embedding Benders De
omposition inConstraint ProgrammingIn this se
tion we dis
uss the implementation of Benders De
ompositionin ECLiPSe . In designing the stru
ture of the implementation two im-portant 
onsiderations were to maintain the 
exibility of the approa
hand to ensure ease of use for non-mathemati
ians.The 
exibility of hybrid Benders De
omposition algorithms is due inlarge part to the possibility of using arbitrary solution methods for mas-ter and subproblems; in order to allow appropriate solvers to be simplyslotted in to the framework it is essential to 
leanly separate the methodof solution of master and subproblems from the 
ommuni
ation of solu-tions between them.As many users of the solver may be unfamiliar with the intri
a
ies oflinear programming and duality theory, it is important to provide auser interfa
e that allows for problems to be modeled in a natural andstraightforward formulation. All 
onstraints are therefore input in theiroriginal formulation | i.e. without having been de
omposed and du-alised and 
ontaining both master and subproblem variables. The setsof variables o

urring solely in the subproblems are spe
i�ed when theoptimisation is performed, and the original problem 
onstraints auto-mati
ally de
omposed into master and subproblem 
onstraints and thesubproblems dualised.



3.1 ECLiPSe ImplementationThe implementation of Benders De
omposition in ECLiPSe uses thesame features of the language that are used to implement �nite domainand other 
onstraints. These are demons, variable attributes, waking
onditions, and priorities.A demon is a pro
edure whi
h, on 
ompleting its pro
essing, suspendsitself. It 
an be woken repeatedly, ea
h time re-suspending on 
omple-tion, until killed by an expli
it 
ommand. Demons are typi
ally used toimplement 
onstraint propagation. For Benders De
omposition a demonis used to implement the solver for the master problem, with separatedemons for ea
h subproblem.A variable attribute is used to hold information about a variable, su
has its �nite domain. Programmers 
an add further attributes, and forBenders de
omposition an attribute is used to hold a tentative valuefor ea
h of the variables in the master problem. Ea
h time the masterproblem is solved, the tentative values of all the variables are updatedto re
ord the new solution.When the waking 
onditions for a demon are satis�ed, it wakes. For a�nite domain 
onstraint this is typi
ally a redu
tion in the domain ofany of the variables in the 
onstraint. For the subproblems in BendersDe
omposition the waking 
ondition is a 
hange in the tentative valuesof any variable linking the subproblem to the master problem. Thusea
h time the master problem is solved any subproblem whose linkingvariables now have a new value is woken, and solved again. The masterproblem is woken whenever a new 
onstraint (in the form of a Benders
ut) is passed to the solver. Thus pro
essing stops at some iteration eitherif after solving the master problem no subproblems are woken, or if aftersolving all the subproblems no new 
uts are produ
ed.Priorities are used in ECLiPSe to ensure that when several demons arewoken they are exe
uted in order of priority. For �nite domain propaga-tion this is used to ensure that simple 
onstraints, su
h as inequalities,are handled before expensive global 
onstraints. By setting the subprob-lems at a higher priority than the master problem, it is ensured that allthe subproblems are solved and the resulting Benders 
uts are all addedto the master problem, before the master problem itself is solved again.While it is possible to wake the master problem early with only some 
utsadded by setting lower priorities for subproblems, this proved ine�e
tivein pra
ti
e.4 Benders De
omposition for S
hedulingProblems4.1 Minimal Perturbation in Dynami
 S
heduling withTime WindowsThe minimal perturbation dynami
 s
heduling problem with time win-dows and side 
onstraints is a variant of the 
lassi
 s
heduling problemwith time windows: given a 
urrent s
hedule for a set of n possibly vari-able duration tasks with time windows on their start and end time points,



a set C of unary and binary side 
onstraints over these time points and aredu
ed number of resour
es r we are required to produ
e a new s
hed-ule feasible to the existing time windows and 
onstraints and the newresour
e 
onstraint that is minimally di�erent from the 
urrent s
hedule.The user enters these problems in a simple form that is automati
allytranslated into a set of 
onstraints that 
an be passed to the bd library.For the purposes of this paper, in the next se
tion we give the full modelgenerated by the translator. The subsequent se
tion reports how thismodel is split into a master/subproblem form for Benders De
omposi-tion4.2 The Constraints Modeling Minimal PerturbationFor ea
h task Ti in the 
urrent s
hedule with 
urrent start and end timestsi ; tei respe
tively there are:Time point variables for the start and end of the task si, ei and taskduration 
onstraints (si; ei) 2 Li (9)where Di = f(s; e) : e�s � li, e�s � ui, lsi � s � usi , lei � e � ueigand lsi ; usi ; lei ; uei ; li; ui are derived from the time windows of thetask start and end points and any 
onstraints on these time pointsin C.Perturbation 
ost variables 
si , 
ei and perturbation 
ost 
on-straints (
si ; si; 
ei ; ei) 2 Pi (10)where Pi = f(
s; s; 
e; e) : 
s � s� tsi , 
s � tsi � s, 
e � e � tei ,
e � tei � eg so that 
si � jsi � tsi j; 
ei � jei � tei jFor ea
h pair of tasks Ti; Tj there are:Binary non-overlap variables Preij ;Post ij for ea
h task Tj 6= Tiwhi
h take the value 1 i� task i starts before the start of task jand after the end of task j respe
tively, so that we havePreij = � 1 if si < sj0 if si � sj Post ij = � 1 if si � ej0 if si < ejand the distan
es between the time points si and sj ; ej are boundedby si � sj � �lsi � usj�Preijsi � sj � �lsj � usi � 1�Pre ij + �usi � lsj�si � ej � �uej � lsi�Post ij + �lsi � uej �si � ej � �usi � lej + 1�Post ij � 1 (11)The resour
e feasibility 
onstraint that the start time point si over-laps with at most r other tasksXj 6=i (Pre ij + Post ij) � n � r � 1 (12)



Time point distan
e 
onstraints between si; ei and all other timepoints. Sin
e for ea
h task Tj 6= Ti we have the distan
e bounds (11)between si and Tj and between sj and Ti of whi
h at most half 
anbe binding, we 
ombine them with the binary 
onstraintssi � sj + bij ej � si + buijsi � ej + blij ei � ej + beijappearing in the 
onstraint set C to give the distan
e 
onstraints(si; ei; sj ; ej ; Bij ; Lij ; Uij) 2 Dij(si; ei; sj ; ej ; Bij ; Lij ; Uij ;Preij ;Preji;Post ij) 2 Oij (13)whereDij = f(si; ei; sj ; ej ; B; L; U) :si � sj � B; si � ej � L;�si + ej � U; ei � ej � beij	Oij = f(si; ei; sj ; ej ; B; L; U;Preij ;Preji;Post ij) :B � bij ; L � blij ; U � buij ;B � �lsi � usj �Pre ij ; B � �usj � lsi + 1�Preji + �lsi � usj � ;L � �uej � lsi�Post ij + �lsi � uej � ;U � �lej � usi � 1�Post ij + 1	Valid ordering 
onstraints for ea
h task Tj 6= Ti there are many ad-ditional 
onstraints that we may 
hoose to introdu
e restri
ting thebinary variables to represent a valid ordering. These 
onstraints arenot ne
essary for the 
orre
tness of the algorithm as invalid orderingswill be infeasible to the subproblem, but may improve its eÆ
ien
yas fewer iterations will be needed.The 
omplete MILP problem formulation is thenP : min nXi=1 (
si + 
ei)subje
t to (
si ; si; 
ei ; ei) 2 Pi(si; ei) 2 Li(si; ei; sj ; ej ; Bij ; Lij ; Uij)(si; ei; sj ; ej ; Bij ; Lij ; Uij ;Preij ;Preji;Post ij) 22 DijOij � 8j 6= iPj 6=i (Preij + Post ij) � n� r � 1 9>>>=>>>;8i(14)4.3 Benders De
omposition Model for MinimalPerturbationMaster ProblemMP : min zsubje
t to �k(B;L;U)�l(B;L;U)(si; ei; sj ; ej ; Bij ; Lij ; Uij ;Preij ;Preji;Post ij)Pj 6=i (Pre ij + Post ij) ��2� z 8k0 8lOij 8j 6= in � r � 1 � 8i(15)



Subproblem There is a single subproblem with primal formulationLPk : min nXi=1 (
si + 
ei)subje
t to (
si ; si; 
ei ; ei) 2 Pi(si; ei) 2 Li(si; ei; sj ; ej ; Bij ; Lij ; Uij) 2 Dij 8j 6= i) 8i (16)The Benders De
omposition library in ECLiPSe automati
ally extra
tsa dual formulation of the subproblem. For the 
urrent subproblem LPk,the dual has the form:SPk : max nXi=1  �i +Xj 6=i �BijwBij + LijwLij + UijwUij�!subje
t to Pj 6=i �wBij + wLij � wUij � wBji�+ wtsi � wli + wui + wlsi �wusi � 0Pj 6=i �wbeij � wLji � wUji � wbeji�+ wtei + wli �wui + wlei � wuei � 0wtsi ; wtei � �1wtsi ; wtei � 1wli ; wui ; wlsi ; wusi ; wlei ; wuei � 0wBij ; wLij ; wUij ; wbeij � 0 8j 6= i
9>>>>>>>>>>>>=>>>>>>>>>>>>; 8i

(17)where �i = tsiwtsi + teiwtei + liwli + uiwui +Pj 6=i beijwbeij+lsiwlsi � usiwusi + leiwlei � ueiwueiSolutions to SPk produ
e 
uts of the form z � �k(B;L;U) whi
h ex
ludeorderings with worse 
ost from further relaxed master problems whenthe subproblem is feasible, or �k(B;L;U) � 0 whi
h ex
lude orderingsinfeasible to the start windows and durations of the tasks when thesubproblem is infeasible, where�k(B;L;U) = IXi=1  �ki +Xj 6=i �wkBijBij +wkLijLij + wkUijUij�!All 
oeÆ
ients wk and 
onstants �ki in the 
uts are integral sin
e thesubproblems are totally unimodular.4.4 Results and Dis
ussionSummary We ran this model on 100 minimal perturbation probleminstan
es. The number of variables in the problem model was around 900,and there were some 1400 
onstraints in the master problem and around20 in the subproblem. Most problems were solved within 10 iterations



between master and subproblem, though a few not
hed up hundreds ofiterations.The time and number of iterations for ea
h problem are given in Table 1.The bulk of the time was spent in the �nite domain sear
h used to solvethe master problem. Typi
ally, for the feasible instan
es, the optimalsolution was found early in the sear
h, and mu
h time was wasted ingenerating further solutions to the master problem whi
h were not betterin the 
ontext of the full problem.Corre
t and optimal solutions to all the problems were returned, butthe performan
e was an order of magnitude slower than the spe
iallydesigned algorithm presented in [11℄.Analysis Minimal perturbation 
an be de
omposed into a master andsubproblem for the Benders De
omposition approa
h, but the size ofthe problems is very disparate. The behaviour of the algorithm on theben
hmark problem re
e
t the number of 
onstraints - the subproblemsare trivial and almost all the time is spent in the master problem. Theimbalan
e is probably an indi
ation that this algorithm is better suitedto problems with larger or more 
omplex subproblems.Nevertheless it is not always the number of 
onstraints that make a prob-lem hard, but the diÆ
ulty of handling these 
onstraints. It may be thatthe master problem 
onstraints, while numerous, are easy to handle ifthe right algorithm is used.Currently the algorithm used to solve the master problem is a two-phase�nite domain labelling routine. In the �rst phase a single step lookaheadis used to instantiate binary variables that 
annot take one of their val-ues. In the se
ond step all the binary variables are labelled, 
hoosing �rstthe variables at the bottlene
k of the minimal perturbation s
hedulingproblem. This is not only a relatively naive sear
h method, but it alsola
ks any a
tive handling of the optimisation fun
tion. Linear program-ming does o�er an a
tive handling of the optimisation fun
tion. Thus,using a hybrid algorithm to ta
kle the master problem within a largerBenders De
omposition hybridisation form, 
ould be very e�e
tive onthese minimal perturbation problems.Benders De
omposition has proven to be a very eÆ
ient and s
alableapproa
h in 
ase the problem breaks down into a master problem andmultiple subproblems. The minimal perturbation problems ben
hmarkedin this paper involve a single kind of resour
e. These problems do nothave an apparent de
omposition with multiple subproblems. This is ase
ond reason why our ben
hmark results do not 
ompete with the best
urrent approa
h, on this 
lass of problems. Minimal perturbation prob-lems involving di�erent kinds of resour
es might, by 
ontrast, prove tobe very amenable to the Benders De
omposition form of hybridisation.5 Con
lusionThis paper has investigated hybridisation forms for problems that admita de
omposition. A variety of hybridisation forms 
an be used in 
ase



Problem Iterations Time1 11 4.922 12 3.163 10 2.404 15 11.305 16 7.936 58 109.227 25 19.828 10 3.279 32 16.2510 107 151.0111 - >20012 - >20013 44 96.7714 29 18.3015 70 83.8716 20 30.9617 23 11.6518 18 15.1619 14 4.9420 21 8.1721 19 5.0122 60 180.4723 20 8.4624 39 82.9325 13 2.7426 3 0.7127 10 7.1428 22 12.2329 27 13.2430 - >20031 42 36.6932 15 4.4833 15 8.7734 20 23.70

Problem Iterations Time35 4 1.0936 20 7.0637 22 20.9138 36 67.4839 59 184.5740 13 5.6641 28 27.0542 9 5.8643 39 21.0244 25 9.4345 11 5.2046 - >20047 5 1.3748 51 51.7549 9 2.0650 18 8.8051 30 19.4452 43 119.6653 28 26.1054 33 17.3255 14 6.0156 14 9.9557 45 100.9458 4 0.8859 8 2.4560 - >20061 19 9.4162 24 11.4863 - >20064 46 95.0765 30 18.6266 14 5.5767 10 3.1068 62 132.87

Problem Iterations Time69 26 39.4870 13 4.8671 - >20072 - >20073 - >20074 26 18.7275 91 154.0076 12 3.4977 54 111.1778 35 37.5279 44 38.0080 10 3.5681 28 12.6982 8 2.0183 16 14.5284 32 22.2485 20 4.9486 - >20087 18 9.5688 12 4.7289 7 2.2690 43 42.5191 8 2.1292 54 111.593 - >20094 25 8.0895 8 2.9996 22 10.9797 5 1.5998 6 2.3799 15 4.82100 19 47.61Table 1. Number of iterations and total solution time for Benders De
omposition onRFP ben
hmark data



one or more subproblems are handled by linear programming. We aim tomake them all available in the ECLiPSe language in a way that allowsusers to experiment easily with the di�erent alternatives so as to qui
kly�nd the best hybrid algorithm for the problem at hand.Benders De
omposition is a te
hnique that has not, to date, been appliedto many real problems within the CP 
ommunity. Publi
ations on thiste
hnique have des
ribed a few pedagogi
al examples and \a
ademi
"problem 
lasses su
h as satis�ability [20, 21℄. This paper presents the �rstappli
ation of Benders De
omposition to a set of minimal perturbationproblems whi
h have immediate appli
ation in the real world. Indeed theben
hmarks were based on an industrial appli
ation to airline s
heduling.The signi�
an
e of Benders De
omposition in 
omparison with othermaster/subproblem forms of hybridisation (su
h as row and 
olumn gen-eration) is that it takes advantage of linear duality theory. The BendersDe
omposition library in ECLiPSe harnesses the power of the dual prob-lem for 
onstraint programmers who may not �nd the formulation andappli
ation of the linear dual either easy or natural.Moreover the implementation of Benders De
omposition in ECLiPSe hasbeen proven both eÆ
ient and s
alable. Indeed its results on the minimalperturbation ben
hmark problems 
ompare reasonably well even againstan algorithm spe
ially developed for problems of this 
lass. However theBenders De
omposition for minimal perturbation problems 
omprises amaster problem and a single trivial subproblem. Our experien
e withthis te
hnique has shown that this hybridisation form is more suitableto appli
ations where the de
omposition introdu
es many or 
omplexsubproblems.This paper was initially motivated by a network appli
ation where Ben-ders De
omposition has proven to be the best hybridisation form after
onsiderable experimentation with other algorithms. We plan to reporton the appli
ation of this te
hnique to a problem brought to us by anindustrial partner in a forth
oming paper.There remains further work to support �ne 
ontrol over the iterationbetween the master and subproblems in Benders De
omposition. Theimportan
e of su
h �ne 
ontrol has been 
learly eviden
ed from ourECLiPSe implementation of another hybridisation form - 
olumn gen-eration - applied to mixed integer problems. In parti
ular we will seek toimplement early stopping, and more 
ontrol over the number of Benders
uts returned at an iteration.Referen
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