Hybrid Benders Decomposition Algorithms
in Constraint Logic Programming

Andrew Eremin and Mark Wallace

IC-Parc
London, UK
{a.eremin, mgw}@icparc.ic.ac.uk

Abstract. Benders Decomposition is a form of hybridisation that al-
lows linear programming to be combined with other kinds of algorithms.
It extracts new constraints for one subproblem from the dual values of
the other subproblem. This paper describes an implementation of Ben-
ders Decomposition, in the ECLiPSe language, that enables it to be used
within a constraint programming framework. The programmer is spared
from having to write down the dual form of any subproblem, because
it is derived by the system. Examples are used to show how problem
constraints can be modelled in an undecomposed form. The programmer
need only specify which variables belong to which subproblems, and the
Benders Decomposition is extracted automatically. A class of minimal
perturbation problems is used to illustrate how different kinds of algo-
rithms can be used for the different subproblems. The implementation is
tested on a set of minimal perturbation benchmarks, and the results are
analysed.

1 Introduction

1.1 Forms of Hybridisation

In recent years, research on combinatorial problem solving has begun to
address real world problems which arise in industry and commerce [1-
3]. These problems are often large scale, complex, optimisation (LSCO)
problems and are best addressed by decomposing them into multiple
subproblems. The optimal solutions of the different subproblems are in-
variably incompatible with each other, so researchers are now exploring
ways of solving the subproblems in a way that ensures the solutions are
compatible with each another - i.e. globally consistent. This research
topic belongs to the area of “hybrid algorithms” [4, 5], but more specif-
ically it addresses ways of making different solvers cooperate with each
other. Following [6] we shall talk about “forms of hybridisation”.

An early form of hybridisation is the communication between global con-
straints in constraint programming, via the finite domains of the shared
variables. Different subproblems are handled by different global con-
straints (for example a scheduling subproblem by a cumulative constraint
and a TSP subproblem by a cycle constraint [7]), and they act indepen-
dently on the different subproblems yielding domain reductions. This is

a clean and sound hybridisation form because a domain reduction which
is correct for a subproblem is necessarily correct for any larger problem
in which the subproblem is contained.

1.2 Hybridisation Forms for Linear Programming

Master Problems and other Subproblems LSCO problems in-
volve a cost function, and for performance reasons it is important to find
solutions quickly that are not only feasible but also of low cost. Usually
these cost functions are linear, or can be approximated by a linear or
piecewise linear function. Linear programming offers efficient constraint
solvers which can quickly return optimal solutions to problems whose cost
function and constraints can be expressed using only linear expressions.
Consequently most industrial LSCO problems involve one or more linear
subproblems which are addressed using linear programming as available
in commercial products such as XPRESS [8] and CPLEX [9].

Whilst global constraints classically return information excluding certain
assignments from any possible solution, linear solvers classically return
just a single optimal solution. In contrast with global constraints, the
information returned by a linear solver for a subproblem does not neces-
sarily remain true for any larger problem in which it is embedded. Thus
linear solvers cannot easily be hybridised in the same way as global con-
straints.

Nevertheless several hybridisation forms have been developed for linear
solvers, based on the concept of a “master” problem, for which the op-
timal solution is found, and other subproblems which interact with the
master problem. In the simplest case this interaction is as follows. The
subproblem examines the last optimal solution produced for the master
problem, and determines whether this solution violates any of the con-
straints of the subproblem. If so the subproblem returns to the master
problem one or more alternative linear constraints which could be added
to the master problem to prevent this violation occurring again. One
of these constraints is added to the master problem and a new optimal
solution is found. To prove global optimality each of the alternatives are
added to the master problem on different branches of a search tree. These
alternatives should cover all possible ways of fixing the violation.

A generalisation of this form of hybridisation is “row generation” [10],
where a new set of constraints (“rows”) are added to the master problem
at each node of the search tree. Unimodular probing [11] is an integration
of a form of row generation into constraint programming.

Column Generation Another form of hybridisation for linear pro-
gramming is column generation [12]. In this case the master problem is
to find the optimal combination of “pieces” where each piece is itself a
solution of another subproblem. A typical application of column gener-
ation is to crew scheduling: the assignment of crew to a bus or flight
schedule over a day or a month. There are complex constraints on the
sequence of activities that can be undertaken by a single crew, and these
constraints are handled in a subproblem whose solutions are complete

tours which can be covered by a single crew over the time period. The
master problem is the optimal combination of such tours. The master
problem constraints enforce that each scheduled bus trip or flight must
belong to one tour. Each tour is represented in the master problem by a
variable, which corresponds to a column in the matrix representing the
problem.

In the general case, each call to another subproblem returns a solution
which has the potential to improve on the current optimum for the master
problem. Each call to a subproblem adds a column to the master problem,
and hence the name “column generation”.

A number of applications of column generation have been reported in
which the subproblem is solved by constraint programming [13,14]. A
column generation library has been implemented in the ECLiPSe con-
straint logic programming system, which allows both subproblem, com-
munication of solutions and search to be specified and controlled from
the constraint program.

While column generation utilises the dual values returned from convex
solvers to form the optimisation function of a subproblem, a closely re-
lated technique exploits them to approximate subproblem constraints
within the optimisation function of the master problem. This technique
is known as Lagrangian relazation and has been used for hybridising con-
straint programming and convex optimisation by Sellmann and Fahle [15]
and Benoist et. al. [16] in[17].

Other Hybridisation Forms Besides optimal solutions, linear solvers
can return several kinds of information about the solution. Reduced costs
are the changes in the cost which would result from changes in the values
of specific variables. These are, in fact, underestimates so if the reduced
cost is “-10” the actual increase in cost will be greater than or equal to
10. In case the variable has finite domain, these reduced costs can be used
to prune values from the domain in the usual style of a global constraint.
(A value is pruned from the domain if the associated reduced cost is so
bad it would produce a solution worse than the current optimum). In
this way linear programming can be hybridised with other solvers in the
usual manner of constraint programming. Indeed the technique has been
used very successfully [18].

1.3 Benders Decomposition

Benders Decomposition is a hybridisation form based on the master prob-
lem/subproblem relationship. It makes use of an important and elegant
aspect of mathematical programming, the dual problem [19]. Benders
Decomposition is applicable when some of the constraints and part of
the optimisation function exhibit duality. The master problem need not
use mathematical programming at all. The subproblems return informa-
tion which can be extracted by solving the dual. The new constraints
that are added to the master problem are extracted from the dual values
of the subproblems.

We have implemented Benders Decomposition in ECLiPSe and used it
to tackle several commercial applications in transportation and telecom-
munications. The technique has proved very successful and has outper-
formed all other hybridisation forms in these applications.

For the purposes of this paper we have also used Benders Decomposition
to tackle a set of benchmarks originally designed to test another hy-
bridisation form, Unimodular Probing [11]. Whilst our results on these
benchmarks have not been so striking as the applications mentioned
above, they nicely illustrate the use of Benders Decomposition and the
combination of linear programming with a simple propagation algorithm
for the master problem. From these benchmarks we also make some ob-
servations about the kinds of problems and decompositions that are most
suited to the hybrid form of Benders Decomposition.

1.4 Contents

In the following section we introduce Benders Decomposition, explain
and justify it, and present the generic Benders Decomposition algorithm.
In section 3 we show how it is embedded in constraint programming. We
describe the user interface, and how one models a problem to use Benders
Decomposition in ECLiPSe. We also describe how it is implemented in
ECLiPSe. In section 4 we present the application of Benders Decompo-
sition to a “minimal perturbation” problem, its definition, explanation
and results on a set of benchmarks. Section 5 concludes and discusses
the next application, further work on modeling and integration, and open
issues.

2 Benders Decomposition

Benders decomposition is a cut or row generation technique for the so-
lution of specially structured mixed integer linear programs that was
introduced in the OR literature in [20]. Given a problem P over a set of
variables V', if a subset X of the variables can be identified for which fix-
ing their values results in one or more disconnected SubProblems (SP;)
over the variable sets Y; : Ul Y, = V — X which are easily soluble —
normally due to some structural property of the resulting constraints —
it may be beneficial to solve the problem by a two stage iterative proce-
dure.

At each iteration k a Relazed Master Problem (RMP¥) in the complicat-
ing or connecting variables X is first solved and the solution assignment
X = X* used to construct the subproblems SP¥; these subproblems are
then solved and the solutions used to tighten the relaxation of the master
problem by introducing Benders Cuts, ¥ (X).

The subproblems optimise over reduced dimensionality subspaces D’{;i
of the original problem solution space obtained by fixing the variables
X = X*, while the master problem optimises over the optimal solutions
of these subspaces augmented by X* guided by the cuts generated.

In classical Benders Decomposition both the master and subproblems

are linear and are solved by MILP algorithms, while the cuts are de-
rived from Duality theory. In general however, we are free to use any
appropriate solution methods for master and subproblems — all that is
required is an assignment of the master problem variables X = X* to
construct convex subproblems, and a procedure for generating valid cuts
from subproblem solutions. The most naive such scheme would merely
result in the master problem enumerating all assignments of X, while
more informative cuts can result in substantial pruning of the master
problem search space.

2.1 Classical Benders Decomposition

Consider the linear program P given by:

I
P : min fo-l-Zc;ryi

i=1

subject to Gix + A;yi > b; Vi (1)
x € Dx
yi>0 Vi

When x is fixed to some value x* we have linear programs in y; which
may be specially structured or easy to solve, prompting us to partition
the problem as follows:

I
P: min { fTx + Z (min {c;ryi Ay > by — Gix,yi > 0})

x€EDx —
i=

1
= i fT + i(b; — Gj Ay < i,u; >0
xrélg}(X Zl (max {u;(x) : yA; < ¢j,u; > 0})

(2)
where the inner optimizations have been dualised. Given that U; = {u; :
wA; < ¢, u; > 0} is non-empty for each ¢ either there is an extreme
point optimal solution to each inner optimization or it is unbounded
along an extreme ray; letting uf, ..., uf* and d},...,d;" be respectively
the extreme points and directions of U; we can rewrite (2) as the mixed
integer Master Problem MP:

I
MP : min z=fo+Zﬂi

=1
subject to 3; > u!‘(bi —Gix) Vi Vk 3)
0>di(b; — Gix) Vi VI
x € Dx

Since there will typically be very many extreme points and directions
of each U; and thus constraints in (3) we solve relaxed master problems
containing a subset of the constraints. If for some relaxed master problem
RMPX the optimal relaxed solution (z*,x*) satisfies all the constraints
of (3), then (z*,x*,y¥X ... ,y¥) is an optimal solution of (1); otherwise

there exists some constraint or Benders Cut in (3) which is violated for
x = x* which we add to RMP* to form RMP**! and iterate.

To determine such a cut or prove optimality we obtain the optimal so-
lution (B, u¥) of the Subproblems SP¥ formed by fixing x = x* in (2):

SP%c : max 6{“ = u;(b; — Gixk)
subject to wA; < ¢ (4)
uy >0

If any subproblem SP¥ has an unbounded optimal solution for some x*

then the primal of the subproblem is infeasible for x*: if any subproblem
SPK is infeasible for some x* then it is infeasible (and the primal of
the subproblem is infeasible or unbounded) for any x since the (empty)
feasible region Uj; is independent of x. In either case we proceed by con-
sidering the Homogeneous Dual of the primal of the subproblem:

max u;(b; — Gixk)

subject to u;A; <0 (5)
uy >0
This problem is always feasible (u; = 0 is a solution), having an un-

bounded optimum precisely when the primal is infeasible and a finite
optimal solution when the primal is feasible. In the unbounded case we
can obtain a cut

uf (b; — Gix) <0
corresponding to an extreme direction of Ui' ={u; : y;A; <0,u; > 0}.
The complete Benders decomposition algorithm proceeds as follows:

Algorithm 1 The Benders Decomposition Algorithm

1. Initialisation step: From the original linear program P (1) construct
the relazed master problem RMPP (3) with the initial constraint set
x € Dx and set k = 0.

2. Tterative step: From the current relaxed master problem RMP* with
optimal solution (z*,x*) construct RMP*** with optimal solution
(2"t xk*1): fix x = x¥ in P, and solve the resulting subproblems
SPX (4); there are three cases to consider:

(a) SPy is primal unbounded for some ¢ — halt with the original
problem having unbounded solution.

(b) y¥,u¥ are respectively primal and dual optimal solutions of sub-
problem SP¥ with objective values 8F for each i — there are
two cases to consider:

i Zle BF = 2F halt with (2%, x*,y%,...,y¥) as the optimal
solution to the original problem.

ii. 25:1 BF > 2% add the Benders Cuts 8; > uf(b; — Gix) to
RMPX to form the new relaxed master problem RMPX*?
set k =k + 1 and return to (2).

(c) SP¥ is dual unbounded or both primal and dual infeasible for
some i — find an extreme direction d¥ of the homogeneous dual
leading to unboundedness; add the cut df(b; — Gix) < 0 to
RMPX to form the new relaxed master problem RMPX*! get
k =k + 1 and return to (2).

2.2 Hybrid Benders Decomposition

The classical linear Benders Decomposition can be generalised to cover
problems in which the constraints and objective function are nonlinear,
using any appropriate solution method for RMP* and SP¥ — we re-
quire only a procedure for generating valid lower bounds 3* (z) from the
solutions of SPX. In its most general form we have the original problem:

P: min f(fi(x,y1),--., fr(x,y1))
subject to gi(x,yi) > by Vi
x € Dx
yi € Dy Vi

(6)

which we decompose into the master problem:

MP : min z = f(x,61...,081)

subject to 3 > BF(x) Vi Vk -
0>06lx) Vivi (7)
x € Dx

and subproblems:

SP%‘: min fi(xk,yi)
subject to g:(x*,y1) > by (8)
yi € Dy

In particular when we can identify one or more distinct sets of variables
in which the problem constraints and objective function are linear and a
complicating set of variables, it will be useful to decompose the problem
into a nonlinear relaxed master problem and linear subproblems.

3 Embedding Benders Decomposition in
Constraint Programming

In this section we discuss the implementation of Benders Decomposition
in ECLiPSe . In designing the structure of the implementation two im-
portant considerations were to maintain the flexibility of the approach
and to ensure ease of use for non-mathematicians.

The flexibility of hybrid Benders Decomposition algorithms is due in
large part to the possibility of using arbitrary solution methods for mas-
ter and subproblems; in order to allow appropriate solvers to be simply
slotted in to the framework it is essential to cleanly separate the method
of solution of master and subproblems from the communication of solu-
tions between them.

As many users of the solver may be unfamiliar with the intricacies of
linear programming and duality theory, it is important to provide a
user interface that allows for problems to be modeled in a natural and
straightforward formulation. All constraints are therefore input in their
original formulation — i.e. without having been decomposed and du-
alised and containing both master and subproblem variables. The sets
of variables occurring solely in the subproblems are specified when the
optimisation is performed, and the original problem constraints auto-
matically decomposed into master and subproblem constraints and the
subproblems dualised.

3.1 ECLiPSe Implementation

The implementation of Benders Decomposition in ECLiPSe uses the
same features of the language that are used to implement finite domain
and other constraints. These are demons, variable attributes, waking
conditions, and priorities.

A demon is a procedure which, on completing its processing, suspends
itself. It can be woken repeatedly, each time re-suspending on comple-
tion, until killed by an explicit command. Demons are typically used to
implement constraint propagation. For Benders Decomposition a demon
is used to implement the solver for the master problem, with separate
demons for each subproblem.

A variable attribute is used to hold information about a variable, such
as its finite domain. Programmers can add further attributes, and for
Benders decomposition an attribute is used to hold a tentative value
for each of the variables in the master problem. Each time the master
problem is solved, the tentative values of all the variables are updated
to record the new solution.

When the waking conditions for a demon are satisfied, it wakes. For a
finite domain constraint this is typically a reduction in the domain of
any of the variables in the constraint. For the subproblems in Benders
Decomposition the waking condition is a change in the tentative values
of any variable linking the subproblem to the master problem. Thus
each time the master problem is solved any subproblem whose linking
variables now have a new value is woken, and solved again. The master
problem is woken whenever a new constraint (in the form of a Benders
cut) is passed to the solver. Thus processing stops at some iteration either
if after solving the master problem no subproblems are woken, or if after
solving all the subproblems no new cuts are produced.

Priorities are used in ECLiPSe to ensure that when several demons are
woken they are executed in order of priority. For finite domain propaga-
tion this is used to ensure that simple constraints, such as inequalities,
are handled before expensive global constraints. By setting the subprob-
lems at a higher priority than the master problem, it is ensured that all
the subproblems are solved and the resulting Benders cuts are all added
to the master problem, before the master problem itself is solved again.
While it is possible to wake the master problem early with only some cuts
added by setting lower priorities for subproblems, this proved ineffective
in practice.

4 Benders Decomposition for Scheduling
Problems

4.1 Minimal Perturbation in Dynamic Scheduling with
Time Windows

The minimal perturbation dynamic scheduling problem with time win-
dows and side constraints is a variant of the classic scheduling problem
with time windows: given a current schedule for a set of n possibly vari-
able duration tasks with time windows on their start and end time points,

a set C of unary and binary side constraints over these time points and a
reduced number of resources r we are required to produce a new sched-
ule feasible to the existing time windows and constraints and the new
resource constraint that is minimally different from the current schedule.
The user enters these problems in a simple form that is automatically
translated into a set of constraints that can be passed to the bd library.
For the purposes of this paper, in the next section we give the full model
generated by the translator. The subsequent section reports how this
model is split into a master/subproblem form for Benders Decomposi-
tion

4.2 The Constraints Modeling Minimal Perturbation

For each task T; in the current schedule with current start and end times

ts;, te; respectively there are:

Time point variables for the start and end of the task s;, e; and task
duration constraints

(si,ei) € Ls (9)

where D; = {(s,e):e—s > lie—s < uiy ls; <5< gy, le; <e<ue;}
and Is;, us;,le;, Ue;, li, u; are derived from the time windows of the
task start and end points and any constraints on these time points
in C.

Perturbation cost variables cs;, c.; and perturbation cost con-
straints

(cSiasi7CSiaei) € Pi (10)
where P; = {(cs, 5,¢e,€) i Cs > 8—ts;, Cs > ts; — 8, Ce > € — Loy,
Ce > te; — €} s0 that cs; > |8i —ts;],ce; > |ei — te, |
For each pair of tasks T;, T; there are:

Binary non-overlap variables Pre;;, Post;; for each task T; # T;
which take the value 1 iff task i starts before the start of task j
and after the end of task j respectively, so that we have

. 1if s; <'s o 1if s; > ey
PT@H - {Olf Si ZS]‘ POStU - {Olf s < ej

and the distances between the time points s; and s;, e; are bounded
by

S; —8j > (lsi — usj) Pre;;
si—8; < (ls; —us; — 1) Pre;; + (usi —ls,)
s; —ej > §u; — lsi) Postij + (lsi — uej) ’ (11)

5;i —ej < (usi — le]. + 1) Post;; — 1

The resource feasibility constraint that the start time point s; over-
laps with at most r other tasks

Z (Pre;j + Postij) >n—r—1 (12)
i

Time point distance constraints between s;,e; and all other time
points. Since for each task T; # T; we have the distance bounds (11)
between s; and T; and between s; and T; of which at most half can
be binding, we combine them with the binary constraints

s; > s + byj ej > s + bui].
si > ej +by; ei > ej +be,;
appearing in the constraint set C to give the distance constraints
(si,ei, sj,€5, Bij, Lij, Uij) € Dij

13
(s, ei, sj,€j, Bij, Lij, Uij, Preij, Preji, Posti;) € Ojj (13)

where
Dij = {(Si,Ei,Sj,Ej,B,L, U) :
S; — 8j ZB,Si—e]‘ ZL,—si-I-ej ZU,ei—ej Zb
05 = {(Si,ei,Sj,ej,B,L, U, Preij,Preji,Postij) :
B >bij, L > by;;,U 2> by,
B > (lsi —usj) Pre;;, B > (usj — 1, +1) Pre;; + (lsi —usj),
L> (ugj —lsi) Post;j + (lsi —ugj),
U > (lej — Ug; — 1) Post;; + 1}

e

Valid ordering constraints for each task T; # T; there are many ad-
ditional constraints that we may choose to introduce restricting the
binary variables to represent a valid ordering. These constraints are
not necessary for the correctness of the algorithm as invalid orderings
will be infeasible to the subproblem, but may improve its efficiency

as fewer iterations will be needed.
The complete MILP problem formulation is then

P : min Z(csi +ce;)
=1

subject to
(Cs;y SiyCe;r€i) € Pi
(37,7 Z) € L;
(SlzelzSJaeJaBlszlJaUlJ) € Dij v#l Vi
(siy€i, 85, €5, Bij, Lij, Uij, Preqj, Preji, Postij) € Oj; !
Z ; (Preij + Postij) > n—r—1
(14)
4.3 Benders Decomposition Model for Minimal
Perturbation
Master Problem
MP : min z
subject to
ﬂk(B L,U) < z vk
g'(B,L,U) < 0 Vi
(sl,el,s],e],B”,L”,UZJ,Pre”,PreJZ,PostJ) € Oy Vj#i Vi
z ; (Preij + Postij) > n—r—1

(15)

Subproblem There is a single subproblem with primal formulation

LP* : min Z (cs; +ce;)
i=1

subject to (16)
(cSi y iy Ceyy ei) EP;
(si,ei) € L; Vi
(sise€i, s, €5, Bij, Lij, Uij) € Dij Vj # i
The Benders Decomposition library in ECLiPSe automatically extracts

a dual formulation of the subproblem. For the current subproblem LPX,
the dual has the form:

SPX : max Z a; + Z (Biijl-]- + Lijwr,; + Uiijij)
i=1 i
subject to z#i (wBl.]. +wr,; —wu;; — iji)

+we,, — wi; + Wy +wi,, — Wa,, <0

z]‘# (wbeij —WL;; —Wuy; — wbeji)

+wi,, +wi; — wu; +wi,, — Wy, <0 Vi
wtsl,,wtei 2 —1
Wi, W, <1
Wi, Wuy, Wiy, Wuy,, Wi, Wa,, > 0
WB;;, WLij, WU 55 Woe,, >0Vj#i)
(17)

where

i = towe, e we, +liwy +wiwa, + Y0 beywn,
ls;wiy, — Us; Wy, + le;wi,, — Ue; W,

Solutions to SP¥ produce cuts of the form z > 3* (B, L, U) which exclude
orderings with worse cost from further relaxed master problems when
the subproblem is feasible, or 8*(B,L, U) < 0 which exclude orderings
infeasible to the start windows and durations of the tasks when the
subproblem is infeasible, where

T
k k k k k
B*B,LU) =) |l +) (wh, By +wh, Lij + wiy, Us)
i=1 j#i
All coefficients w* and constants o in the cuts are integral since the
subproblems are totally unimodular.

4.4 Results and Discussion

Summary We ran this model on 100 minimal perturbation problem
instances. The number of variables in the problem model was around 900,
and there were some 1400 constraints in the master problem and around
20 in the subproblem. Most problems were solved within 10 iterations

between master and subproblem, though a few notched up hundreds of
iterations.

The time and number of iterations for each problem are given in Table 1.
The bulk of the time was spent in the finite domain search used to solve
the master problem. Typically, for the feasible instances, the optimal
solution was found early in the search, and much time was wasted in
generating further solutions to the master problem which were not better
in the context of the full problem.

Correct and optimal solutions to all the problems were returned, but
the performance was an order of magnitude slower than the specially
designed algorithm presented in [11].

Analysis Minimal perturbation can be decomposed into a master and
subproblem for the Benders Decomposition approach, but the size of
the problems is very disparate. The behaviour of the algorithm on the
benchmark problem reflect the number of constraints - the subproblems
are trivial and almost all the time is spent in the master problem. The
imbalance is probably an indication that this algorithm is better suited
to problems with larger or more complex subproblems.

Nevertheless it is not always the number of constraints that make a prob-
lem hard, but the difficulty of handling these constraints. It may be that
the master problem constraints, while numerous, are easy to handle if
the right algorithm is used.

Currently the algorithm used to solve the master problem is a two-phase
finite domain labelling routine. In the first phase a single step lookahead
is used to instantiate binary variables that cannot take one of their val-
ues. In the second step all the binary variables are labelled, choosing first
the variables at the bottleneck of the minimal perturbation scheduling
problem. This is not only a relatively naive search method, but it also
lacks any active handling of the optimisation function. Linear program-
ming does offer an active handling of the optimisation function. Thus,
using a hybrid algorithm to tackle the master problem within a larger
Benders Decomposition hybridisation form, could be very effective on
these minimal perturbation problems.

Benders Decomposition has proven to be a very efficient and scalable
approach in case the problem breaks down into a master problem and
multiple subproblems. The minimal perturbation problems benchmarked
in this paper involve a single kind of resource. These problems do not
have an apparent decomposition with multiple subproblems. This is a
second reason why our benchmark results do not compete with the best
current approach, on this class of problems. Minimal perturbation prob-
lems involving different kinds of resources might, by contrast, prove to
be very amenable to the Benders Decomposition form of hybridisation.

5 Conclusion

This paper has investigated hybridisation forms for problems that admit
a decomposition. A variety of hybridisation forms can be used in case

|Problem||Iterations| Time ||Problem||Iterations| Time ||Pr0blem||Iterations| Time |

1 11 4.92 35 4 1.09 69 26 39.48
2 12 3.16 36 20 7.06 70 13 4.86

3 10 2.40 37 22 20.91 71 - >200
4 15 11.30 38 36 67.48 72 - >200
5 16 7.93 39 59 184.57 73 - >200
6 58 109.22 40 13 5.66 74 26 18.72
7 25 19.82 41 28 27.05 75 91 154.00
8 10 3.27 42 9 5.86 76 12 3.49

9 32 16.25 43 39 21.02 7 54 111.17
10 107 |151.01 44 25 9.43 78 35 37.52
11 - >200 45 11 5.20 79 44 38.00
12 - >200 46 - >200 80 10 3.56

13 44 96.77 47 5 1.37 81 28 12.69
14 29 18.30 48 51 51.75 82 8 2.01

15 70 83.87 49 9 2.06 83 16 14.52
16 20 30.96 50 18 8.80 84 32 22.24
17 23 11.65 51 30 19.44 85 20 4.94

18 18 15.16 52 43 119.66 86 - >200
19 14 4.94 53 28 26.10 87 18 9.56

20 21 8.17 54 33 17.32 88 12 4.72

21 19 5.01 55 14 6.01 89 7 2.26

22 60 180.47 56 14 9.95 90 43 42.51
23 20 8.46 57 45 100.94 91 8 2.12

24 39 82.93 58 4 0.88 92 54 111.5
25 13 2.74 59 8 2.45 93 - >200
26 3 0.71 60 - >200 94 25 8.08

27 10 7.14 61 19 9.41 95 8 2.99

28 22 12.23 62 24 11.48 96 22 10.97
29 27 13.24 63 - >200 97 5 1.59

30 - >200 64 46 95.07 98 6 2.37

31 42 36.69 65 30 18.62 99 15 4.82

32 15 4.48 66 14 5.57 100 19 47.61
33 15 8.77 67 10 3.10

34 20 23.70 68 62 132.87

Table 1. Number of iterations and total solution time for Benders Decomposition on
RFP benchmark data

one or more subproblems are handled by linear programming. We aim to
make them all available in the ECLiPSe language in a way that allows
users to experiment easily with the different alternatives so as to quickly
find the best hybrid algorithm for the problem at hand.

Benders Decomposition is a technique that has not, to date, been applied
to many real problems within the CP community. Publications on this
technique have described a few pedagogical examples and “academic”
problem classes such as satisfiability [20, 21]. This paper presents the first
application of Benders Decomposition to a set of minimal perturbation
problems which have immediate application in the real world. Indeed the
benchmarks were based on an industrial application to airline scheduling.
The significance of Benders Decomposition in comparison with other
master /subproblem forms of hybridisation (such as row and column gen-
eration) is that it takes advantage of linear duality theory. The Benders
Decomposition library in ECLiPSe harnesses the power of the dual prob-
lem for constraint programmers who may not find the formulation and
application of the linear dual either easy or natural.

Moreover the implementation of Benders Decomposition in ECLiPSe has
been proven both efficient and scalable. Indeed its results on the minimal
perturbation benchmark problems compare reasonably well even against
an algorithm specially developed for problems of this class. However the
Benders Decomposition for minimal perturbation problems comprises a
master problem and a single trivial subproblem. Our experience with
this technique has shown that this hybridisation form is more suitable
to applications where the decomposition introduces many or complex
subproblems.

This paper was initially motivated by a network application where Ben-
ders Decomposition has proven to be the best hybridisation form after
considerable experimentation with other algorithms. We plan to report
on the application of this technique to a problem brought to us by an
industrial partner in a forthcoming paper.

There remains further work to support fine control over the iteration
between the master and subproblems in Benders Decomposition. The
importance of such fine control has been clearly evidenced from our
ECLiPSe implementation of another hybridisation form - column gen-
eration - applied to mixed integer problems. In particular we will seek to
implement early stopping, and more control over the number of Benders
cuts returned at an iteration.

References

1. Chic-2 - creating hybrid algorithms for industry and commerce. ES-
PRIT PROJECT 22165: http://www.icparc.ic.ac.uk/chic2/, 1999.

2. Parrot - parallel crew rostering. ESPRIT PROJECT 24 960:
http://www.uni-paderborn.de/ parrot/, 2000.

3. Liscos - large scale integrated supply chain optimisation software.
http://www.dash.co.uk/liscosweb/, 2001.

4. CP98 Workshop on Large Scale Combinatorial Optimisation and
Constraints, volume 1, Pisa, Italy, 1999. http://www.elsevier.nl/gej-
ng/31/29/24/25/23/show/Products/notes/index.htt.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

CP99 Workshop on Large Scale Combinatorial Op-
timisation and Constraints, volume 4, Alexandra,
Virginia, USA, 2000. http://www.elsevier.nl/gej-
ng/31/29/24/29/23/show/Products/notes/index.htt.

H. H. El Sakkout. Improving Backtrack Search: Three Case Studies
of Localized Dynamic Hybridization. PhD thesis, Imperial College,
London University, 1999.

N. Beldiceanu and E. Contjean. Introducing global constraints in
CHIP. Mathematical and Computer Modelling, 12:97-123, 1994.
XPRESS-MP. http://www.dash.co.uk/, 2000.

CPLEX. http://www.ilog.com/products/cplex/, 2000.

. R. E. Gomory. An algorithm for integer solutions to linear pro-

grams. In R. L. Graves and P. Wolfe, editors, Recent Advances in
Mathematical Programming, pages 269-302. McGraw-Hill, 1963.

H. H. El Sakkout and M. G. Wallace. Probe backtrack search for
minimal perturbation in dynamic scheduling. Constraints, 5(4):359—
388, 2000.

L. H. Appelgren. A column generation algorithm for a ship schedul-
ing problem. Transportation Science, 3:53-68, 1969.

U. Junker, S. E. Karisch, N. Kohl, B. Vaaben, T. Fahle, and M. Sell-
mann. A framework for constraint programming based column gen-
eration. In Proceedings of the 5th International Conference on Prin-
ciples and Practice of Constraint Programming - LNCS 1713, pages
261-274. Springer-Verlag, 1999.

T. H. Yunes, A. V. Moura, and C. C. de Souza. A hybrid approach for
solving large scale crew scheduling problems. In Proceedings of the
Second International Workshop on Practical Aspects of Declarative
Languages (PADL’00), pages 293-307, Boston, MA, USA, 2000.

M. Sellmann and T. Fahle. Cp-based lagrangian relaxation for a
multimedia application. In [17], 2001.

T. Benoist, F. Laburthe, and B. Rottembourg. Lagrange relax-
ation and constraint programming collaborative schemes for trav-
elling tournament problems. In [17], 2001.

CP-AI-OR01 Workshop on Integration of AI and OR Techniques in
Constraint Programming for Combinatorial Optimization Problems,
Wye, Kent, UK, 2001. http://www.icparc.ic.ac.uk/cpAIOR01/.

F. Focacci, A. Lodi, and M. Milano. Embedding relaxations in global
constraints for solving TSP and its time constrained variant. Annals
of Mathematics and Artificial Intelligence, Special issue on Large
Scale Combinatorial Optimization, 2001.

G. B. Dantzig. Linear Programming and Eztensions. Princeton
University Press, 1963.

J. F. Benders. Partitioning procedures for solving mixed variables
programming problems. Numerische Mathematik, 4:238-252, 1962.
J. N. Hooker and G. Ottosson. Logic-based benders decomposition.
http://ba.gsia.cmu.edu/jnh/papers.html, 1999.

