
Hybrid Benders Deomposition Algorithmsin Constraint Logi ProgrammingAndrew Eremin and Mark WallaeIC-ParLondon, UKfa.eremin, mgwg�ipar.i.a.ukAbstrat. Benders Deomposition is a form of hybridisation that al-lows linear programming to be ombined with other kinds of algorithms.It extrats new onstraints for one subproblem from the dual values ofthe other subproblem. This paper desribes an implementation of Ben-ders Deomposition, in the ECLiPSe language, that enables it to be usedwithin a onstraint programming framework. The programmer is sparedfrom having to write down the dual form of any subproblem, beauseit is derived by the system. Examples are used to show how problemonstraints an be modelled in an undeomposed form. The programmerneed only speify whih variables belong to whih subproblems, and theBenders Deomposition is extrated automatially. A lass of minimalperturbation problems is used to illustrate how di�erent kinds of algo-rithms an be used for the di�erent subproblems. The implementation istested on a set of minimal perturbation benhmarks, and the results areanalysed.1 Introdution1.1 Forms of HybridisationIn reent years, researh on ombinatorial problem solving has begun toaddress real world problems whih arise in industry and ommere [1{3℄. These problems are often large sale, omplex, optimisation (LSCO)problems and are best addressed by deomposing them into multiplesubproblems. The optimal solutions of the di�erent subproblems are in-variably inompatible with eah other, so researhers are now exploringways of solving the subproblems in a way that ensures the solutions areompatible with eah another - i.e. globally onsistent. This researhtopi belongs to the area of \hybrid algorithms" [4, 5℄, but more speif-ially it addresses ways of making di�erent solvers ooperate with eahother. Following [6℄ we shall talk about \forms of hybridisation".An early form of hybridisation is the ommuniation between global on-straints in onstraint programming, via the �nite domains of the sharedvariables. Di�erent subproblems are handled by di�erent global on-straints (for example a sheduling subproblem by a umulative onstraintand a TSP subproblem by a yle onstraint [7℄), and they at indepen-dently on the di�erent subproblems yielding domain redutions. This is



a lean and sound hybridisation form beause a domain redution whihis orret for a subproblem is neessarily orret for any larger problemin whih the subproblem is ontained.1.2 Hybridisation Forms for Linear ProgrammingMaster Problems and other Subproblems LSCO problems in-volve a ost funtion, and for performane reasons it is important to �ndsolutions quikly that are not only feasible but also of low ost. Usuallythese ost funtions are linear, or an be approximated by a linear orpieewise linear funtion. Linear programming o�ers eÆient onstraintsolvers whih an quikly return optimal solutions to problems whose ostfuntion and onstraints an be expressed using only linear expressions.Consequently most industrial LSCO problems involve one or more linearsubproblems whih are addressed using linear programming as availablein ommerial produts suh as XPRESS [8℄ and CPLEX [9℄.Whilst global onstraints lassially return information exluding ertainassignments from any possible solution, linear solvers lassially returnjust a single optimal solution. In ontrast with global onstraints, theinformation returned by a linear solver for a subproblem does not nees-sarily remain true for any larger problem in whih it is embedded. Thuslinear solvers annot easily be hybridised in the same way as global on-straints.Nevertheless several hybridisation forms have been developed for linearsolvers, based on the onept of a \master" problem, for whih the op-timal solution is found, and other subproblems whih interat with themaster problem. In the simplest ase this interation is as follows. Thesubproblem examines the last optimal solution produed for the masterproblem, and determines whether this solution violates any of the on-straints of the subproblem. If so the subproblem returns to the masterproblem one or more alternative linear onstraints whih ould be addedto the master problem to prevent this violation ourring again. Oneof these onstraints is added to the master problem and a new optimalsolution is found. To prove global optimality eah of the alternatives areadded to the master problem on di�erent branhes of a searh tree. Thesealternatives should over all possible ways of �xing the violation.A generalisation of this form of hybridisation is \row generation" [10℄,where a new set of onstraints (\rows") are added to the master problemat eah node of the searh tree. Unimodular probing [11℄ is an integrationof a form of row generation into onstraint programming.Column Generation Another form of hybridisation for linear pro-gramming is olumn generation [12℄. In this ase the master problem isto �nd the optimal ombination of \piees" where eah piee is itself asolution of another subproblem. A typial appliation of olumn gener-ation is to rew sheduling: the assignment of rew to a bus or ightshedule over a day or a month. There are omplex onstraints on thesequene of ativities that an be undertaken by a single rew, and theseonstraints are handled in a subproblem whose solutions are omplete



tours whih an be overed by a single rew over the time period. Themaster problem is the optimal ombination of suh tours. The masterproblem onstraints enfore that eah sheduled bus trip or ight mustbelong to one tour. Eah tour is represented in the master problem by avariable, whih orresponds to a olumn in the matrix representing theproblem.In the general ase, eah all to another subproblem returns a solutionwhih has the potential to improve on the urrent optimum for the masterproblem. Eah all to a subproblem adds a olumn to the master problem,and hene the name \olumn generation".A number of appliations of olumn generation have been reported inwhih the subproblem is solved by onstraint programming [13, 14℄. Aolumn generation library has been implemented in the ECLiPSe on-straint logi programming system, whih allows both subproblem, om-muniation of solutions and searh to be spei�ed and ontrolled fromthe onstraint program.While olumn generation utilises the dual values returned from onvexsolvers to form the optimisation funtion of a subproblem, a losely re-lated tehnique exploits them to approximate subproblem onstraintswithin the optimisation funtion of the master problem. This tehniqueis known as Lagrangian relaxation and has been used for hybridising on-straint programming and onvex optimisation by Sellmann and Fahle [15℄and Benoist et. al. [16℄ in[17℄.Other Hybridisation Forms Besides optimal solutions, linear solversan return several kinds of information about the solution. Redued ostsare the hanges in the ost whih would result from hanges in the valuesof spei� variables. These are, in fat, underestimates so if the reduedost is \-10" the atual inrease in ost will be greater than or equal to10. In ase the variable has �nite domain, these redued osts an be usedto prune values from the domain in the usual style of a global onstraint.(A value is pruned from the domain if the assoiated redued ost is sobad it would produe a solution worse than the urrent optimum). Inthis way linear programming an be hybridised with other solvers in theusual manner of onstraint programming. Indeed the tehnique has beenused very suessfully [18℄.1.3 Benders DeompositionBenders Deomposition is a hybridisation form based on the master prob-lem/subproblem relationship. It makes use of an important and elegantaspet of mathematial programming, the dual problem [19℄. BendersDeomposition is appliable when some of the onstraints and part ofthe optimisation funtion exhibit duality. The master problem need notuse mathematial programming at all. The subproblems return informa-tion whih an be extrated by solving the dual. The new onstraintsthat are added to the master problem are extrated from the dual valuesof the subproblems.



We have implemented Benders Deomposition in ECLiPSe and used itto takle several ommerial appliations in transportation and teleom-muniations. The tehnique has proved very suessful and has outper-formed all other hybridisation forms in these appliations.For the purposes of this paper we have also used Benders Deompositionto takle a set of benhmarks originally designed to test another hy-bridisation form, Unimodular Probing [11℄. Whilst our results on thesebenhmarks have not been so striking as the appliations mentionedabove, they niely illustrate the use of Benders Deomposition and theombination of linear programming with a simple propagation algorithmfor the master problem. From these benhmarks we also make some ob-servations about the kinds of problems and deompositions that are mostsuited to the hybrid form of Benders Deomposition.1.4 ContentsIn the following setion we introdue Benders Deomposition, explainand justify it, and present the generi Benders Deomposition algorithm.In setion 3 we show how it is embedded in onstraint programming. Wedesribe the user interfae, and how one models a problem to use BendersDeomposition in ECLiPSe. We also desribe how it is implemented inECLiPSe. In setion 4 we present the appliation of Benders Deompo-sition to a \minimal perturbation" problem, its de�nition, explanationand results on a set of benhmarks. Setion 5 onludes and disussesthe next appliation, further work on modeling and integration, and openissues.2 Benders DeompositionBenders deomposition is a ut or row generation tehnique for the so-lution of speially strutured mixed integer linear programs that wasintrodued in the OR literature in [20℄. Given a problem P over a set ofvariables V , if a subset X of the variables an be identi�ed for whih �x-ing their values results in one or more disonneted SubProblems (SPi)over the variable sets Yi : Si Yi = V � X whih are easily soluble |normally due to some strutural property of the resulting onstraints |it may be bene�ial to solve the problem by a two stage iterative proe-dure.At eah iteration k a Relaxed Master Problem (RMPk) in the ompliat-ing or onneting variables X is �rst solved and the solution assignmentX = Xk used to onstrut the subproblems SPki ; these subproblems arethen solved and the solutions used to tighten the relaxation of the masterproblem by introduing Benders Cuts, �ki (X).The subproblems optimise over redued dimensionality subspaes DkYiof the original problem solution spae obtained by �xing the variablesX = Xk, while the master problem optimises over the optimal solutionsof these subspaes augmented by Xk guided by the uts generated.In lassial Benders Deomposition both the master and subproblems



are linear and are solved by MILP algorithms, while the uts are de-rived from Duality theory. In general however, we are free to use anyappropriate solution methods for master and subproblems | all that isrequired is an assignment of the master problem variables X = Xk toonstrut onvex subproblems, and a proedure for generating valid utsfrom subproblem solutions. The most naive suh sheme would merelyresult in the master problem enumerating all assignments of X, whilemore informative uts an result in substantial pruning of the masterproblem searh spae.2.1 Classial Benders DeompositionConsider the linear program P given by:P : min fTx+ IXi=1 Ti yisubjet to Gix+Aiyi � bi 8ix 2 DXyi � 0 8i (1)When x is �xed to some value xk we have linear programs in yi whihmay be speially strutured or easy to solve, prompting us to partitionthe problem as follows:P : minx2DX (fTx+ IXi=1 �min�Ti yi : Aiyi � bi �Gix;yi � 0	�)= minx2DX (fTx+ IXi=1 (max fui(bi �Gix) : uiAi � i;ui � 0g))(2)where the inner optimizations have been dualised. Given that Ui = fui :uiAi � i;ui � 0g is non-empty for eah i either there is an extremepoint optimal solution to eah inner optimization or it is unboundedalong an extreme ray; letting u1i ; : : : ;utii and d1i ; : : : ;dsii be respetivelythe extreme points and diretions of Ui we an rewrite (2) as the mixedinteger Master Problem MP:MP : min z = fTx+ IXi=1 �isubjet to �i � uki (bi �Gix) 8i 8k0 � dli(bi �Gix) 8i 8lx 2 DX (3)Sine there will typially be very many extreme points and diretionsof eah Ui and thus onstraints in (3) we solve relaxed master problemsontaining a subset of the onstraints. If for some relaxed master problemRMPk the optimal relaxed solution (zk;xk) satis�es all the onstraintsof (3), then (zk;xk;yk1; : : : ;ykI ) is an optimal solution of (1); otherwise



there exists some onstraint or Benders Cut in (3) whih is violated forx = xk whih we add to RMPk to form RMPk+1 and iterate.To determine suh a ut or prove optimality we obtain the optimal so-lution (�ki ;uki ) of the Subproblems SPki formed by �xing x = xk in (2):SPki : max �ki = ui(bi �Gixk)subjet to uiAi � iui � 0 (4)If any subproblem SPki has an unbounded optimal solution for some xkthen the primal of the subproblem is infeasible for xk; if any subproblemSPki is infeasible for some xk then it is infeasible (and the primal ofthe subproblem is infeasible or unbounded) for any x sine the (empty)feasible region Ui is independent of x. In either ase we proeed by on-sidering the Homogeneous Dual of the primal of the subproblem:max ui(bi �Gixk)subjet to uiAi � 0ui � 0 (5)This problem is always feasible (ui = 0 is a solution), having an un-bounded optimum preisely when the primal is infeasible and a �niteoptimal solution when the primal is feasible. In the unbounded ase wean obtain a ut uki (bi �Gix) � 0orresponding to an extreme diretion of U 0i = fui : uiAi � 0;ui � 0g.The omplete Benders deomposition algorithm proeeds as follows:Algorithm 1 The Benders Deomposition Algorithm1. Initialisation step: From the original linear program P (1) onstrutthe relaxed master problem RMP0 (3) with the initial onstraint setx 2 DX and set k = 0.2. Iterative step: From the urrent relaxed master problemRMPk withoptimal solution (zk;xk) onstrut RMPk+1 with optimal solution(zk+1;xk+1): �x x = xk in P, and solve the resulting subproblemsSPki (4); there are three ases to onsider:(a) SPki is primal unbounded for some i | halt with the originalproblem having unbounded solution.(b) yki ;uki are respetively primal and dual optimal solutions of sub-problem SPki with objetive values �ki for eah i | there aretwo ases to onsider:i. PIi=1 �ki = zk halt with (zk;xk;yk1; : : : ;ykI ) as the optimalsolution to the original problem.ii. PIi=1 �ki > zk add the Benders Cuts �i � uki (bi �Gix) toRMPk to form the new relaxed master problem RMPk+1set k = k + 1 and return to (2).() SPki is dual unbounded or both primal and dual infeasible forsome i | �nd an extreme diretion dki of the homogeneous dualleading to unboundedness; add the ut dki (bi �Gix) � 0 toRMPk to form the new relaxed master problem RMPk+1 setk = k + 1 and return to (2).



2.2 Hybrid Benders DeompositionThe lassial linear Benders Deomposition an be generalised to overproblems in whih the onstraints and objetive funtion are nonlinear,using any appropriate solution method for RMPk and SPki | we re-quire only a proedure for generating valid lower bounds �ki (x) from thesolutions of SPki . In its most general form we have the original problem:P : min f(f1(x;y1); : : : ; fI (x;yI))subjet to gi(x;yi) � bi 8ix 2 DXyi 2 DY 8i (6)whih we deompose into the master problem:MP : min z = f(x; �1 : : : ; �I )subjet to �i � �ki (x) 8i 8k0 � �li(x) 8i 8lx 2 DX (7)and subproblems: SPki : min fi(xk;yi)subjet to gi(xk;yi) � biyi 2 DY (8)In partiular when we an identify one or more distint sets of variablesin whih the problem onstraints and objetive funtion are linear and aompliating set of variables, it will be useful to deompose the probleminto a nonlinear relaxed master problem and linear subproblems.3 Embedding Benders Deomposition inConstraint ProgrammingIn this setion we disuss the implementation of Benders Deompositionin ECLiPSe . In designing the struture of the implementation two im-portant onsiderations were to maintain the exibility of the approahand to ensure ease of use for non-mathematiians.The exibility of hybrid Benders Deomposition algorithms is due inlarge part to the possibility of using arbitrary solution methods for mas-ter and subproblems; in order to allow appropriate solvers to be simplyslotted in to the framework it is essential to leanly separate the methodof solution of master and subproblems from the ommuniation of solu-tions between them.As many users of the solver may be unfamiliar with the intriaies oflinear programming and duality theory, it is important to provide auser interfae that allows for problems to be modeled in a natural andstraightforward formulation. All onstraints are therefore input in theiroriginal formulation | i.e. without having been deomposed and du-alised and ontaining both master and subproblem variables. The setsof variables ourring solely in the subproblems are spei�ed when theoptimisation is performed, and the original problem onstraints auto-matially deomposed into master and subproblem onstraints and thesubproblems dualised.



3.1 ECLiPSe ImplementationThe implementation of Benders Deomposition in ECLiPSe uses thesame features of the language that are used to implement �nite domainand other onstraints. These are demons, variable attributes, wakingonditions, and priorities.A demon is a proedure whih, on ompleting its proessing, suspendsitself. It an be woken repeatedly, eah time re-suspending on omple-tion, until killed by an expliit ommand. Demons are typially used toimplement onstraint propagation. For Benders Deomposition a demonis used to implement the solver for the master problem, with separatedemons for eah subproblem.A variable attribute is used to hold information about a variable, suhas its �nite domain. Programmers an add further attributes, and forBenders deomposition an attribute is used to hold a tentative valuefor eah of the variables in the master problem. Eah time the masterproblem is solved, the tentative values of all the variables are updatedto reord the new solution.When the waking onditions for a demon are satis�ed, it wakes. For a�nite domain onstraint this is typially a redution in the domain ofany of the variables in the onstraint. For the subproblems in BendersDeomposition the waking ondition is a hange in the tentative valuesof any variable linking the subproblem to the master problem. Thuseah time the master problem is solved any subproblem whose linkingvariables now have a new value is woken, and solved again. The masterproblem is woken whenever a new onstraint (in the form of a Bendersut) is passed to the solver. Thus proessing stops at some iteration eitherif after solving the master problem no subproblems are woken, or if aftersolving all the subproblems no new uts are produed.Priorities are used in ECLiPSe to ensure that when several demons arewoken they are exeuted in order of priority. For �nite domain propaga-tion this is used to ensure that simple onstraints, suh as inequalities,are handled before expensive global onstraints. By setting the subprob-lems at a higher priority than the master problem, it is ensured that allthe subproblems are solved and the resulting Benders uts are all addedto the master problem, before the master problem itself is solved again.While it is possible to wake the master problem early with only some utsadded by setting lower priorities for subproblems, this proved ine�etivein pratie.4 Benders Deomposition for ShedulingProblems4.1 Minimal Perturbation in Dynami Sheduling withTime WindowsThe minimal perturbation dynami sheduling problem with time win-dows and side onstraints is a variant of the lassi sheduling problemwith time windows: given a urrent shedule for a set of n possibly vari-able duration tasks with time windows on their start and end time points,



a set C of unary and binary side onstraints over these time points and aredued number of resoures r we are required to produe a new shed-ule feasible to the existing time windows and onstraints and the newresoure onstraint that is minimally di�erent from the urrent shedule.The user enters these problems in a simple form that is automatiallytranslated into a set of onstraints that an be passed to the bd library.For the purposes of this paper, in the next setion we give the full modelgenerated by the translator. The subsequent setion reports how thismodel is split into a master/subproblem form for Benders Deomposi-tion4.2 The Constraints Modeling Minimal PerturbationFor eah task Ti in the urrent shedule with urrent start and end timestsi ; tei respetively there are:Time point variables for the start and end of the task si, ei and taskduration onstraints (si; ei) 2 Li (9)where Di = f(s; e) : e�s � li, e�s � ui, lsi � s � usi , lei � e � ueigand lsi ; usi ; lei ; uei ; li; ui are derived from the time windows of thetask start and end points and any onstraints on these time pointsin C.Perturbation ost variables si , ei and perturbation ost on-straints (si ; si; ei ; ei) 2 Pi (10)where Pi = f(s; s; e; e) : s � s� tsi , s � tsi � s, e � e � tei ,e � tei � eg so that si � jsi � tsi j; ei � jei � tei jFor eah pair of tasks Ti; Tj there are:Binary non-overlap variables Preij ;Post ij for eah task Tj 6= Tiwhih take the value 1 i� task i starts before the start of task jand after the end of task j respetively, so that we havePreij = � 1 if si < sj0 if si � sj Post ij = � 1 if si � ej0 if si < ejand the distanes between the time points si and sj ; ej are boundedby si � sj � �lsi � usj�Preijsi � sj � �lsj � usi � 1�Pre ij + �usi � lsj�si � ej � �uej � lsi�Post ij + �lsi � uej �si � ej � �usi � lej + 1�Post ij � 1 (11)The resoure feasibility onstraint that the start time point si over-laps with at most r other tasksXj 6=i (Pre ij + Post ij) � n � r � 1 (12)



Time point distane onstraints between si; ei and all other timepoints. Sine for eah task Tj 6= Ti we have the distane bounds (11)between si and Tj and between sj and Ti of whih at most half anbe binding, we ombine them with the binary onstraintssi � sj + bij ej � si + buijsi � ej + blij ei � ej + beijappearing in the onstraint set C to give the distane onstraints(si; ei; sj ; ej ; Bij ; Lij ; Uij) 2 Dij(si; ei; sj ; ej ; Bij ; Lij ; Uij ;Preij ;Preji;Post ij) 2 Oij (13)whereDij = f(si; ei; sj ; ej ; B; L; U) :si � sj � B; si � ej � L;�si + ej � U; ei � ej � beij	Oij = f(si; ei; sj ; ej ; B; L; U;Preij ;Preji;Post ij) :B � bij ; L � blij ; U � buij ;B � �lsi � usj �Pre ij ; B � �usj � lsi + 1�Preji + �lsi � usj � ;L � �uej � lsi�Post ij + �lsi � uej � ;U � �lej � usi � 1�Post ij + 1	Valid ordering onstraints for eah task Tj 6= Ti there are many ad-ditional onstraints that we may hoose to introdue restriting thebinary variables to represent a valid ordering. These onstraints arenot neessary for the orretness of the algorithm as invalid orderingswill be infeasible to the subproblem, but may improve its eÆienyas fewer iterations will be needed.The omplete MILP problem formulation is thenP : min nXi=1 (si + ei)subjet to (si ; si; ei ; ei) 2 Pi(si; ei) 2 Li(si; ei; sj ; ej ; Bij ; Lij ; Uij)(si; ei; sj ; ej ; Bij ; Lij ; Uij ;Preij ;Preji;Post ij) 22 DijOij � 8j 6= iPj 6=i (Preij + Post ij) � n� r � 1 9>>>=>>>;8i(14)4.3 Benders Deomposition Model for MinimalPerturbationMaster ProblemMP : min zsubjet to �k(B;L;U)�l(B;L;U)(si; ei; sj ; ej ; Bij ; Lij ; Uij ;Preij ;Preji;Post ij)Pj 6=i (Pre ij + Post ij) ��2� z 8k0 8lOij 8j 6= in � r � 1 � 8i(15)



Subproblem There is a single subproblem with primal formulationLPk : min nXi=1 (si + ei)subjet to (si ; si; ei ; ei) 2 Pi(si; ei) 2 Li(si; ei; sj ; ej ; Bij ; Lij ; Uij) 2 Dij 8j 6= i) 8i (16)The Benders Deomposition library in ECLiPSe automatially extratsa dual formulation of the subproblem. For the urrent subproblem LPk,the dual has the form:SPk : max nXi=1  �i +Xj 6=i �BijwBij + LijwLij + UijwUij�!subjet to Pj 6=i �wBij + wLij � wUij � wBji�+ wtsi � wli + wui + wlsi �wusi � 0Pj 6=i �wbeij � wLji � wUji � wbeji�+ wtei + wli �wui + wlei � wuei � 0wtsi ; wtei � �1wtsi ; wtei � 1wli ; wui ; wlsi ; wusi ; wlei ; wuei � 0wBij ; wLij ; wUij ; wbeij � 0 8j 6= i
9>>>>>>>>>>>>=>>>>>>>>>>>>; 8i

(17)where �i = tsiwtsi + teiwtei + liwli + uiwui +Pj 6=i beijwbeij+lsiwlsi � usiwusi + leiwlei � ueiwueiSolutions to SPk produe uts of the form z � �k(B;L;U) whih exludeorderings with worse ost from further relaxed master problems whenthe subproblem is feasible, or �k(B;L;U) � 0 whih exlude orderingsinfeasible to the start windows and durations of the tasks when thesubproblem is infeasible, where�k(B;L;U) = IXi=1  �ki +Xj 6=i �wkBijBij +wkLijLij + wkUijUij�!All oeÆients wk and onstants �ki in the uts are integral sine thesubproblems are totally unimodular.4.4 Results and DisussionSummary We ran this model on 100 minimal perturbation probleminstanes. The number of variables in the problem model was around 900,and there were some 1400 onstraints in the master problem and around20 in the subproblem. Most problems were solved within 10 iterations



between master and subproblem, though a few nothed up hundreds ofiterations.The time and number of iterations for eah problem are given in Table 1.The bulk of the time was spent in the �nite domain searh used to solvethe master problem. Typially, for the feasible instanes, the optimalsolution was found early in the searh, and muh time was wasted ingenerating further solutions to the master problem whih were not betterin the ontext of the full problem.Corret and optimal solutions to all the problems were returned, butthe performane was an order of magnitude slower than the speiallydesigned algorithm presented in [11℄.Analysis Minimal perturbation an be deomposed into a master andsubproblem for the Benders Deomposition approah, but the size ofthe problems is very disparate. The behaviour of the algorithm on thebenhmark problem reet the number of onstraints - the subproblemsare trivial and almost all the time is spent in the master problem. Theimbalane is probably an indiation that this algorithm is better suitedto problems with larger or more omplex subproblems.Nevertheless it is not always the number of onstraints that make a prob-lem hard, but the diÆulty of handling these onstraints. It may be thatthe master problem onstraints, while numerous, are easy to handle ifthe right algorithm is used.Currently the algorithm used to solve the master problem is a two-phase�nite domain labelling routine. In the �rst phase a single step lookaheadis used to instantiate binary variables that annot take one of their val-ues. In the seond step all the binary variables are labelled, hoosing �rstthe variables at the bottlenek of the minimal perturbation shedulingproblem. This is not only a relatively naive searh method, but it alsolaks any ative handling of the optimisation funtion. Linear program-ming does o�er an ative handling of the optimisation funtion. Thus,using a hybrid algorithm to takle the master problem within a largerBenders Deomposition hybridisation form, ould be very e�etive onthese minimal perturbation problems.Benders Deomposition has proven to be a very eÆient and salableapproah in ase the problem breaks down into a master problem andmultiple subproblems. The minimal perturbation problems benhmarkedin this paper involve a single kind of resoure. These problems do nothave an apparent deomposition with multiple subproblems. This is aseond reason why our benhmark results do not ompete with the besturrent approah, on this lass of problems. Minimal perturbation prob-lems involving di�erent kinds of resoures might, by ontrast, prove tobe very amenable to the Benders Deomposition form of hybridisation.5 ConlusionThis paper has investigated hybridisation forms for problems that admita deomposition. A variety of hybridisation forms an be used in ase



Problem Iterations Time1 11 4.922 12 3.163 10 2.404 15 11.305 16 7.936 58 109.227 25 19.828 10 3.279 32 16.2510 107 151.0111 - >20012 - >20013 44 96.7714 29 18.3015 70 83.8716 20 30.9617 23 11.6518 18 15.1619 14 4.9420 21 8.1721 19 5.0122 60 180.4723 20 8.4624 39 82.9325 13 2.7426 3 0.7127 10 7.1428 22 12.2329 27 13.2430 - >20031 42 36.6932 15 4.4833 15 8.7734 20 23.70

Problem Iterations Time35 4 1.0936 20 7.0637 22 20.9138 36 67.4839 59 184.5740 13 5.6641 28 27.0542 9 5.8643 39 21.0244 25 9.4345 11 5.2046 - >20047 5 1.3748 51 51.7549 9 2.0650 18 8.8051 30 19.4452 43 119.6653 28 26.1054 33 17.3255 14 6.0156 14 9.9557 45 100.9458 4 0.8859 8 2.4560 - >20061 19 9.4162 24 11.4863 - >20064 46 95.0765 30 18.6266 14 5.5767 10 3.1068 62 132.87

Problem Iterations Time69 26 39.4870 13 4.8671 - >20072 - >20073 - >20074 26 18.7275 91 154.0076 12 3.4977 54 111.1778 35 37.5279 44 38.0080 10 3.5681 28 12.6982 8 2.0183 16 14.5284 32 22.2485 20 4.9486 - >20087 18 9.5688 12 4.7289 7 2.2690 43 42.5191 8 2.1292 54 111.593 - >20094 25 8.0895 8 2.9996 22 10.9797 5 1.5998 6 2.3799 15 4.82100 19 47.61Table 1. Number of iterations and total solution time for Benders Deomposition onRFP benhmark data



one or more subproblems are handled by linear programming. We aim tomake them all available in the ECLiPSe language in a way that allowsusers to experiment easily with the di�erent alternatives so as to quikly�nd the best hybrid algorithm for the problem at hand.Benders Deomposition is a tehnique that has not, to date, been appliedto many real problems within the CP ommunity. Publiations on thistehnique have desribed a few pedagogial examples and \aademi"problem lasses suh as satis�ability [20, 21℄. This paper presents the �rstappliation of Benders Deomposition to a set of minimal perturbationproblems whih have immediate appliation in the real world. Indeed thebenhmarks were based on an industrial appliation to airline sheduling.The signi�ane of Benders Deomposition in omparison with othermaster/subproblem forms of hybridisation (suh as row and olumn gen-eration) is that it takes advantage of linear duality theory. The BendersDeomposition library in ECLiPSe harnesses the power of the dual prob-lem for onstraint programmers who may not �nd the formulation andappliation of the linear dual either easy or natural.Moreover the implementation of Benders Deomposition in ECLiPSe hasbeen proven both eÆient and salable. Indeed its results on the minimalperturbation benhmark problems ompare reasonably well even againstan algorithm speially developed for problems of this lass. However theBenders Deomposition for minimal perturbation problems omprises amaster problem and a single trivial subproblem. Our experiene withthis tehnique has shown that this hybridisation form is more suitableto appliations where the deomposition introdues many or omplexsubproblems.This paper was initially motivated by a network appliation where Ben-ders Deomposition has proven to be the best hybridisation form afteronsiderable experimentation with other algorithms. We plan to reporton the appliation of this tehnique to a problem brought to us by anindustrial partner in a forthoming paper.There remains further work to support �ne ontrol over the iterationbetween the master and subproblems in Benders Deomposition. Theimportane of suh �ne ontrol has been learly evidened from ourECLiPSe implementation of another hybridisation form - olumn gen-eration - applied to mixed integer problems. In partiular we will seek toimplement early stopping, and more ontrol over the number of Bendersuts returned at an iteration.Referenes1. Chi-2 - reating hybrid algorithms for industry and ommere. ES-PRIT PROJECT 22165: http://www.ipar.i.a.uk/hi2/, 1999.2. Parrot - parallel rew rostering. ESPRIT PROJECT 24 960:http://www.uni-paderborn.de/ parrot/, 2000.3. Lisos - large sale integrated supply hain optimisation software.http://www.dash.o.uk/lisosweb/, 2001.4. CP98 Workshop on Large Sale Combinatorial Optimisation andConstraints, volume 1, Pisa, Italy, 1999. http://www.elsevier.nl/gej-ng/31/29/24/25/23/show/Produts/notes/index.htt.
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