
Hybrid Set Domains to Strengthen Constraint
Propagation and Reduce Symmetries

Andrew Sadler and Carmen Gervet

IC–Parc, Imperial College London, SW7 2AZ, U.K.
{ajs2,cg6}@icparc.ic.ac.uk

Abstract. In CP literature combinatorial design problems such as sport
scheduling, Steiner systems, error-correcting codes and more, are typi-
cally solved using Finite Domain (FD) models despite often being more
naturally expressed as Finite Set (FS) models. Existing FS solvers have
difficulty with such problems as they do not make strong use of the
ubiquitous set cardinality information. We investigate a new approach
to strengthen the propagation of FS constraints in a tractable way: ex-
tending the domain representation to more closely approximate the true
domain of a set variable. We show how this approach allows us to reach
a stronger level of consistency, compared to standard FS solvers, for ar-
bitrary constraints as well as providing a mechanism for implementing
certain symmetry breaking constraints. By experiments on Steiner Sys-
tems and error correcting codes, we demonstrate that our approach is not
only an improvement over standard FS solvers but also an improvement
on recently published results using FD 0/1 matrix models as well.

1 Introduction

Combinatorial designs have applications in areas as diverse as error-correcting
codes, sport scheduling, Steiner systems and more recently networking and cryp-
tography (e.g. see [1] for a survey). While a combinatorial design problem is
defined in terms of discrete points, or sets, in the CLP framework it is mod-
eled as a constraint satisfaction problem (CSP) with variables representing the
points or sets and having a domain of values. Conceptually these domains are
sets of possible instantiations but in practice it is often a requirement that the
domains be approximated for efficiency reasons. A common approach to approx-
imating variable domains is to use upper and lower bounds (where “upper” and
“lower” are defined by some appropriate ordering on domain elements) which
are known to enclose the actual domain. Finite Set (FS) domains are ordered
by inclusion (the subset (⊆) order) and have bounds which are ground sets e.g.
X ∈ [{1}, {1, 2, 3}]. The lower bound, denoted glb(X), contains the definite el-
ements of the set {1} while the upper bound lub(X), contains in addition the
potential elements {2, 3}. The constraint reasoning is based on local bound con-
sistency techniques extended to handle set constraints [2] and solvers of this sort
have been embedded in a growing number of CP languages (e.g. ECLiPSe, ILOG,
CHOCO, Facile, BProlog). The bounds representation is compact and benefits

from interval reasoning techniques which allow us to remove at a minimal cost
set values that can never be part of any solution. However it does not guarantee
in general, that all the values from a domain are locally consistent (true for the
set cardinality constraint) and it does not provide any form of global reasoning.

Because of these weaknesses, many of the recent proposals to tackle com-
binatorial design problems efficiently assume a FD model where the domain
elements are naturally ordered (≤) and the bounds are the min/max value. Ex-
tensive research towards improving the efficiency of FD consistency algorithms
(e.g. global constraints [3, 4]) and search (e.g. symmetry breaking approaches)
[5, 6] has made this a powerful and general scheme. However many combinato-
rial design problems are more naturally expressed in FS models, we investigated
ways to achieve better efficiency for such models.

In this paper we discuss briefly our work on global filtering for n-ary set
constraints over fixed cardinality sets and present in much more detail a new do-
main representation for set variables. Experimental results are shown on Steiner
systems and error-correcting code problems.

The paper is structured as follows. In Sect. 2, we give background on consis-
tency notions for finite set constraint systems. Section 3 addresses the problem of
global set constraints. Section 4 introduces the new set interval representation.
Section 5 defines the hybrid domain and in Sect. 6 we experimentally evaluate
our approach.

2 Background

The solving of a CSP is handled by interleaving constraint propagation (domain
reduction) and search. The constraint propagation can be formally defined by
the level of consistency enforced for each constraint or system of constraints. We
recall the different consistency notions used in this paper.

Given a finite domain representation, we say that a constraint is Generalized
Arc Consistent (GAC) iff any value assigned to a variable from its domain can
be extended to a complete assignment to the constraint [7]. GAC generalizes arc
consistency (AC) defined for binary constraints.

Maintaining GAC can be costly however and so when dealing with domains
which are approximated by bounds it is often easier/more efficient to only ensure
that the bounds of the domain, when assigned to the variable, can be extended
to a complete assignment. This notion of “bounds consistency” is used in many
FD solvers where bounds are the min/max domain elements mentioned above.

When dealing with FS domains represented as bounds ordered by the ⊆
relation, the bounds (glb/lub) cannot, in general, be extended to a complete as-
signment in the problems that we consider because of the presence of cardinality
restrictions. e.g. X ⊆ {1, 2, 3, 4}, |X| = 2, not all subsets of {1, 2, 3, 4} have 2
elements. [2] introduces a local consistency notion for various binary and ternary
set relations that ensures the ordering and depending on the constraint relation
a certain level of consistency is reached (e.g. AC for the set inclusion). [8] ex-
tends the consistency notions of [2] to multi-sets (sets where an element may

occur more than once) and combines them with the standard bounds consis-
tency notions for FD into a level of consistency called BC which can be applied
to constraints involving all the three types of variables. For FD variables the def-
inition is exactly that of standard FD “bounds consistency” and for (multi-)set
variables the “bounds” which are required to be “consistent” (i.e. extendable to
complete assignment) are not the glb/lub but correspond to the bounds on the
number of times any given element may occur within a set. For simple sets these
bounds are always 0..1.

3 Global Set Constraints

To strengthen set constraint propagation in the presence of set cardinality infor-
mation we first investigated global set constraints, seeking tractable and effective
global filtering algorithms for n-ary set constraint over fixed cardinality sets. For
practical modelling reasons FS solvers provide a number of n-ary constraints like
all_disjoint, all_union which are syntactic abstractions for a collection of
respectively binary and ternary constraints (X1 ∩X2 = ∅, X1 ∪X2 = X12). The
constraint reasoning is based on local bounds consistency.

[8] shows that BC on n-ary all_disjoint is equivalent to BC on the decom-
position. This holds because any set can be assigned the empty set. However,
when the set cardinalities are constrained (and not zero), which is ubiquitous in
combinatorial design problems, the equivalence no longer holds.

Using some standard results from design theory we derived four global con-
ditions which must hold for disjoint sets of fixed cardinality. Using an extension
of Hall’s theorem[9] we proved that these conditions, if satisfied, were sufficient
to ensure BC, and were able to convert the proof procedure into an efficient
polynomial time algorithm1 to enforce said consistency level. Interestingly this
implementation corresponds closely to the GAC algorithm for the Global Car-
dinality Constraint of Régin[10]. Owing to space restrictions we refer the reader
to [11] for details.

Other Global Constraints Despite the existence of a polynomial filtering
algorithm for the global disjoint constraint, we believe it unlikely that such
BC algorithm exist for the more general case of global cardinality-intersection
constraints, like the atmost1 constraint of [12]. Despite large amount of work
being done on the problem, to date, it is not known whether some relatively
small instance of Steiner systems (which the atmost1 constraint models) exist
or not, e.g. S(4, 5, 17) and S(5, 6, 17).2 These open instances lend weight to our
belief.

Another approach is thus necessary to make active use of the cardinality
information for arbitrary set constraints in an efficient and effective manner.

1 O(ncv
√

nc) where n=num vars, c=cardinality and v=size of largest lub
2 See Sect. 6 for explanation of notation

4 Lexicographic Bounds - The FD Analogy

The motivation that lead us to consider lexicographic bounds to represent set
variables is two fold: 1) to keep a compact representation for set variables, 2)
to build upon the analogy with bounds reasoning for integer variables and its
efficient and effective constraint propagation, e.g. [13].

If we think of a FD variable as a FS variable constrained to have exactly 1
element, then the domain of the FD variable corresponds directly to the lub of
the FS variable. The min/max bounds of the FD domain are the smallest/largest
elements in the lub. Extending the idea of min/max bounds to FS variables with
arbitrary (and non fixed) cardinalities will require a suitable total order on the
FS domain elements (as ≤ totally orders the FD domain elements).

We propose a new bounds representation for set domains based on an order-
ing different from the set inclusion (subset order). The ordering is lexicographic
and we define lexicographic bounds denoted 〈inf, sup〉. This ordering relation de-
fines a total order on sets of natural numbers, in contrast to the partial order ⊆.
We use the symbols ≺ (and �) to denote a total strict (respectively non-strict)
lexicographic order.

Definition 1. Let � be a total order on sets of integers defined as follows

X � Y iff X = ∅ ∨ x < y ∨
(
x = y ∧X \ {x} � Y \ {y}

)
where x = max(X) and y = max(Y) (1)

Example 1. Consider the sets {1, 2, 3}, {1, 3, 4}, {1, 2}, {3}, the list that orders
these sets w.r.t. � is [{1, 2}, {3}, {1, 2, 3}, {1, 3, 4}].

This lexicographic ordering for sets is not the only possible definition, nor is it,
perhaps, the most common when talking about sets. We use this definition for
two reasons: 1) for sets of cardinality 1 it is equivalent to the ≤ ordering of FD
variables and 2) usefully, it extends the ⊆ ordering and we have:

Theorem 1. ∀X, Y ∈ P(IN) : X ⊆ Y ⇒ X � Y

Proof. If X ⊆ Y then either X = ∅ in which case X � Y for all Y , or ∅ ⊂ X ⊆ Y
in which case consider the max elements of X and Y (namely x = max(X) and
y = max(Y) resp.). Since X ⊆ Y we have that x ≤ y because X contains no
elements greater than those in Y , so if x < y then clearly by definition X ≤ Y
and we are done. If x = y then we consider the next largest elements in each set
and our arguments hold recursively (since sets are finite). ut

Theorem 1 will be used in the hybrid domain to make inferences between the two
bounds representations for set variables (we also use this equivalent implication
with the direction reversed ∀X, Y ∈ P(IN) : X * Y ⇐ X 6� Y).

This ordering defined on ground sets of integers is not new; it is simply
the standard arithmetic ordering (≤) on the natural numbers written in binary,
where the binary number corresponds to the 0/1 characteristic vector represen-
tation of the ground set. More explicitly, for any two ground sets of integers

X and Y , and their corresponding characteristic binary numbers X and Y , we
have the following equivalence

X � Y iff X ≤ Y (2)

Example 2. Consider X = {4, 2} and Y = {4, 3, 2}, equiv X = [0, 1, 0, 1, 0] and
Y = [0, 1, 1, 1, 0].

Clearly we have X � Y and X ≤ Y .

A common use of this ordering is in search problems to break symmetries (e.g.
[14] on SAT clauses or [5, 6] on vectors of FD variables). It is important to
understand that this is not the use to which we put the ordering here. We use
this order on ground sets as a means to approximate the domain of a Finite Set
variable by upper and lower bounds w.r.t. this order. We will show in a later
section how we can implement a constraint to enforce the order between FS vars.

Figure 1 shows the relationship between the partial inclusion order and our
total lexicographic order.

{1, 2, 3, 4}

{1, 2, 3} {1, 2, 4} {1, 3, 4}{2, 3, 4}

{1, 2} {1, 3}{2, 3} {1, 4}{2, 4} {3, 4}

{1}{2} {3} {4}

∅

Fig. 1. A graph showing the ≺ order (solid) superimposed onto the standard ⊂ lattice
(dashed)

Intuitively, the relationship between the two ordering relations is best viewed
by moving downwards from the top of the lattice. Each horizontal line represents
sets incomparable with⊂ relation. On the other hand, one can follow the directed
arc in bold starting from {1, 2, 3, 4} to create the totally ordered list of sets under
≺ from the greatest to the smallest:[{4, 3, 2, 1}, {4, 3, 2}, {4, 3, 1}, {4, 3}, {4, 2, 1},
{4, 2}, {4, 1}, {4}, {3, 2, 1}, {3, 2}, {3, 1}, {3}, {2, 1}, {2}, {1}, ∅].

Note that the sets above have been written with their elements in arithmetic
decreasing order and observe that all sets “beginning” with a common sequence
(e.g. all sets beginning with {4, 3}) are to be found together. Similarly all be-
ginning with {3} are together, though not all the sets containing {3}. It is this

grouping property of the lex order, combined with its extension of the ⊆ order
(Theorem 1) that will form the basis of the hybrid inference rules in the next
section.

The following table summarizes, the different domain approximations at
hand. We use [glb, lub] to denote the set of all sets which contain glb and are
contained in lub. We use 〈inf, sup〉 to represent the set of all sets which come
after inf and before sup in the � order.

type domain order minimal maximal

FD IN ≤ (total) min max
FS P(IN) ⊆ (partial) glb lub
FS (lex) P(IN) � (total) inf sup

Given that the lexicographic order embeds the partial inclusion order (The-
orem 1), one could wonder whether it can replace it altogether.

Pros The lex bound domain overcomes one major weakness of the subset bound
domain, in that it allows us to make more active use of the cardinality constraint.
Since the lex bounds are valid instantiations of the set variable, then any con-
dition which must hold for the set variable (e.g. constraints on the set variable,
like the cardinality constraint) can be enforced on the lex bounds.

Example 3. A set X is known to take two or three elements from {5, 4, 3, 2, 1}.
The subset bounds representation can not yield tighter bounds when consider-
ing the cardinality constraint, i.e. X ∈ [∅, {5, 4, 3, 2, 1}]. However, with the lex
bound representation, we can prune the bounds. Let the initial bounds describe
the same initial domain X ∈ 〈∅, {5, 4, 3, 2, 1}〉 (25 = 32 unique sets). When
propagating the cardinality constraints, we are able to tighten the domain to
〈{2, 1}, {5, 4, 3}〉, (26 unique sets). If now cardinality is bound to be exactly 2
then we have bounds 〈{2, 1}, {5, 4}〉 which corresponds to only

(
5
2

)
= 10 sets.

Cons Despite its success allowing cardinality constraint to filter the domain
more actively, the lex bound representation is unable to always represent certain
critical constraints. Primary amongst these constraints is the inclusion or exclu-
sion of a single element. Such constraints are not always representable in the
domain because the lex bounds represent possible set instances and not definite
and potential elements of a set.

Example 4. Consider the bound constraint X ∈ 〈∅, {4, 3, 2, 1}〉. The constraint
1 ∈ X yields new bounds of X ∈ 〈{1}, {4, 3, 2, 1}〉, unfortunately not all sets
which lie in this range contain the element 1 (eg. {3, 2}). Note however that the
constraint 4 ∈ X allows us to prune the bounds to X ∈ 〈{4}, {4, 3, 2, 1}〉 where
all the sets in the range do contain 4 (see Fig. 1 for a visual proof).

It is the inability to capture such fundamental constraints efficiently in the
domain which lead us to consider a hybrid domain of both subset and lexico-
graphic bounds.

5 Hybrid Domain

In this section we extend the subset domain representation with extra bounds
representing the lexicographically smallest and largest instantiations of the set,
as well as bounds for the cardinality. We give extra rules to be used in addition to
those given for subset domains in [15]. Taken together these rules are necessary
and sufficient to maintain consistent hybrid domains w.r.t. the constraint store.3

We represent the bounds which constitute the domain of a variable as X ∈
[aX , bX] |cX , dX |〈eX , fX〉, where: aX , bX are lower,upper bound w.r.t. ⊆, cX , dX

are lower,upper bound w.r.t. |X| (cardinality), eX , fX are lower,upper bound
w.r.t. �. We will in fact for the sake of brevity, overload the ∈ symbol further
and use X ∈ [aX , bX] |cX , dX | to indicate that the variable X lies within the
lattice [aX , bX] and has cardinality in the range cX ..dX .

We use the above naming convention, where the letters a, b, c, d, e, f are suf-
fixed by the set variable names (which will be one of X, Y, Z). When we refer
to numeric elements of the domain we use the lowercase letter x, when we re-
fer to set values from the domain we use the lowercase letter s. We adopt the
operational semantics style of [16] and present our inferences as rewrite rules
operating on a constraint store. The rewrite rules have the form

inference
{Old store} 7−→ {New store}

however to save space we may omit the domain constraints from the stores
(e.g. X ∈ [aX , bX] |cX , dX |〈eX , fX〉) and adopt the notation that any “primed”
bound (e.g. a′X) appearing in the inference indicates the new value of that bound
in the new store. Furthermore when the old and new stores contain the same
constraints we will give only the inference, with the common store being shown
in the section heading. Finally, the special constraint tell(. . .) is used to indicate
the addition of a new constraint, allowing special actions to be performed when
constraints are setup.

5.1 Intra-Domain Consistency - {X ∈ [aX , bX] |cX , dX |〈eX , fX〉}

There follows a number of inference rules designed to keep the various bounds of
our hybrid domain mutually consistent. There will be one rule associated with
each of the six bounds, followed by one rule indicating failure.4

IR 1. a′X = aX ∪ {x
∣∣x ∈ eX ∩ fX ∧ ∀x′∈(eX∪fX)\(eX∩fX) x′ < x}

IR 1 states, in essence, that any elements which form a common “beginning” to
both lex bounds (see Sect. 4), should be part of the glb.

IR 2. b′X = bX \
{
x
∣∣{x} ∪ aX � fX ∨

(
dX − |aX | = 1 ∧ {x} ∪ aX ≺ eX

)}
3 Note that the way the new bounds are actually computed is not presented here. This

depends on ones choice of data structures and generic fixed point algorithm.
4 Instantiation when eX = fX is guaranteed by IR 1, IR 2 and the rules of [15].

IR 2 tells us when elements can never be part of the set because their inclu-
sion would violate the lex bounds. There are two such cases, indicated by the
disjunction in the definition of the set of elements to exclude.

– Firstly, no element can be included, which if added to the glb would cause it
to be greater than (�) the lex upper bound fX . This follows from Theorem 1.

– The second case arises when there is at most one more element which could
be added to the set (i.e. when dX − |aX | = 1), in such a situation any
potential element if added to the glb must not cause it to be less than (≺)
the lex lower bound eX .

IR 3. c′X =

{
max(|aX |, cX) if aX = eX

max(|aX |+ 1, cX) otherwise

When eX and aX coincide (are equal), then the cardinality is at least the number
of elements in aX . When they do not, then we know that X must contain aX ,
but cannot be exactly aX (since aX ≺ eX), hence the cardinality is at least the
number of elements in aX + 1.

IR 4. d′X =

{
min(|bX |, dX) if bX = fX

min(|bX | − 1, dX) otherwise

A similar argument holds for IR 4 as holds for IR 3.

IR 5. e′X = inf
(
{s

∣∣s ∈ [aX , bX] |cX , dX | ∧ s � eX}
)

IR 6. f ′X = sup ({s|s ∈ [aX , bX] |cX , dX | ∧ s � fX})

Together, IR 5 and IR 6 ensure that the lex bounds of the domain can only
undergo monotonic reduction.

IR 7.
eX � fX ∨ eX = inf(∅) ∨ fX = inf(∅){

X ∈ [aX , bX] |cX , dX |〈eX , fX〉
}
7−→

{
fail

}
If the domain becomes empty, or no values exist for the new lex bounds then
clearly we should fail.

5.2 Constraints

Inclusion - {X ⊆ Y } Strict inclusion (⊂) requires strict total orders (≺ and <).

IR 8. {
tell(X ⊆ Y)

}
7−→

{
X ⊆ Y, X � Y, cX ≤ cY , dX ≤ dY

}
Intersection - {Z = X ∩ Y } Similar rules exist for the variable Y .

IR 9. {
tell(Z = X ∩ Y)

}
7−→

{
Z = X ∩ Y, tell(Z ⊆ X), tell(Z ⊆ Y)

}
IR 10. e′X = inf({s|s ∈ [aX , bX] |cX , dX | ∧ |s ∩ aY | ≤ dZ ∧ |s ∩ bY | ≥ cZ})

IR 11. f ′X = sup({s|s ∈ [aX , bX] |cX , dX | ∧ |s ∩ aY | ≤ dZ ∧ |s ∩ bY | ≥ cZ})

Union - {Z = X ∪ Y } Similar rules exist for the variable Y .

IR 12. {
tell(Z = X ∪ Y)

}
7−→

{
Z = X ∪ Y, tell(X ⊆ Z), tell(Y ⊆ Z)

}
IR 13. e′X = inf({s|s ∈ [aX , bX] |cX , dX | ∧ |s ∪ aY | ≤ dZ ∧ |s ∪ bY | ≥ cZ})

IR 14. f ′X = sup({s|s ∈ [aX , bX] |cX , dX | ∧ |s ∪ aY | ≤ dZ ∧ |s ∪ bY | ≥ cZ})

Difference - {Z = X \ Y }

IR 15. {
tell(Z = X \ Y)

}
7−→

{
Z = X \ Y, tell(Z ⊆ X)

}
IR 16. e′X = inf({s|s ∈ [aX , bX] |cX , dX | ∧ |s \ bY | ≤ dZ ∧ |s \ aY | ≥ cZ})

IR 17. f ′X = sup({s|s ∈ [aX , bX] |cX , dX | ∧ |s \ bY | ≤ dZ ∧ |s \ aY | ≥ cZ})

IR 18. e′Y = inf({s|s ∈ [aY , bY] |cY , dY | ∧ |aX \ s| ≤ dZ ∧ |bY \ s| ≥ cZ})

IR 19. f ′Y = sup({s|s ∈ [aY , bY] |cY , dY | ∧ |aX \ s| ≤ dZ ∧ |bY \ s| ≥ cZ})

Ordering Constraint - {X � Y }

IR 20. e′Y = inf({s|s ∈ [aY , bY] |cY , dY |〈eY , fY 〉 ∧ s � eX})

IR 21. f ′X = sup({s|s ∈ [aX , bX] |cX , dX |〈eX , fX〉 ∧ s � fY })

6 Experiments and Comparisons

We implemented our lex bound inferences atop the ic_sets library in
ECLiPSe[17], using a list of integers in decreasing order to represent each lex
bound. This allows all required new bounds to be calculated in O(|bX |) time
which we believe is close to optimal given the nature of our lex ordering and the
presence of cardinality bounds.5 To illustrate the benefits of our hybrid domain
over the conventional subset domain for reasoning about set problems in the
presence of cardinality information, we look at error correcting codes and the
commonly referenced problem of finding Steiner systems. A 2GHz Pentium 4
with 1GB of RAM was used for all experiments.

Unless otherwise stated the search procedure used in the following problems
is the following: Each set variable is fully instantiated before moving to the
next, in a fixed order. Each set is instantiated by first trying to include, then on
backtracking, exclude the largest unassigned element from its domain.

Definition 2 (Binary error correcting codes). A binary error correcting
code is a collection of bit-strings (vectors of 0s and 1s of length (n)), called
codewords, with the property that the distance between any two codewords is at
least some number (d). The distance between two codewords is defined to be the
number of positions in which the two bit-strings vary. This distance function is
called the Hamming distance.
5 Note that subset bounds alone can be updated in O(1) time, e.g. in ic sets.

A variant of this problem is to find codes which have a fixed weight (w), where
the weight of a code is defined as the number of 1s that each codeword contains.
Each codeword must contain the same number of 1s.

We can model this problem using set variables (Si) to represent the codewords
(Ci), with the correspondence that the codeword represents the characteristic
function of the set (i.e. the element x is in the set Si iff the code Ci has a 1
at position x). Using the set model, the distance between two codewords can be
defined as the cardinality of the symmetric difference of the two sets. From the
basic set constraints presented in this paper (and present in most set solvers),
we can define the symmetric difference in a number of ways, but in keeping with
[18] we define the distance between two sets as

distance(Si, Sj) = n− |Si ∩ Sj | − |{1 . . . n} \ (Si ∪ Sj)|

As an optimization problem then, the task is to find (and prove) the maximum
size (number of codewords = a(n, d, w)) for a binary error correcting code with
given parameters (n, d) and optionally fixed weight (w).

We solve the optimization problem by simply trying to find increasingly larger
codes, and proving optimality by failing to find one larger. We increase the code
size by one codeword each iteration.

Figure 2 shows the backtracks and runtimes required to find and prove the op-
timal code size for non-trivial (i.e. non-zero size) instances of the constant weight
error correcting codes optimization problem with parameters n ∈ {6, 7, 8, 9, 10},
d ∈ {4, 6, 8, 10, 12} and w ∈ {3, 4, 5, 6, 7, 8}. The graphs show those 48 problems
which were proved to optimality in under 240 seconds by both subset and hybrid
solvers. The results were ordered by the number of backtracks required using the
subset domain, thus the problems exhibit a general trend of greater difficulty as
the problem number increases.

We observe that the backtracks for our hybrid domain, though occasionally
the same as the subset domain in the easier problems, are in general significantly
lower.6 Whilst the runtimes can be seen to be comparable overall, they show
6 Note the logarithmic scale used on both graphs.

 1

 10

 100

 1000

 10000

 100000

 0 5 10 15 20 25 30 35 40 45 50

ba
ck

tr
ac

ks

problem number

subset
hybrid

 0.001

 0.01

 0.1

 1

 10

 100

 0 5 10 15 20 25 30 35 40 45 50

tim
e

(s
ec

)

problem number

subset
hybrid

Fig. 2. Backtracks and runtimes for solved fixed weight binary error correcting codes

fluctuations whereby in some instances our approach is slower, and in others
it is faster. The former occurs when the reduction in backtracks is insufficient
to outweigh the overheads associated with maintaining the stronger consistency,
and is entirely expected. The point is well illustrated by the final two pairs of data
points on each graph. The final two points on the backtrack graph represent a
96.6% reduction in the number of backtracks, whereas the previous two represent
a “mere” 29.2% reduction. The corresponding runtime changes are 50.9% faster
and 1114.5% slower. Better CPU times can be expected by investigating different
data structures for the hybrid domain bounds and an integrated solver for the
whole hybrid domain.

Not shown in the graphs are the optimality proofs that only our hybrid
domain solver was able to find in the 240 second time limit. a(9, 4, 7) = 4 was
found with 21779 backtracks in 201.71 seconds and a(10, 6, 7) = 3 was found
with 14619 backtracks in 111.14 seconds.

Definition 3 (Steiner Systems). A steiner system S(t, k, v) is a set A of v
points and a family of subsets of size k of A (called blocks) such that any t points
in A appear in exactly one block.

To demonstrate the benefits of our approach on existing models we adopt the
common Steiner system set model of

(
v
t

)
/
(
k
t

)
set variables representing the blocks

of the design, constrained such that the pairwise intersection contains at most 1
element. We call this the primal model.

Another way to model Steiner systems, and design problems in general using
set variables is to employ what we call a dual model. Instead of modelling the
blocks themselves as set variables, we instead number the blocks 1..b and have
a set variable corresponding to each point of the base set, which contains the
block numbers in which the element occurs. In [12] a global constraint atmost1 is
proposed which does strictly more than just constraining the size of the dual-sets.
We find however that the full inferences of this constraint are costly to attain
and instead, in our experiments, we settle for a simple redundant constraint
that constrains the number of times an element may appear in the design to be
exactly r. This second model we refer to as the +dual sum model as it can be
easily implemented by summing vectors of reified inclusion Booleans. Table 1
clearly shows the benefit that our hybrid domain brings in reducing the size of
the search space. In many cases removing backtracks altogether and in others
reducing the number by as much as 159 times.

Table 2 shows the computational cost of maintaining this higher level of con-
sistency. In many cases the time taken to find the solution actually increases.
This is especially pronounced when the search space is large and solutions are
relatively easy to find. Consider the S(2, 3, 31) system which contains 155 blocks,
each of which can be instantiated to one of

(
31
3

)
= 4495 values, this constitutes

quite a large search space out of which 930 backtracks is a relatively small num-
ber. With the “+dual sum” model this instance can be solved without backtracks
using the simple subset domain representation and so the extra mechanism for
reasoning with the hybrid domain can only add overhead.

Table 1. Backtracks to find first soln.

backtracks

primal +dual sum
S(t, k, v) subset hybrid subset hybrid

S(2, 3, 07) 6 0 0 0
S(2, 3, 09) 4521 384 2398 15
S(2, 3, 15) 90 0 0 0
S(2, 3, 31) 930 0 0 0
S(2, 4, 13) 19 0 1 0
S(2, 5, 21) 40 0 0 0
S(3, 4, 08) 60 2 8 2
S(3, 4, 16) 4136 132 240 132
S(3, 6, 22) 3048 42 92 42

Table 2. Time to find first soln.

time (s)

primal +dual sum
S(t, k, v) subset hybrid subset hybrid

S(2, 3, 07) 0.01 0.01 0.01 0.01
S(2, 3, 09) 2.95 1.63 3.23 0.13
S(2, 3, 15) 0.41 1.01 0.18 1.06
S(2, 3, 31) 31.3 100.9 6.83 99.63
S(2, 4, 13) 0.04 0.14 0.02 0.14
S(2, 5, 21) 0.16 2.97 0.1 2.83
S(3, 4, 08) 0.05 0.07 0.03 0.08
S(3, 4, 16) 41.59 59.7 7.11 54.69
S(3, 6, 22) 15.29 77.48 2.47 54.98

However, when considering harder problems such as the S(2, 3, 09) instance,
12 blocks each with

(
9
3

)
= 84 possible values, the 4521 backtracks is a more

significant proportion of the search space. The reduction of this number to 384
by the hybrid domain results in a 44.7% reduction in the runtime. With the
“+dual sum” model, the reduction of the backtracks by 99.3% results in runtime
reduction of 96.0%.

To investigate whether we had simply been “lucky” or “unlucky” to find
(resp. not find) solutions quickly we ran experiments to find all solutions to
the various designs. Due to the large numbers of (symmetric) solutions that
exist for steiner systems, we were only able to find all solutions to the S(2, 3, 7)
in a reasonable time. Table 3 shows, for the primal model, that the overheads
associated with our hybrid domains is almost exactly balanced by the reduced
search space (87.1% fewer backtracks and 2.5% less runtime). For the “+dual
sum” model we observe a 52.4% reduction in backtracks which, given the current
implementation, does not come with a reduction in runtime. However, the results
are promising.

Table 3. Time and backtracks taken to find all 151200 solutions of S(2, 3, 7)

domain model time(s) backtracks bt/sol

subset primal 609 1557048 10.30
hybrid primal 594 200507 1.33
subset +dual sum 378 410479 2.71
hybrid +dual sum 462 195349 1.29

6.1 Symmetry

Much work has been done recently to improve the efficiency of searching for
solutions of highly symmetric problems. In this section we compare our work
with developments in one particular family of symmetry breaking techniques,
the lex-ordered symmetry breaking constraint in matrix models.

In [19] the authors show how existing symmetry breaking techniques like
lex[5, 6] can be combined with more conventional constraint like the sum con-
straint to both increase the amount of pruning and (in some instances) reduce
the time taken to solve problems. The authors demonstrate their technique on
finding and proving the in-existence of a number of small Steiner systems.

The model they choose is a 2D matrix of 0/1 FD variables where rows corre-
spond to the characteristic function of a block, and columns therefore correspond
to the dual sets mentioned earlier. A constraint on the magnitude of the scalar
product between any two rows, corresponds to the restriction that two sets may
intersect in at most 1 element. They compare the effect of posting lex con-
straints on both the rows and the columns (>lex R ≥lex C), with posting lex
on the columns (≥lex C) and a specialized constraint called LexGreaterAndSum
on the rows, we will denote this specialized constraint which combines the lex
ordering with the sum constraint as (>

∑
lex R) for brevity.

For comparison, our model is the same as that presented in the previous
section where set variables correspond to rows, with the addition of dual sets
(corresponding to the columns). Simple channelling constraints maintain the
correspondence between the sets. The lex constraints are enforced locally be-
tween adjacent rows and adjacent columns using the inference rules IR 20 and
IR 21. The dual sets are not constrained to have a fixed cardinality since no
such constraints existed on the columns in the matrix model. We implement the
exact same labelling strategies, row-wise and column-wise, as used in [19] by
channelling to a matrix of reified inclusion Booleans.

In tables 4 and 5 we duplicate and extend the results of [19], adding for com-
parison the final column showing how our model performs. Note that the third
column contains the backtrack values from the original paper, with the runtimes
being scaled by the same factor as the runtimes for the previous column for
which we were able to duplicate backtrack counts. From these results our hybrid
domain model not only out performs the plain double-lex constrained matrix
model in terms of search space reduction and runtimes, but also outperforms
the specialized LexGreaterAndSum constrained model as well; providing, in the
hardest of the problems, a 95.0% backtrack reduction compared to the double-
lex model and further 48.5% compared to the specialized LexGreaterAndSum
model. Runtimes drop by 85.2% and 23.8% respectively as well.

Conclusion The hybrid domain provides a natural data structure for the
lex ordering constraints (≺ and �) and the set constraints of the problem (∩ and
| |) to interact effectively. By keeping the set based model, but enhancing the
domain representation and local inferences, we can reason at least as strongly and
efficiently as less intuitive FD matrix models and without the need to identify
and invent specialized global constraint propagation algorithms.

Table 4. Comparison with table 1 of [19]. Row-wise labelling.

Prob No sym breaking >lex R ≥lex C >
∑
lex R ≥lex C � R � C

S(t, k, v) btracks time(s) btracks time(s) btracks est time(s) btracks time(s)

S(2, 3, 6) 6194 2.7 13 0.0 11 0.0 7 0.0
S(2, 3, 7) 6 0.4 2 0.0 1 0.0 0 0.0
S(2, 3, 8) - >16hr 740 0.7 390 0.7 58 0.3
S(2, 3, 9) 4521 5.6 336 0.5 250 0.5 12 0.2
S(2, 3, 10) - >16hr 723209 1339.8 433388 1136.4 12346 167.8

Table 5. Comparison with table 3 of [19]. Column-wise labelling.

Prob No sym breaking >lex R ≥lex C >
∑
lex R ≥lex C � R � C

S(t, k, v) btracks time(s) btracks time(s) btracks est time(s) btracks time(s)

S(2, 3, 6) 26351 9.8 46 0.0 27 0.0 22 0.0
S(2, 3, 7) 585469 340.6 151 0.1 52 0.1 42 0.2
S(2, 3, 8) - >16hr 6837 5.5 1962 3.1 1314 3.7
S(2, 3, 9) - >16hr 90561 98.0 8971 14.0 5232 18.0
S(2, 3, 10) - >16hr 37861490 48789.8 3701480 9478.1 1906918 7226.4

7 Related Work

The most closely related work to ours is that of [16], which extended the inference
rules of [15] with extra rules operating on set cardinalities. In our framework we
are clearly free to implement all the extra inferences of [16] and hence can reach
at least the same degree of pruning. We can however make important inferences
that cannot be made in [16].

Example 5. Z = X ∩ Y , X ∈ [∅, {5, 4, 3, 2, 1}] |3, 3|, Y ∈ [∅, {4, 3, 2, 1}] |3, 4|,
Z ∈ [∅, {4, 3, 2, 1}] |3, 3|. These domains are a fixed point for both traditional
set solvers and [16]. However with our lex bounds added (i.e. for X, we have
〈{3, 2, 1}, {5, 4, 3}〉), IR 11 reduces this to 〈{3, 2, 1}, {4, 3, 2}〉 and IR 2 gives us
X ∈ [∅, {4, 3, 2, 1}].

8 Conclusion

We have analysed Finite Sets solvers in the light of modern techniques and
advances in efficiently modeling and solving combinatorial design problems. We
presented a new and novel hybrid domain for FS variables which allows us to
strengthen the level of consistency that we reach in a tractable and efficient
manner. It is clearly stronger than BC achieved by standard set solvers since we
prune more but defining the level of consistency reached for such multi-bounded
domains is an open problem.

We showed how our implementation prototype is able to improve not only
the state of the art in FS solving for a class of combinatorial design problems,
but also improves on recently published results that use FD 0/1 matrix models
and specialized global constraints. Though sometimes slower than existing FS
techniques, our approach is typically faster at solving problems with cardinality
constraints especially when there are no (or few) solutions as well as at proving
optimality. Furthermore we believe that the CPU times can be improved further
for all cases by considering a fully integrated set solver built specifically for
hybrid domains (i.e. not atop an existing solver).

References

1. Colbourn, Dinitz, Stinson: Applications of combinatorial designs to communica-
tions, cryptography, and networking. In: Surveys in Combinatorics London Math-
ematical Society Lecture Note Series 187. Cambridge University Press (1999)

2. Gervet, C.: Interval Propagation to Reason about Sets: Definition and Implemen-
tation of a Practical Language. CONSTRAINTS journal 1(3) (1997) 191–244

3. Beldiceanu, N., Contejean, E.: Introducing Global Constraints in CHIP. In: Math-
ematical Computation Modelling. Volume 20(12). (1994)

4. Régin, J.C.: A filtering algorithm for constraints of difference in csps. In: Proc.
AAAI-94. (1994)

5. Flener, P., Frisch, A., Hnich, B., Kiziltan, Z., Miguel, I., Pearson, J., Walsh, T.:
Breaking row and column symmetries in matrix models. In: Proc. CP’02. LNCS,
Springer (2002)

6. Gent, I.P., Prosser, P., Smith, B.M.: A 0/1 encoding of the gaclex for pairs of
vectors. In: ECAI/W9 Modelling and Solving Problems with Constraints. (2002)

7. Mackworth, A.: On reading sketch maps. In: IJCAI’77. (1977) 598–606
8. Walsh, T.: Consistency and propagation with multiset constraints: A formal view-

point. In: Proc. CP-2003. (2003)
9. Hall, P.: On Representatives of Subsets. J. of London Math. Soc. 10 (1935) 26–30

10. Régin, J.C.: Generalized arc consistency for global cardinality constraint. In: Proc.
AAAI-96. (1996)

11. Sadler, A., Gervet, C.: Global filtering for the disjoint constraint on fixed cardi-
nality sets. Technical Report IC-PARC-04-2, Imperial College, London (2004)

12. Sadler, A., Gervet, C.: Global reasoning on sets. In: FORMUL’01 workshop in
conjunction with CP-01. (2001)

13. Puget, J.F.: A fast algorithm for the bound consistency of alldiff constraints. AAAI
(1998)

14. Crawford, J., Ginsberg, M., Luks, E.M., Roy, A.: Symmetry breaking predicates
for search problems. In: Fifth Int. Conf. on Knowledge Rep. and Reasoning. (1996)

15. Gervet, C.: Conjunto: constraint logic programming with finite set domains. In:
Proc. ILPS-94. (1994)

16. Azevedo, F.: Cardinal: an extended set solver. Computational Logic (2000)
17. Schimpf, J., Cheadle, A.M., Harvey, W., Sadler, A., Shen, K., Wallace, M.:

ECLiPSe. Technical Report 03-1, IC-Parc, Imperial College London (2003)
18. Müller, T., Müller, M.: Finite set constraints in Oz. In: 13. Workshop Logische

Programmierung. (1997)
19. Hnich, B., Kiziltan, Z., Walsh, T.: Combining symmetry breaking with other

constraints: lexicographic ordering with sums. In: Proc. SymCon. (2003)

