
Two Problems - Two Solutions: One System -ECLiPSe�Mark Wallace and Andr�e VeronApril 19931 IntroductionThe constraint logic programming system ECLiPSe [4] is the successor to theCHIP system [1]. Computation in ECLiPSe alternates between two modes:constraint handling and host program execution. The host programming lan-guage is (an extended) Prolog, which handles search, and interaction with theprogramming environment. The control for host program execution mode is theusual Prolog control. The constraint handling mode has a quite di�erent formof control, which generalises data-driven computation. During constraint han-dling all possible information is extracted from the constraints. When there isno more information to be extracted, the system returns to host program execu-tion, which continues until another constraint is posted and constraint handlingrestarts.In the next section we show the advantage of combining Prolog programmingwith constraints handling for a shift planning application. In the third sectionwe indicate how to control the constraint handling itself, and the application ofsuch control for optimising job-shop scheduling programs.Shift Planning Application The problem is to decide the best shift rota tomake optimal use of a resource which is only available for a restricted time eachday. Clearly there is a limit on the weekly hours for each shift worker, and thereare other application-speci�c constraints. The problem is to choose start timesand end times for the shifts throughout the week.The di�culty lies in the cost function, since the hourly pay varies with thetime of day and day of the week. It quickly emerged that the best approach isto divide the week into half hour periods, and associate �nite domains with thestart and end times of the shifts. Unfortunately the constraints do not prunethe search space su�ciently to allow the optimum to be found in a practicaltime. The reason is that the problem exhibits a huge number of symmetries�This paper appears in the Proceedings of the IEE Colloquium on Advanced SoftwareTechnologies for Scheduling, London, April 19931



(based on extending one shift by a period of time, and reducing another by thesame period).A solution was �nally reached using an approach based on [3]. The approachis an extension of backchecking, and relies on the concept of a nogood environ-ment in the ATMS. We now show how nogoods were programmed in ECLiPSefor this application.The search routine is an essential component of most CLP programs, and inthe shift planning application it appears as a labelling procedure. This proce-dure, which non-deterministically assigns values to the problem variables, hasthe formlabel(Vars) :- Vars=[].label(Vars) :- Vars=[V|Rest],chooseval(V),label(Rest). % Recursive call to label routineSuppose the procedure chooseval which assigns a value to a variable makessome bad choices, and at some point all attempts to label the remaining variablesfail. If V 1 = V al1; :::; V n = V aln are the bad choices already made whenbacktracking occurs, the system has proved that there is no solution with thesevalues for these variables. However there is little use in recording this deduction,since the system will never try the same partial labelling again.However taking the problem constraints into account, we can draw a moregeneral conclusion about the cause of failure. As a trivial example, supposethe problem has just one constraint, that the sum of all the variable valuesmust be greater than some given constant (i.e. V 1 + V 2 + :::+ V m > Const,where m is the number of problem variables). Now when backtracking occursas outlined above, we can draw a much more useful conclusion than just sayingV 1 = V al1; :::; Vn = V aln is no good. We can conclude that, whatever valuesare chosen for V 1; :::; V n, if V 1 + V 2 + :::+ V n =< V al1 + V al2 + :::+ V alnthen this partial labelling will still be no good!ECRC, Arabella Strasse 17, 8000 Munich 81, GermanyFor the shift planning problem we introduced just such a measure. If apartial assignment of start and end times to shifts leads to a failure, the programcalculates the cost Cn of the partial assignment, and the period of time Unduring which the resource is unused. If any other partial assignment leads to acost C >= Cn and unused time U =< Un, then this will lead either to a failureor to a solution with greater cost than one already found.The extension of the labelling routine to check for nogood is simple inECLiPSe. First extra parameters are introduced to record the cost and un-used times for the current partial labelling. Then an extra clause is added tocheck if the current partial assignment is no good. If it is no good, the subgoals2



!,fail cause the current labelling goal to fail too. Finally a last clause is addedto update the nogoods when backtracking occurs:label(Vars,Cost,Unused) :- Vars=[]. % Unchangedlabel(Vars,Cost,Unused) :-recorded(nogood,[Cn,Un]), % Find a(nother) nogoodCost >= Cn, Unused =< Un, % Test it!, fail. % Fail the labelling calllabel(Vars,Cost,Unused) :- Vars=[V|Rest],chooseval(V),calc(NCost,NUnused,Cost,Unused,V), % Calc new cost and unusedlabel(Rest,NCost,NUnused). % Use new cost and unusedlabel(Vars,Cost,Unused) :-record(nogood,[Cost,Unused]), % Record another nogoodfail. % Fail the labelling clauseNot only is the extension quite trivial in ECLiPSe, it also leaves the usualconstraint handling una�ected. The resulting program therefore uses reactiveconstraints to prune the search tree and nogoods as an additional mechanism.Experiments showed that neither feature alone enabled a solution to be found -it was the combination which made the problem tractable to ECLiPSe.2 Constraints Handling for Job Shop Schedul-ingIn this section we concentrate on constraint handling. We distinguish two va-rieties of constraints: primitive constraints and reactive constraints. Primitiveconstraints are added, during computation, to a global constraint store. Thusprimitive constraints are a generalised form of data. They allow not only a valueto be associated with a variable (as in traditional data stores) but any primitiveconstraint to be imposed on any variable or variables. To ensure that the systemdoes not hold contradictory constraints in its store, such as X > Y and Y > X,ECLiPSe provides a global procedure which to decide the consistency of eachnew primitive constraint with the current store. The CLP Scheme [2] describesthe integration of primitive constraints in logic programming.Di�erent classes of primitive constraints admit di�erent decision procedures.For example the decision procedure for linear equations and inequations overthe rationals can be used to detect the inconsistency of the above constraints.However such a decision procedure can be computationally expensive when thenumber of primitive constraints in the store grows.We now introduce reactive constraints. Reactive constraints are agentswith a behaviour which may be either program-de�ned or built into ECLiPSe.Shortly, the behaviour is as follows: the agent does nothing until a certain con-dition (or guard) is entailed by the current constraint store; then it transforms3



itself into a new set of agents, possibly adding new primitive constraints to thestore. Often a reactive constraint is de�ned by a (�nite) number of alterna-tive possible behaviours. A behaviour is then chosen non-deterministically atruntime.A very simple example of a reactive constraint which occurs in every schedul-ing problem is the constraint that two tasks cannot run on a machine at thesame time. If S1 and D1 are the start time and duration of one task, and S2and D2 are those for another, the reactive constraint can be de�ned as follows:nonOverlap(S1,D1,S2,D2) ==> S1+D1>S2 | S1 >= S2+D2nonOverlap(S1,D1,S2,D2) ==> S2+D2>S1 | S2 >= S1+D1This constraint has two alternative behaviours, one speci�ed by each line inthe de�nition. Informally this de�nition makes sure that the two tasks do notoverlap by adding, as soon as one task A cannot be completed before the otherB starts, a constraint that A must start after B is completed.The �rst line says that if the current constraint store entails the guardS1+D1>S2 then the reactive constraint nonOverlap(S1,D1,S2,D2) transformsitself into the empty set of constraints (i.e. it disappears), and a new primitiveconstraint S1 � S2 + D2 is added to the constraint store. The second linede�nes a symmetric behaviour. The nonOverlap constraint can be used forsolving small scheduling problems, but it generates a large number of primitiveconstraints and the linear solver mentioned above quickly becomes too ine�cientfor tackling non-toy scheduling problems.An advantage of reactive constraints is that their behaviour is program de-�ned. Thus we can de�ne a reactive behaviour for constraints that is weaker,and computationally less costly, than solving. A simple example is the treat-ment of non-linear equations by delaying them until they are linear. A moreradical example is the treatment of linear inequations and disequations by �-nite domain propagation as in cc(FD) [5]. This is (usually) much cheaper thantreating them as primitive constraints and testing them for global satis�ability.Propagation is simply a reactive constraint behaviour.Using this approach we can replace the primitive constraints S1 >= S2+D2and S2 >= S1+D1 in the de�nition of nonOverlap with reactive constraintswhich perform �nite domain propagation. The resulting scheduling programis e�cient enough to solve small, but non-toy, problems.For larger more complex scheduling problems it is necessary to perform moreglobal reasoning, on all the tasks which run on a single machine, rather thanjust pairs of such tasks. Such global reasoning is also straightforward usingreactive constraints, though the form of the guards required is more general.For example we need to extract the earliest possible start time and the latestpossible end time for a set of tasks, and the sum of their durations. ECLiPSeprovides facilities for accessing this information, and for tailoring constraintpropagation to the application at hand.4



Explicit control of constraint behaviour has been used to obtain a guaranteedoptimal solution the 10X10 job shop problem. More generally, the integrationof primitive constraint solving, reactive constraint behaviours and host programcontrol provide a complete armoury for tackling practical job shop schedulingproblems.3 ConclusionWith ECLiPSe we have introduced a second generation constraint logic pro-gramming language in which the advantages of CHIPs built-in constraint han-dling have been retained while \opening" the box and enabling users to con-struct new reactive constraints. Moreover the open architecture of ECLiPSehas enabled us to add new solvers and test new features, such as intelligentbacktracking, without modifying the system itself. Ongoing experimentationwith practical problems continues to reveal the e�ciency and expressive powerof ECLiPSe .References[1] M. Dincbas, P. Van Hentenryck, H. Simonis, A. Aggoun, T. Graf, andF. Berthier. The constraint logic programming language chip. In Proceed-ings of the International Conference on Fifth Generation Computer Systems(FGCS'88), pages 693{702, Tokyo, Japan, December 1988.[2] J. Ja�ar and J.-L. Lassez. Constraint logic programming. In Proceedings ofthe Fourteenth ACM Symposium on Principles of Programming Languages(POPL'87), Munich, FRG, January 1987.[3] F. Maruyama, Y. Minoda, Sawada S., and Y. Takizawa. Constraint satis-faction and optimisation using nogood justi�cations. In Proc. 2nd Paci�cRim Conf. on AI, 1992.[4] M. Meier, J. Schimpf, and et.al. ECLiPSe , ecrc common logic programmingsystem, user manual. Technical Report TTI/3/93, ECRC, 1993.[5] P. Van Hentenryck, H. Simonis, and M. Dincbas. Constraint satisfactionusing constraint logic programming. Arti�cial Intelligence, 58, 1992.5


