Parallel CLP on
Heterogeneous Networks

Shyam Mudambi
Joachim Schimpf ECRC-94-17

technical report ECRC-94-17

Parallel CLP on Heterogeneous Networks

Shyam Mudambi
Joachim Schimpf

(YT

0400 000, 040, 044
o0 i 03¢’
5 %

0000 %000’
European Computer-Industry
Research Centre GmbH
(Forschungszentrum)
Arabellastrasse 17
D-81925 Munich
Germany
Tel. +49 89 9 26 99-0
Fax. +49 89 9 26 99-170
TIx. 52 69 10

(©OEuropean Computer-Industry Research Centre, 1994

Although every effort has been taken to ensure the accuracy of this report,
neither the authors nor the European Computer-Industry Research Centre
GmbH make any warranty, express or implied, or assume any legal liability for
either the contents or use to which the contents may be put, including any
derived works. Permission to copy this report in whole or in part is freely
given for non-profit educational and research purposes on condition that such
copies include the following:
1. a statement that the contents are the intellectual property of the

European Computer-Industry Research Centre GmbH
2. this notice
3. an acknowledgement of the authors and individual contributors to

this work
Copying, reproducing or republishing this report by any means, whether
electronic or mechanical, for any other purposes requires the express written
permission of the European Computer-Industry Research Centre GmbH. Any
registered trademarks used in this work are the property of their respective
owners.

For more

information

please

contact: Shyam Mudambi (mudambi@ecrc.de)
or
Joachim Schimpf (joachim@ecrc.de)

II

Abstract

The combination of Or-Parallelism and Constraint Logic Programming (CLP)
has proven to be very effective in tackling large combinatorial problems in
real-life applications. However, existing implementations have focused on
shared-memory multiprocessors. In this paper, we investigate how we can
efficiently implement Or-Parallel CLP languages on heterogeneous networks,
where communication bandwidth is much lower and heterogeneity requires all
communication to be in a machine-independent format. Since a
recomputation-based system has the potential to solve these problems, we
analyse the performance of a prototype using this approach. On a
representative set of CLP programs we show that close to optimal speedups
can be obtained on networks for programs generating large search spaces and
that the overhead of recomputation is surprisingly low. We compare this
approach with that of stack-copying and also discuss how side-effects can be
dealt with during recomputation. The main conclusion of the paper is that
incremental recomputation is a clean and efficient execution model for
Or-Parallel CLP systems on heterogeneous networks.

Keywords: Parallel Logic Programming, CLP, Heterogeneous computing,
Recomputation, Or-Parallelism.

111

Motivation

Networks of personal workstations are now ubiquitous and the idea of using
such networks as high-performance compute servers has stimulated a great deal
of interest. Often, these networks are heterogeneous, i.e. they link together
machines that vary widely in terms of hardware and software. In this paper, we
will investigate how we can efficiently implement Or-Parallel Constraint Logic
Programming (CLP) languages on this type of hardware platform.

CLP is a generalization of logic programming where the basic operation of
unification is replaced by constraint solving. CLP has been used to tackle a
number of real-life combinatorial problems, where the basic paradigm is that of
“constrain and generate”. Since even after the constrain phase the remaining
search space can be quite large, Or-Parallel CLP systems attempt to explore this
remaining space in parallel. The combination of Or-Parallelism and CLP has
first been suggested in [11]. Later the ElipSys system [12] which combines finite
domain constraints with Or-parallelism has proven rather successful in practical
applications.

However, existing implementations have focused on shared memory
multiprocessors where communication is cheap and data structures can easily
be shared. In a loosely coupled network of workstations, both assumptions are
no longer true. First, any sharing of state between the processors has to be
simulated by explicit communication, which is limited by the bandwidth of the
interconnection network®. Second, a heterogeneous platform requires all
communication to be done in a machine independent format, which adds
conversion overhead and usually increases the amount of data to be transferred.

Our approach is to avoid all state sharing and instead rely on the recomputation
of states[2, 10, 9]. This allows for both low bandwidth requirements and
machine independency, thus solving the problems outlined above. We have
implemented a prototype on a network of workstations based on the ECL'PS®
CLP system developed at ECRC. The results of running a number of
representative CLP programs on the prototype are very encouraging and
indicate that such an approach is a clean and efficient way to implement
Or-Parallel CLP systems on heterogeneous networks.

The rest of the paper is organized as follows: Section 2 introduces the
Or-parallel task switching problem and describes how it is solved by the

'Recent work on optimizing a distributed version of the ElipSys system ([8]) has brought some
progress in this respect. Nevertheless, the overheads associated with the use of virtual shared

memory are still significant.

recomputation model and its competitors. Section 3 presents the prototype we
have implemented and analyzes the benchmark results. Section 4 discusses
some additional issues that will have to be tackled by a full implementation of
such a programming environment, especially the problem of impure language
features, and how to better exploit a network of multiprocessors. Section 5
concludes the paper.

The Task Switching Problem

An Or-Parallel system is one where alternatives of a nondeterministic program
are explored in parallel. We can represent this as an Or-tree where the arcs
represent deterministic computation and the nodes represent nondeterministic

choices (figure 2.0.1).

backtracking .-~ “---.._(re)computing

“-._or copying

' N
exhausted °

old position A

Figure 2.0.1: Moving a worker in the Or-tree

work available

N
’ \ L
, W\ new position

,,,,,,

The processors, called workers, work on different parts of the tree in parallel.
When a worker has explored a subtree (task) completely, it is assigned to
another subtree. Since every node in the tree corresponds to a certain state of
computation, taking a task from another node means the worker has to set up
the corresponding state. Only then can the worker start exploring a subtree of
this node. The main problem we investigate in this paper is how to efficiently
achieve this state setup in a distributed environment.

In a WAM-based CLP system, the computation state is mainly represented by
the (four) stacks® of the abstract machine. There are essentially three ways of
setting up the computation state (i.e. the stacks): stack-sharing [7, 12],
stack—copying[6] and recomputation [2, 9, 10].

The stack—sharing approach implies that all the stacks have to be potentially
sharable and hence have to reside in (possibly virtually) shared memory. This
direct sharing of a data structure is not viable in a heterogeneous setting, hence
we will not discuss it further. Thus we are in particular interested in the
comparison between the copying and the recomputation approaches, since in
both these models each worker has its own copies of the stacks and so engine
execution does not rely on shared data structures.

Yor our purposes we can treat all stacks alike.

2.1

2.2

Stack-copying

In stack—copying, a state is set up by connecting to a worker that has a similar
state and copying the stacks from there. The overhead consists in the actual
transmission of the stack data, as well as in the fact that the sending worker has
to interrupt its work while the copying is in progress. The amount of
transmitted data is usually reduced by employing an incremental copying
strategy. It consists of first identifying which old parts of the stacks the workers
have already in common and then only copying the difference in the states of
the two workers. Moreover, an appropriate scheduling strategy can also
contribute to reduce the number of copying sessions by scheduling more than
one node at a time. This approach has led to efficient Or-Parallel Prolog
implementations on both UMA and NUMA shared memory machines [6].

Unfortunately, it is questionable whether a copying-based CLP system can be
efficiently implemented on a network of workstations for the following reasons:

1. The copying overhead will be considerably higher due to much lower
communication bandwidth and because CLP programs typically generate
larger stacks than conventional Prolog programs.

2. Though each worker has its own copy of the WAM stacks, some global
data (such as atom and functor tables) has to be maintained, which can
have severe performance penalties in a distributed setting.

3. Lastly, in a heterogeneous setting, copying stacks is not straightforward,
as they will have to be transmitted in some device-independent format.

Recomputation

Instead of copying a state of computation, it can as well be recomputed. This is
trivial as long as things are deterministic: One just starts with the same initial
goal and does the computation again. If the program contains nondeterministic
paths, then we must make sure we take the right one if we want to reach a
certain state. This can be achieved by using oracles, i.e. by keeping track of
nondeterministic choices during the original execution and by using this
recorded information (the oracle) to guide the recomputation.

The idea of using oracles and recomputation for parallelism was first
implemented in the DELPHI system [2]. Their results indicated that such an
approach was well suited to exploiting Or-Parallelism in coarse-grain Prolog
programs on networks of workstations. [10] also describes a recomputation
based algorithm and its prototype implementation in Flat Concurrent Prolog.
An example of a different use of the same kind of oracles can be found in [5].

IWe ignore side effects for the moment.

2.3

2.4

A striking advantage of the recomputation model is its implementational
simplicity:

(O The workers can be completely separated and do not have to share any
state.

(O The workers communicate by exchanging simple data (mainly oracles,
which are just sequences of integers).

Incremental Recomputation

The incrementality optimizations used in a stack-copying [6] or stack-sharing [7]
systems to reduce the amount of data to be copied can also be used in a
recomputation-based approach to reduce the amount of recomputation and
communication. For example to move a worker from node A to node B (figure
2.0.1) a naive system would backtrack to the root node R and recompute the
path from R to B. The incremental system will only backtrack to C and
recompute from C to B. This is the same idea as in incremental stack copying.
An incremental stack section corresponds to the incremental oracle which is
needed to recompute it. Incremental recomputation has been successfully used
in PARTHEO, a parallel theorem prover[9].

Comparison

The recomputation scheme has the potential to overcome both fundamental
problems mentioned in the introduction: limited communication bandwidth
and heterogeneity. Since oracles are a more compact representation of state
than stacks, the size and volume of messages needed should be rather low.
Secondly, since the workers do not share any state nor do they communicate
internal representations of data structures (as is the case in stack copying), the
recomputation scheme is suitable for heterogeneous networks.

Of course, recomputation can be computationally expensive for certain classes
of programs. If we want to compare it with a stack copying scheme, we are
interested in the difference between recomputing a piece of stack and copying
it from another worker. Unfortunately, there is no fixed relation between the
two. Reconstructing a piece of stack can be very expensive or quite cheap,
depending on the program. A simple Prolog program can build up stacks at a
rate of several Megabytes per second. On the other hand, a program may
spend a lot of time while creating no (useful) stack data at all, e.g. computing a
value of the Ackermann-function. Hence one of the issues we examined with
our prototype were the incremental stack sizes generated by typical CLP
programs.

The problem of global state and impure language features is often neglected
when parallel declarative systems are discussed. With a stack copying
approach, a solution to this problem would involve implementing some
virtually shared data structures or a central manager for side effects. The
recomputation idea, while holding out the promise to render this unnecessary,
introduces new semantic problems that we discuss in section 4.2.

3 Results

3.1

3.1.1

The question we wanted to have answered was: Given similar scheduling
strategies, would a recomputation-based CLP system be competitive with a
copying-based system in a distributed setting? The main goal of implementing
a prototype was therefore to gain a better understanding of the computational
overhead of recomputation. Since the idea was to do it as quickly as possible,
the prototype deals only with pure Prolog code and essentially returns all
solutions to a particular query. The extensions necessary to deal with pruning
and side effects are discussed later. First we describe the prototype
implementation and then analyze the behaviour of six CLP programs and one
plain Prolog program.

Prototype

Our results were obtained on a prototype which was implemented in three
stages. First, the ECL'PS® WAM engine was extended to support recomputation,
which is basically the ability to create and follow oracles. Secondly, the
concept of parallel choicepoints was introduced, together with a flexible
interface to control the parallel execution. This interface allows one to specify
(via Prolog-coded event handlers) how the alternatives of a parallel
choicepoint are executed. Lastly, on top of these features, a centralized
scheduling scheme was developed in Prolog. The system was run on Sun IPC
workstations connected via Ethernet.

Oracle Handling

The abstract machine has been extended for oracle handling. There are two
modes of operation: in normal mode the machine executes as usual (figure
3.1.1) but builds up a record of which alternatives were taken at each
choicepoint. In recomputation mode, the execution follows a given oracle
(figure 3.1.2), i.e. the machine just deterministically takes the same alternatives
that were successful while the oracle was recorded. This requires modifications
of the WAM'’s choicepoint instructions (Try, Retry, Trust).

Oracles are implemented as a list on the global stack. The new ORC register
points either to the end of the oracle list (during oracle recording) or to the
current position in the oracle list (during oracle following). A small set of
builtins is provided to manipulate oracles.

CALL (nooracle)

Try
Retry
Trust

EXIT

FAIL \L REDO

Figure 3.1.1: Backtracking in WAM

ST

FAIL v REDO

CALL (with oracle)

Figure 3.1.2: Oracle following in WAM

3.1.2 Scheduler Interface

To have a realistic prototype, it was necessary to introduce the distinction
between sequential and parallel choicepoints. As in ElipSys[12], this is
implemented by annotating a predicate as parallel, using the parallel /1
declaration.

To make experiments with scheduling easy, we decided to provide a
Prolog-level interface to the parallel choicepoints, rather than hard-wiring the
scheduler interaction into the abstract machine. We have used the ECL‘PS*
event-mechanism to implement this, so that it is possible to control the parallel
search with a Prolog-coded event handler. The following two events are
associated with parallel choicepoints:

1. CREATING_PAR_CHP: This event is raised just before the parallel predicate
is entered. The first argument to the event handler is the number of
alternatives it is going to create. The handler now has the responsibility
of managing these alternatives. Typically, some alternatives would be
given to other workers, while the local worker takes one alternative itself.
The handler forces the local worker to take a particular alternative by
binding the second argument to a partial oracle. For example, in the
following handler the local worker takes the first alternative.

create_par_chp(NumAlt, ContOracle) :-
inform_scheduler(NumAlt),
ContOracle = [1]_].

2. FAIL_.TO_PAR_CHP: This event is raised when a worker fails to a parallel
choicepoint. The first argument to the handler is the number of the failed
alternative. The handler can either return a new oracle and force the
worker to explore another alternative (by binding the second argument to
the appropriate oracle) , or force it to fail across the parallel choicepoint
(by not binding the second argument). Thus a simple handler would be:

3.1.3

CALL
== Try_paralle —= (Create-Par-Chp-Handler)

FAIL Q/ : EXIT
no oracle Try_clause with oracle Try '
- REDO
Failto-Par-Chp-Handler <— Retry_parallel

Figure 3.1.3: Parallel predicate implementation

fail_to_par_chp(FailedAlt, ContOracle) :-
get_job_from_scheduler(ContOracle).

On the WAM level, this functionality has been implemented by prefixing the
normal sequential choice instructions with the 3 new instructions Try_parallel,
Retry_parallel and Try_clause (figure 3.1.3). The Try_parallel instruction creates
a choicepoint, determines the number of alternatives, and raises the
CREATING_PAR_CHP event. After the event handler returns, the Try_clause
instruction is executed. If no oracle is given by the handler, it will cause the
parallel predicate to fail. Otherwise it proceeds to the Try instruction which
will just follow the oracle and execute a single clause deterministically. When
the clause fails, the Retry_parallel instruction is executed, which raises the
FAIL_-TO_PAR_CHP event. After the event handler returns, Try_clause is
executed as above.

The Scheduler

The Prolog implementation is made up of N ECL'PS® processes performing
useful work (i.e. workers) and one ECL‘PS® process which runs the central
scheduler. As noted earlier, the scheduler code (in both the worker and central
scheduler processes) is written in Prolog. The scheduler and the workers
communicate with each other via sockets using normal Prolog reads and
writeq’s. The scheduler reads in a goal and returns all possible solutions to the
goal. There is no special treatment of side effects, cut or commit. Thus the
prototype can only be used to run “pure” programs or programs where the
scope of the cut is limited to the “private” part of the stack (which is the section
of the stack below the most recently created parallel choicepoint).

The worker processes read goals and oracles from the scheduler and run them.
When a worker runs out of work, it informs the central scheduler. If the central
scheduler has jobs, it sends a job (i.e. the corresponding oracle) to the idle
worker. Otherwise, the scheduler process sends a request-work message to all
busy workers. We have implemented a simple top-most scheduling strategy,
where workers keep track of all parallel choicepoints seen so far and when
requested for work, release the topmost (the one closest to the root)
choicepoint to the scheduler. Releasing a choicepoint in this context means
sending the scheduler the oracle (a list of integers) that leads up to the
choicepoint. The workers poll for a request-work message each time either

3.2

3.2.1

parallel choicepoint handler is called (i.e. when a parallel choicepoint is
created or failed back to).

We have implemented a partial incrementality optimization in the prototype,
which eliminates repeatedly computing the initial deterministic path that leads
to the first parallel choicepoint in the program. Thus when a worker runs out
of work, it fails back to the first parallel choicepoint of the goal, rather than
failing completely out of the goal, and starting all over again from the root.

Performance Analysis

We used seven programs to analyze the performance of the prototype.

1. N-queens - A naive pure Prolog n-queens program which has been used
as a benchmark for most Or-Parallel Prolog systems[7, 6].

2. K-puzzle - A number puzzle which uses finite domain constraints.

3. Ncarl, Ncar2 - The car sequencing program first implemented in CHIP[3].
Ncarl is the original program and ncar2 is the same program, except that
the atmost/3 predicate was recoded using delay/2, which had the effect
of increasing the granularity of parallelism.

4. cbhsel-14, cbsel-18 - The protein topology prediction benchmark from
ICRF [1] with 14 and 18 strands.

5. qg2-8 - A finite algebra theorem proving benchmark(4].

Overall Benchmark Results

The sequential execution in our prototype is somewhat slower than in the
original ECL'PS® system. There are two sources of overhead: oracle recording
and the prototype’s event mechanism for managing parallel choicepoints. Their
effect is shown in table 3.2.1. The first column is the efficiency of the original
ECL'PS® system, the second column shows the slowdown due to oracle
recording only, and the last column shows the effect of both. Note that the
latter is the speed of the actual parallel prototype operating sequentially with a
single worker. The 9-queens benchmark turns out to be particularly sensitive to
the overheads we have introduced. The reason is that the dominant operation
in this benchmark is the creation of parallel choicepoints, and this operation is
slowed down by an order of magnitude in the prototype due to the Prolog
handler calls.

For an optimized implementation we would, however, expect efficiency close
to the second column, since the event handler overhead would disappear with
a tighter integration.

10

Goal ECL'PS® | ECL'PS® | Prototype
with Oracles
9-queens 1.0 0.88 0.42
k-puzzle 1.0 0.99 0.93
ncarl 1.0 0.97 0.85
ncar2 1.0 0.93 0.81
cbsel-14 1.0 0.94 0.69
cbsel-18 1.0 0.94 0.71
qg2-8 1.0 0.99 0.75

Table 3.2.1: Overhead of oracle recording and parallel choicepoint handling

The speedups obtained with up to 12 workers for each of the above programs
is shown in table 3.2.2 below. We should note that though an extra process
was used by the central scheduler for ease of programming, the cpu time used
by this process was negligible. All the timings were performed on Sun IPC
machines, though the memory configurations and work loads were not
identical, hence there was slight variation in the sequential running times on
the various machines. The parallel timings shown are the best of four runs and
speedups were computed by comparing the best parallel run with the best
sequential run. There was a big variance between runtimes (especially in the
short runs) which was due to network load caused by other jobs. Since the
average values reflect these variances which have nothing to do with our
prototype, we chose to use the best runs for our performance analysis.

Goals Workers

1 2 4 8 12
9-queens 69.7 35.0 (1.99) 17.9 (3.90) 9.3 (7.50) 6.6 (10.69)
k-puzzle 995.0 557.0 (1.79) 269.1 (3.70) 145.6 (6.83) 98.3 (10.12)

ncarl 22.7 12.7 (1.78) 7.1 (3.19) 4.9 (4.60) 4.2 (5.37)
ncar2 63.2 34.0 (1.86) 18.6 (3.41) | 10.70 (5.91) 8.4 (7.57)
cbsel-14 45.6 24.0 (1.91) 13.7 (3.34) 8.9 (5.13) 7.6 (6.01)

cbsel-18 801.9 403.4(1.99) | 229.9(3.49) | 111.0(7.22) 74.4 (10.79)
qg2-8 23244.5 | 11926.3 (1.95) | 6247.2 (3.72) | 3074.1 (7.56) | 2165.9 (10.73)

Table 3.2.2: Elapsed times (in seconds) and speedups of the Benchmarks

As can be seen, the k-puzzle, 9-queens, cbsel-18 and qg2-8 speedups are quite
good', whereas the ncarl, ncar2 and cbsel speedups fall once the number of
workers is above four. One of the main reasons for this drop off in speedups

't should be noted that due to the variation in sequential runtimes on the machines and the
fact that we chose to compute speedups using the best sequential times, perfect speedups were

not possible.

11

3.2.2

for the shorter programs is the high startup time required for running jobs on a
network. For example, it can take nearly a second before all the workers have
tasks to work on. In a small job, a second is a significant portion of the runtime.

Parallel Execution Overheads

The main parallel execution overheads are due to recomputation and
communication. A rough measure of the communication overhead can be
obtained by examining the total number of oracles (jobs) sent out by the
scheduler and their lengths. Table 3.2.3 provides these figures for the programs
on the 12 worker runs. As we would expect the oracle lengths are quite small
for the 9-queens query, implying that the communication overhead is quite low.

Goal Jobs | Oracle Lengths

Min Max
9-queens | 229 1 20
k-puzzle | 216 6 99

ncarl | 135 | 1128 1374
ncar2 82 | 1146 1770
cbsel-14 | 302 | 329 525
cbsel-18 | 450 | 417 677
qg2-8 | 416 | 8678 8904

Table 3.2.3: Number of jobs and oracle lengths (12 workers)

However, the oracle lengths for the CLP program are much higher - over a
thousand entries, in the case of the ncar and qg2-8 queries. If we assume that
an oracle entry takes up one byte, the minimum amount of data that must be
communicated for these programs is over 80 Kbytes.

We should note here that a naive implementation of oracles can lead to even
larger lengths. For example, many CLP programs follow the general strategy of
setting up the constraints and then exploring the constrained search space.
Though setting up the constraints is usually deterministic, in practice the code
creates choicepoints which are cut away later, but still fill up the oracle. A
solution is not to record the oracle for a deterministic path but only record its
length, since another worker recomputing this section does not need any more
information. Thus an oracle would consist of alternative numbers, representing
which alternative to take from the next choicepoint and lengths fields (if the
path is deterministic). If a length field is seen, it is decremented each time a
new choicepoint is created and once it is zero, the rest of the oracle is followed
(as before). We have implemented this optimization in the prototype and
preliminary results show that the oracle lengths are reduced by 10% to 90%.
This is of course at the expense of some recomputation time (due to useless
sequential backtracking).

12

Tables 3.2.4 and 3.2.5 show the percentage of elapsed time spent in various
activities by all the workers for the cbsel-14 and k-puzzle queries respectively.
We see that the idle times for the cbsel-14 query are quite high. The main
reason for this is high network startup costs and the simple work release
mechanism used in the prototype. The “other” row in these tables reflects
overheads such as scheduling (reading in oracles and releasing work) and
garbage collecting?. The scheduling overhead should decrease with tighter
integration.

The most interesting statistic here is of course the percentage of time spent
recomputing. This overhead is not very large when compared to the total
elapsed time of the query (Iess than 10% for both queries), which is quite
encouraging. One of the reasons why this overhead is so low, is the partial
incrementality optimization, which eliminated repeatedly computing the initial
deterministic prefix of a goal. Since this initial segment in CLP programs is used
to set up the constraints, it can be quite time consuming. For example, without
this optimization the time spent recomputing in the cbsel-14 program goes up
from 8.5% to 25% for 12 workers. In addition, it also reduced the
communication overhead significantly, since the oracles sent out by the
scheduler could omit the initial deterministic prefix. The minimum oracle
length column of table 3.2.3 shows the lengths of these prefixes.

Activity Workers
1 2 4 8 12
Working | 100.0 | 90.0 | 78.7 | 60.5 | 47.3
Idle 0.0 1.5 | 12.3 | 26.5 | 33.0
Recomputation 00| 05| 30| 59| 85
Other 0.0 8.0 6.0 7.1 | 11.2

Table 3.2.4: % Time spent in working and recomputing for cbsel-14

Activity Workers
1 2 4 8 12
Working | 100.0 | 88.9 | 92.0 | 85. 0 | 83.9
Idle 0.0 3.0 1.7 29 4.9
Recomputation 00| 01| 04 1.0 14
Other 0.0 8.0 59 11.1 9.8

Table 3.2.5: % Time spent in working and recomputing for k-puzzle

Table 3.2.6 gives the recomputation percentages of all the queries analysed in
this paper. With the exception of the ncarl program, all the other times are

?Because oracle following does not create any choicepoints, the incremental garbage collector
ends up repeatedly scanning such stack sections. Hence the gc time in the parallel runs was
higher than the sequential gc times.

13

3.2.3

below 10%. The relatively larger percentage of time spent recomputing in the
ncarl program is due to the presence of fine-grain parallelism deep in the
search tree. A more complete incrementality optimization, where a worker is
given work which requires the least amount of recomputation to reach relative
to its current position should allow the system to better exploit such parallelism.

Workers 2 4 8 12
queen9 | 0.1 | 0.2 0.7 1.0
k-puzzle | 0.1 | 04 | 1.0| 14
ncarl | 2.1 | 6.0 | 17.8 | 16.3
ncar2 | 1.4 | 41| 89| 9.2
chsel-14 | 0.5 3.0 | 59| 85
cbsel-18 | 0.0 | 0.3 1.2 1.7

Table 3.2.6: Recomputation overhead of all benchmarks

Oracle Lengths versus Stack sizes

As we stated earlier, one of the goals of this investigation was to compare the
merits of copying the state versus recomputing it. We have already seen that
the oracle lengths for CLP programs are quite large, thus increasing the
communication overhead. In order to see how this overhead would compare
with the stack copying approach, we computed the ratio of the incremental
stack sizes to the incremental oracle lengths. The maximum and minimum
ratios are shown below for the benchmarks. We computed the ratio in two
modes - one with the garbage collector turned off and the other in which
garbage collection was forced at every parallel choice point (just before the
incremental stack changes were computed). The forced garbage collection
figures gives us the best case scenario for stack copying and the no garbage
collection gives us close to the worst-case®. The ratios again seem to be quite
encouraging for the recomputation scheme - the lowest ratio is 40, which
means that even in the best case one oracle entry corresponds to 40 bytes of
stack.

Of course, using recomputation one has the additional overhead of
recomputing, but we have shown this overhead to be quite small for these
programs. The actual incremental stack size data for the programs show that
the stacks can get quite large for the four CLP queries(see Table 3.2.7). For the
forced gc runs, the largest incremental changes were seen between the root
and the creation of the first parallel choicepoint. This is what we expected to

¥The worst-case figure would actually be the sum of these two figures, since it could be
the case that a worker X shares its state with another worker Y just before performing garbage
collection. X then performs garbage collection immediately afterwards. Y then requests work

from X again and this time has to copy the garbage collected state.

14

Stack size (bytes) Ratio to oracle length
Goal | Average | Min Max | Average | Min Max
queen9 nogc 711 | 376 2164 100 | 71 376
queen9 gc 306 | 224 352 43| 35 256
k-puzzle nogc 11321 | 384 35808 3046 | 128 | 13398
k-puzzle gc 6276 | 100 26092 1689 | 33| 5218
ncarl nogc 19554 | 448 | 135252 848 | 120 | 17228
ncarl gc 5877 | 196 65400 255 | 49 | 4642
ncar2 nogc 19756 | 432 | 132408 295 | 93 | 18802
ncar2 gc 6612 | 100 65688 99 | 40 | 4626
cbsel-14 nogc 4114 | 880 66848 341 | 73| 3323
chsel-14 gc 1241 | 324 31676 103 | 30 984
cbsel-18 nogc 4778 | 880 97792 398 | 73| 4192
cbsel-18 gc 1240 324 44284 103 30 1277
qg2-8 noge | 105776 | 8148 | 1119652 9178 | 129 | 71708
qg2-8.gc | 30393 | 228 | 735388 2637 | 85| 7538

Table 3.2.7: Incremental Stack sizes compared to oracle lengths

see as it reflects the space used to set up the initial constraints. However, when
no garbage collection was performed, this was not always the case. As the
figures indicate, there is a wide variation between the gc and no gc runs. We
see that for the CLP programs between 1 to 30 K-Bytes of stack has to be
copied per task (when garbage collection is turned on). Unfortunately, it is
difficult to estimate the frequency of these task migrations, without simulating
parallel execution.

15

4 Full System

For a scalable, real implementation of a recomputation system, a number of
optimizations are necessary, as well as support for impure language constructs.

4.1 Optimizations

A centralized scheduler would become a bottleneck when running on a large
number of processors. Thus a distributed scheduler should be used, consisting
of sub-schedulers each of which is only responsible for a subset of the parallel
choice points. When moving from a centralized scheme to a distributed one,
the main difference will be that the message volume will increase, since a
request-work message might have to traverse all the busy workers before work
is found. This increase is, however, not specific to the recomputation model.
In fact it will be seen on every distributed Or-Parallel system.

The prototype used a simple site-based topmost scheduling policy out of
necessity, since it did not keep any representation of the search tree. The
results show that a topmost strategy works sufficiently well for programs with
large grain parallel jobs. Though simple, such a strategy does not allow one to
easily exploit incrementality optimizations. In a real implementation, it would
be preferable to use a tree-based scheduling strategy which will try to match
idle workers with the closest possible task. “Closeness” would be measured in
terms of the amount of recomputation necessary.

4.2 Impure Language Features

4.2.1

Impure language features cause problems for all parallel implementations of
Prolog. We will distinguish three different classes: pruning operators (cut and
commit), side effects affecting the state of the environment (e.g. file system)
and side effects affecting the internal state of the Prolog system (e.g. assert,
record)

Pruning Operators

The implementation of the pruning operators in the recomputation system is
basically the same for as for other Or-Parallel models (the scheduler handles

16

4.2.2

4.2.3

pruning that affects parallel choicepoints). During recomputation, the cuts can
just be ignored. We will therefore not consider this topic further.

Environment side effects

When, during recomputation, the system encounters a side effect predicate of
the write-type, then execution of this predicate would duplicate the side effect
(e.g. writing to a file) because it has already been done in the original
computation. This can be relatively easily eliminated by suppressing this kind
of side effects whenever a worker is in re-execution mode.

On the other hand, side-effects of the read-type need to be re-executed
(because they have to return a result). But the environment state may not be
the same as it was during the original execution. Non—critical examples are e.g.
re-execution of compile-predicates, since the source files are not expected to
change. But in general, read-type side effects may yield different results on
re-execution, consider for instance a call to cputime/1 or a read/2 on a file that
has been changed in the meantime. The solution is to record the results of
such predicates together with the oracle during the original execution. On
re-execution, the predicate is not executed, but the recorded result is used
instead. This amounts to an extended notion of oracle: It predicts not only the
correct branch of a nondeterminate choice, it also predicts the results of certain
built-in calls. The cost of such a solution is a larger oracle.

Internal side effects

For internal side effects there are two sources of problems: the lack of shared
state between distributed workers, and the repeated re-execution of side effect
predicates during recomputation.

As long as internal side effects are not used to communicate between
Or-branches, they pose no problems. They are just re-executed on
recomputation and can be treated like pure logical code. The re-execution is in
fact necessary because the internal state is not shared between workers and
therefore has to be re-established.

The main problem is when such predicates are used to communicate between
Or-branches (or in sequential terms: communicate across failures). There are
three possible semantics for these predicates in an Or-Parallel setting and there
is a gradual degradation of what one can do in terms of communication
between Or-branches using this type of side-effects in the three different
models:

1. sequential — the sequential Prolog semantics (imposing an order on the
Or-branches)

17

2. parallel-shared — global data is (physically or virtually) shared, but no
special precautions to preserve the sequential order of side effects

3. parallel-private — no data shared between Or-branches

We will not consider the first model further, since we believe that the ordering
of Or-branches is an artifact from sequential implementations and should not
be imposed on a parallel system. We note however, that it is default semantics
implemented in [7, 6].

The parallel-shared model is implemented in ElipSys and behaves such that
side effects executed in Or-Parallel branches are interleaved in some
unspecified order which may be different in different runs.

In the parallel-private model without any shared state there is the additional
effect that a side effect which is done in one Or-branch may never become
visible in another Or-branch (when they are computed in parallel by different
workers).

The simulation of the parallel-sharing semantics on a non-sharing
recomputation model is quite expensive. It would be necessary to have a
global manager to synchronize access to all dynamic predicates and recorded
structures. This would be costly and remove the main attraction of a
recomputation-based system, which is its simplicity. This problem is closely
related to the issue of implementing a distributed dictionary in a copying-based
scheme.

The other way is to make it impossible to use the internal side-effect primitives
of sequential Prolog for Or-branch communication. The most pragmatic
method would be to keep the current implementation and restrict their use to
purely sequential parts of the search space.

To compensate for the lost feature of communicating information over
Or-branches, we envisage a language construct that associates a non-logical
object (a bag) with an Or-subtree. Inside this subtree, terms can be copied into
this bag. The content is only retrieved once the subtree is exhausted. The
content is the result of the subgoal and is also recorded in the extended oracle.
On recomputation, the subtree is not searched again, but the recorded bag is
taken from the oracle instead. An all-solutions predicate could then be written
as:

findall(Goal, Bag) :-
call_with_bag((Goal, bag_enter(Handle,Goal)), Handle, Bag).

The differences compared to the classical primitives are: The concept of a bag
implies that the order of entries is unspecified, which maps naturally onto the
parallel implementation. The handle-concept instead of global names simplifies

18

disposal of the object on failure and garbage collection. Linking the bag to an
Or-subtree solves the recomputation problem.

19

Hybrid Model

A realistic scenario of a common computing environment in the near future is a
network of workstations where some or all workstations are multiprocessors
with a small number (2 — 8) of CPUs. Using a pure recomputation model on
such a network would result in inefficient use of the multiprocessor
workstations, since the basic tenet of recomputation is that it is cheaper to
recompute than to communicate. As this will probably not hold on a
shared-memory multiprocessor, a hybrid copying/recomputation scheme would
be ideal in such a setting. The idea is illustrated in figure 5.0.1. The dashed
line around the engine processes on the multiprocessor indicates that they
share some state (such as global dictionaries).

Network

= =]

- N |

Multiprocessor PC Workstation

Figure 5.0.1: Hybrid Model

Such a model would use stack-copying when sharing work between processes
on the same machine and use oracles across machines. The main issue in such
a system would be the complexity of the scheduler, which would have to
decide on the fly whether stack-copying or recomputation is the most
appropriate work installation mechanism. The obvious advantage of such a
system is that it would be able to exploit fine-grain parallelism within a cluster.

20

Conclusions

The main question investigated in this paper was whether an incremental
recomputation-based scheme would be as efficient as a copying based scheme
for implementing a CLP system in a distributed, heterogeneous setting.

Towards this end we implemented a recomputation-based prototype and
analysed its performance on a set of representative CLP programs. The analysis
revealed that the overhead of recomputation was between 1% and 18% per
worker, which was surprisingly low, given that only partial incrementality
optimizations were implemented in the prototype. As expected, this figure is
higher than than the 3% to 9% overhead of copying reported for incremental
stack-copying implemented on a shared-memory multiprocessor[6]. However,
we also found that even the incremental stack sizes generated by the CLP
queries were quite large and in fact even in the best case, a single oracle entry
corresponded to 40 bytes of stack, while for some programs the average was
well over a thousand bytes. Given these two results - reasonable
recomputation overhead and the much lower bandwidth requirements of
incremental recomputation, our conclusion is that such an approach will be as
or more efficient than copying stacks in a distributed setting. In addition, since
oracles are just sequences of integers, device independent communication is
simple to implement (in contrast to stack-copying), making it easy to exploit
heterogeneous networks.

Additional incrementality optimizations should decrease the recomputation
overhead further and widen the class of problems that can be effectively
parallelised using such an approach. In order to take advantage of
cluster-based architectures (e.g. a network of multiprocessors) a hybrid model
would be ideal. We are currently in the process of designing and implementing
such a system.

21

Acknowledgements

Liang-Liang Li, Kees Schuerman and Alexander Herold’s insightful comments
on earlier versions of this paper were very helpful. Special thanks are due to
Peter Kacsuk who initiated the idea of using a recomputation-based scheme for
Parallel-ECL'PS® . This research was partially supported by the CEC under
ESPRIT III project 6708 “APPLAUSE”.

22

Bibliography

(1]

D. Clark, C. Rawlings, J. Shirazi, Liang liang Li, Mike Reeve, Kees
Schuermann, and Andre Veron. Solving large combinatorial problems in
molecular biology using the ElipSys parallel constraint logic programming
system. Computer Journal, 36(4), 1993.

W.F. Clocksin. The DelPhi Multiprocessor Inference Machine. In Proc. of
the 4th U.K. Conf. on Logic Prog., pages 189—198, 1992.

M. Dincbas, H. Simonis, and P. Van Hentenryck. Solving the
car-sequencing problem in Constraint Logic Programming. Technical
Report TR-LP-32) ECRC, 1988.

M. Fujita, J. Slaney, and F. Bennett. Automatic generation of some results
in finite algebra. In Proc. of IJCAI'93, volume 1, pages 52-57, 1993.

Pascal Van Hentenryck. Incremental constraint satisfaction in logic
programming. In David H. D. Warren and Peter Szeredi, editors,
Proceedings of the Seventh International Conference on Logic
Programming, pages 189-202, Jerusalem, 1990. The MIT Press.

Roland Karlsson. A high performance OR-Parallel Prolog system. SICS
Dissertation Series 07, Kista, Sweden, 1992.

Ewing Lusk, Ralph Butler, Terence Disz, Robert Olson, Ross Overbeek,
Rick Stevens, D.H.D Warren, Alan Calderwood, Peter Szerdi, Seif Haridi,
Per Brand, Mats Carlsson, Andrzej Ciepielewski, and Bogumil Hausman.
The Aurora Or-Parallel Prolog system. In Proceedings of the International
Conference on Fifth Generation Computer Systems 1988. ICOT, 1988.

Kees Schuerman and Liang-Liang Li. Tackling false sharing in a parallel
logic programming system. In Submitted to the International Workshop on
Scalable Shared Memory Systems, 1994.

[9] J. Schumann and R. Letz. PARTHEO : A high-performance parallel theorem

prover. In Proc. of CADE’90, pages 40-56. MIT press, 1990.

Ehud Shapiro. Or-Parallel Prolog in Flat Concurrent Prolog. Journal of
Logic Programming, 6(3):243-267, 1989.

P. Van Hentenryck. Parallel constraint satisfaction in logic programming:
Preliminary results of chip within PEPSys. In Giorgio Levi and Maurizio
Martelli, editors, Proceedings of the Sizth International Conference on Logic
Programming, pages 165-180, Lisbon, 1989. The MIT Press.

23

[12] A. Veron, K. Schuerman, M. Reeve, and L. Li. Why and how in the ElipSys
Or-Parallel CLP system. In Proc. of Parle 93, pages 291-302.
Springer-Verlag, 1993.

24

