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Abstract

ECLiPSe is a Prolog-based programming system, aimed at the development and deployment of

constraint programming applications. It is also used for teaching most aspects of combinatorial

problem solving, for example, problem modelling, constraint programming, mathematical

programming and search techniques. It uses an extended Prolog as its high-level modelling

and control language, complemented by several constraint solver libraries, interfaces to third-

party solvers, an integrated development environment and interfaces for embedding into host

environments. This paper discusses language extensions, implementation aspects, components,

and tools that we consider relevant on the way from Logic Programming to Constraint Logic

Programming.
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1 Introduction

ECLiPSe is an open source, Prolog-based programming system, aimed at the

development and deployment of constraint programming applications. It is also

used for teaching most aspects of combinatorial problem solving, for example,

problem modelling, constraint programming, mathematical programming (MP),

and search techniques (Apt and Wallace 2007; Mariott and Stuckey 1998). It

uses an extended Prolog as its high-level modelling and control language, com-

plemented by several constraint solver libraries, interfaces to third-party solvers,

an integrated development environment, and interfaces for embedding into host

environments.

Today’s ECLiPSe system has its roots in a number of other more specialised Prolog

variants that were developed in the 1980s at the European Computer-Industry

� Both authors are in part supported by Cisco Systems Inc.
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Research Centre (ECRC, a collaboration of European computer manufacturers

Siemens, Bull, and ICL). These predecessor systems were

• ECRC-Prolog, a system that focused on efficient implementation of data-driven

execution mechanisms;

• Sepia, a followup system with an emphasis on flexibility, extensibility, and

scalability (Meier et al. 1989);

• CHIP, the first CLP system with a finite-domain solver (Dincbas et al. 1988);

• Megalog, which emphasised persistence and database functionality (Bocca

1991); and

• Elipsys, an Or-parallel implementation of Prolog (Dorochevsky et al. 1992).

ECLiPSe started in 1990 as an integration of the Sepia engine with the Megalog

database components. In the following years, it provided the software platform for

substantial projects in the areas of constraints and parallelism. The result was an Or-

Parallel Constraint Logic Programming (CLP) system with a number of constraint

solving libraries, among them a set domain solver (Gervet 1997), and the first

implementations of Constraint Handling Rules (Frühwirth 1998) and Generalised

Propagation (Le Provost and Wallace 1992).

In 1995, the main development activity moved to IC-Parc at Imperial College

London, where the database and parallelism work was discontinued in favour of

a stronger focus on the hybridisation of different constraint solving techniques

(Wallace et al. 1997), and this has remained a major theme until today. Most of the

Prolog extensions discussed in this paper were developed during this period.

Subsequently, the system was exploited by Parc Technologies Ltd in the imple-

mentation of industrial-scale applications for the airlines and telecoms sector. This

work had implications in terms of software engineering and programming-in-the-

large, prompting the introduction of new features and the re-engineering of existing

components, which we will discuss in later sections. In 2003, ECLiPSe’s ownership

transferred to Cisco Systems, and the system was finally open-sourced in 2006, while

continuing to enjoy Cisco’s support.

Compared to other Prolog-based systems, we have been relatively adventurous in

ECLiPSe with the introduction of new, mostly unpublished, language features that

addressed real needs – even if that meant largely ignoring the Prolog standardisation,

which has remained more conservative. On the other hand, we have tried not to

depart as much from the spirit of Prolog as more radical approaches like Mercury

(Somogyi et al. 1995) have done – the strict typing and moding approach would not

fit well with the dynamicity of constraint programming.

The organisation of this paper is as follows. Section 2 discusses how ECLiPSe

implements the traditional Prolog functionality (including the module system, which

plays a central role). Section 3 looks at language extensions that were introduced

largely for constraint modelling, but turn out to make Prolog a more usable

language for general programming. Section 4 looks at kernel support for solver

implementation. Section 5 gives an idea of the variety of solvers and search

components and their interaction. The challenges of developing large CLP-based

applications are addressed in Section 6.
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Fig. 1. System structure.

2 Basic prolog implementation

Figure 1 gives a rough picture of ECLiPSe’s architecture. In this section we briefly

summarise the implementation as far as the plain Prolog functionality is concerned.

We also discuss the module system, because it provides the tools needed to structure

the rest of the system.

Abstract machine: ECLiPSe is implemented via an abstract machine: The compiler

generates abstract machine instructions, which are then executed by a virtual

machine. The abstract machine is a variant of the Warren Abstract Machine (WAM;

Warren 1983), with the following main characteristics:

• The engine manipulates pairs of machine words (two 32-bit words, or two 64-

bit words), called the value and the tag word. The main purpose of the extra

word is to hold type information, but it is used in a few other circumstances

as well (garbage collection, variable names, module system authentication,

conversion routines). As opposed to single-word implementations, no tag bits

are stolen from the value word, meaning that full pointers can be handled, and

integers and floats (doubles in the 64-bit case) can be stored with their full

machine precision without having to resort to a boxed representation on the

global stack. The obvious drawback is usually higher memory consumption.

• Four separate stacks are used, called Global, Trail, Local, and Control. As

opposed to the original WAM, Local stack (containing environments), and

Control stack (containing choice points) are split. This allows immediate

choice point space reclamation after a cut or trust instruction, but has no

major impact otherwise.

• Dedicated instructions allow the creation of choice points within a clause.

These are used for the inline compilation of disjunctions.
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• Unification of compound terms is compiled into two isomorphic instruction

streams, corresponding to read and write modes (Meier 1990).

• Environment slot usage is tracked via compiler-generated activity bitmaps.

This removes the need for environment slot initialisation, which would other-

wise be necessary for precise garbage collection.

Data are always tagged, and the following types/tags are distinguished: four numeric

types (integer, rational, float, and bounded–real, see Section 3.4), with integers having

two tags/representations (short integer and bignum); atoms (with nil having its own

tag); strings (an atomic data type in ECLiPSe); structures (with lists having their own

tag); suspensions (Section 4.1); handles (Section 4.5); plain and attributed variables

(Section 4.2). Further tags are used internally to label various data structures, in

particular those that are stored on the global stack, where they are encountered by

the garbage collector.

Compiler: The ECLiPSe compiler was original written in C because compilation

speed was considered of major importance. However, for release 6.0, a complete

rewrite in the ECLiPSe language itself was undertaken. The main motivation for

this higher level approach was that the old compiler had become increasingly difficult

to maintain, extend, and modify, and that we wanted to incorporate some ideas from

Mercury (Somogyi et al. 1995). The new compiler is a modular design consisting of

the following:

(1) The parser (the built-in predicates of the read-family).

(2) The source processor (a library used by all tools that process source texts).

(3) The actual compiler, translating one predicate at a time (given as a list of

clauses) into symbolic abstract machine code.

(4) The assembler, turning symbolic abstract machine code into a (relocatable)

numeric representation (ECLiPSe object code).

(5) The loader, which loads ECLiPSe object code into memory.

Only parser and loader are parts of the runtime system, whereas source processor,

compiler, and assembler are separate libraries. All components communicate via

Prolog data structures. Characteristics of the compiler implementation are as follows:

• The compiler is implemented in ECLiPSe itself.

• Input is a term representation of the source, or optionally a representation

annotated with source position information, used for generating debugging

information in the generated code.

• Each predicate gets normalised into a single-clause form, i.e., the clause

structure is converted into disjunctions, and head unifications are made explicit.

• The compiler directly handles clauses with possibly nested disjunctions (form-

ing a directed acyclic control flow graph, similar to that of Henderson et al.

(1996)). The retry and trust instructions have variants that are used when the

clause already has an environment. This property makes predicate unfolding

more effective by reducing environment allocations and parameter passing.

• Inline disjunctions are indexed. Indexable variables are chosen by analysing

the built-in predicates at the beginning of each branch. This is more general
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than just indexing on head arguments, and guarantees that there is no loss of

indexing when a multi-clause predicate is unfolded into an inline disjunction.

It also provides a good basis for more elaborate source transformations like

unification factoring (Dawson et al. 1996).

• Indexes are generated individually for every argument/variable for which

they might be useful in some possible instantiation pattern, and ordered

by selectivity. Selectivity is measured as the ratio between the number of

distinct head argument values and the number of matching alternatives. During

execution, only one index (the most selective one for the actual instantiation

pattern) is used. In our experience, this is hardly ever worse, and often

much better than simple first-argument indexing, and it does away with the

unnatural special status of the first argument. As opposed to full multi-

argument indexing, this technique does not lead to code explosion, nor does

it require extensive analysis. Mode declarations are taken into account to

suppress unnecessary indexes.

• Abstract code post-processing removes non-reachable code, reduces branching

by duplicating short code sequences, eliminates indirect jumps, and generates

merged instructions (such as multi-register moves) to speed up execution in an

emulated setting.

Garbage collection: ECLiPSe has garbage collection for the dictionary and the

global/trail stack. The latter is more important, particularly in the context of

constraint processing, which tends to be deterministic over long phases. It relies on

a mark-and-sweep algorithm inspired by the one developed at the Swedish Institute

of Computer Science (Appleby et al. 1986). Because of the double-word architecture

of the abstract machine, our collector can employ a faster single-pass marking

algorithm, followed by a single-pass compaction sweep. The double-word units

make it possible to do all the relocation work on the fly, as described elsewhere

(Schimpf 1990). Nevertheless, the compaction phase still has to scan all unused

memory; therefore, an auxiliary copying collector would probably be beneficial

when the proportion of garbage is high.

A characteristic of this type of collector is that it relies on the presence of

choice points for achieving good incremental behaviour. Long-running deterministic

programs can, without additional measures, exhibit quadratic growth in collection

times and thus arbitrary slowdown. This is due to repeated scanning of the same

memory area. One way to overcome this is to manage collection intervals carefully,

ensuring a stable ratio between newly allocated memory and the size of the area to

be scanned by the collector. An alternative method is the creation of auxiliary choice

points (which can serve as markers for memory segment boundaries), but we have

abandoned this technique because of its undesirable interference with determinacy

assumptions across sequences of abstract machine code.

Finally, it may be worth noting that all trail cleanup is done lazily by the garbage

collector, rather than eagerly at the time of choice point removal. Although probably

not important in practice, this guarantees that choice point removal is a constant

time operation.
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2.1 Module system

ECLiPSe’s module system is based on Sepia’s, but was revised in 2000 in the light

of previous experience. It was felt that addressing the shortcomings of the module

system was critical for our ability to build the multi-solver system architecture

we envisaged. The highlights of today’s system are discussed in the following, in

particular where they deviate from both the formal International Organization for

Standardization’s standard (ISO 2000) or the de-facto Prolog module standard.

Stricter visibility control : Visibility control applies not only to predicates, but also to

all properties that may be attached to functors, such as goal expansions, read-macros,

portray-transformations, structure declarations, and global storage identifiers. Unlike

in a name-based module system, the visibility of each functor property can be

controlled separately, rather than being linked to the functor’s visibility as a whole.

In addition, there are visibility-controlled properties that are not attached to functors,

among them are a module’s syntax options, character class tables, and initialisation

and finalisation goals.

Module-sensitive I/O: Plain Prolog already provides means to modify syntax via

operator declarations. In ECLiPSe, there are further configurable syntax options,

I/O transformations, and character class tables. Changing such settings will result in

disaster unless their scope is clear. They are, therefore, all subject to module visibility

control, and can be local or exported/imported. This is not just a feature of the

compiler: It implies that all relevant I/O predicates are sensitive to the module

context in which they are invoked. This has proven useful for writing different

modules in different language dialects, for defining customised syntax for data

formats, and even for reading non-Prolog languages like FlatZinc (the solver input

language that goes with the MiniZinc modelling language described in Nethercote

et al. 2007).

Privacy: Many Prolog module systems do not strictly enforce module privacy,

and allow, for instance, local predicates to be invoked from outside the module

(Haemmerlé and Fages 2006). Our system allows modules to be “locked”, thereby

limiting access strictly to their exported interface. This would typically be done

for modules that implement critical system functionality. Any such protection

mechanism has to preserve Prolog’s meta-programming capabilities. Our design

is built around the idea of attaching hidden authentication tokens to module

arguments, and requiring these tokens in all built-ins that operate in the space

of a locked module.

No static textual interface/implementation separation: A module’s interface simply

consists of the union of all its export directives. No textual separation is required.

Instead, tools are provided to extract the interface information from the source or

a loaded module. This interface specification can then be distributed together with

the compiled abstract machine code of a module whenever source distribution is

not an option (see Fig. 7).

Reexport: A basic reexport directive is defined in the ISO Prolog module

standard (ISO 2000). We found that by introducing an additional variant of the
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Fig. 2. Making modules from modules with reexport.

form reexport <module> except <items>, we could better support the task of

composing modules from existing modules, thus giving the system some flavour of

object orientation. Figure 2 illustrates the main concepts: extend the interface of an

existing module by adding additional exports; restrict the interface of an existing

module; modify the interface of an existing module by reexporting parts of it and

redefininig others; and combine functionality from existing modules by reeexporting

them from a new module.

Lookup modules, qualification, and name conflicts: In a system with multiple con-

straint solving libraries, it is highly desirable to use identical predicate names for

different computational implementations of the declaratively same constraint. This

requires a straightforward handling of name conflicts, which is impossible with

the de-facto module standard. Our module system implements a clear separation

of the concepts of lookup and context modules, and also allows the qualification

of a goal with multiple lookup modules. For example, [lazy,eager]:p(X,Y) as a

shorthand for lazy:p(X,Y),eager:p(X,Y), invoking two different implementations

of p/2. While in plain Prolog it would not make much sense to invoke the

(declaratively) same goal twice, with constraint programming it can be beneficial to

have several implementations of the (declaratively) same constraint predicate with

different operational behaviours, for example, propagators of different strength and

computational complexity.

No global items: No Prolog items exist globally, or outside the modules. For instance,

built-in predicates receive no special treatment from the module system. They are

simply a set of predicates imported from a “language” module. There is also no

shared “user” module for implementation hooks.

One consequence of the above features is that it is possible to use a mixture of

different programming language dialects within a single user program. Different user

program modules can import different language modules. Each language module

will typically provide specific syntax in the form of operators and parsing options;

specific semantics in the form of predicates, which may add to or replace the standard
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built-in predicates; and possibly other module-local properties. Several language

modules for various Prolog dialects are provided with the ECLiPSedistribution.

Another Prolog system that has invested heavily in the module system design is

Ciao (Cabeza and Hermenegildo 2000). Ciao’s choices were largely motivated by the

requirements of program analysis, but it is reassuring to see that both our groups

have arrived at many of the same conclusions: the need for local syntax, stricter

and stable interface definitions, correct semantics of module qualification, and the

elimination of the special status of built-in predicates.

3 Language extensions for modelling and general programming

When we started work on bringing CLP and MP together, we realised that our MP

collaborators did not necessarily share our view of LP as an ideal framework for

expressing constraint models. Being forced to express everything in terms of lists

and recursion was not acceptable, given that most MP models are written in terms

of arrays and quantification over index ranges. The introduction of loop iterators

and arrays was an attempt to address these concerns, but these constructs are useful

in general programming as well. The same is true for our structure syntax, which

addresses one of Prolog’s long standing software engineering problems. In all these

extensions, we have tried to retain the spirit of Prolog by designing them in such a

way that they can be easily mapped back into canonical Prolog.

3.1 Arrays

Many attempts to introduce arrays in Prolog (e.g., Barklund and Bevemyr 1993)

have considered the problem of destructive updates. This is not what we were

after, because we were more interested in declarative modelling than in expressing

imperative algorithms that rely on arrays.

Introducing pure logical arrays is not hard, and indeed, Prolog provides them in

a way. An array is an ordered collection of items of the same type, with an index

set ranging over integers or tuples of integers, and typically constant time access

to the items. Since Prolog is dynamically typed, we can use structures as arrays,

and regard for instance wd(mo,tu,we,th,fr,sa,su) as an array constant, or create

an uninitialised array using functor(DayArray, year, 365). Arguments can be

accessed in constant time via arg/3, as in arg(4, WeekdayArray, DayName). It is

true that many early Prolog systems imposed limits on the arity of structures, but

this has become less of an issue in recent years.

Array elements in expressions: Using arg/3 to access array elements can look clumsy,

especially when they are to be used in arithmetic expressions. It would be so much

nicer to be able to write Queen[I] =\= Queen[J] instead of

arg(I,Queen,Qi), arg(J,Queen,Qj), Qi =\= Qj

This is exactly the facility we have introduced. Array syntax is implemented by

recognising a new syntactic construct, i.e., variable followed by list (this is backwards
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compatible with standard Prolog in the sense that the new syntax does not conflict

with any previously valid syntax). Technically, we use a trick that is familiar to Prolog

implementors: we introduce the new syntax as an alternative syntax for a particular

functor. Plain Prolog already does something similar by allowing the square-bracket

syntax for the list constructor ./2, or by allowing the ’{}’/1 functor to be written as

a pair of surrounding braces. We now simply define a variable immediately followed

by a list as syntactic sugar for a structure with the functor subscript/2, with the

variable becoming its first, and the list its second argument. For example, the input

"M[3,4]" is parsed as subscript(M, [3,4]). When a subscript/2 term is printed,

the transformation is reversed, unless canonical representation was requested.

The second step is to allow such a term to occur as a function in an arithmetic

expression. It is evaluated by adding a result argument and calling the new built-in

predicate subscript/3, which is a generalised form of arg/3 and extracts the indicated

array element from a possibly multidimensional array. Like all arithmetic evaluation,

this is only done in the context of an expression, for example, the right-hand side

of is/2, or the arguments of a comparison or other arithmetic constraint. Normal

unification is not affected, so M=[](a,b,c), M[2]=b will still fail, analogously to

1+2=3.

Creating arrays: In order to manage multidimensional arrays, represented as nested

arrays, a generalisation of functor/3 is useful. We have introduced the predicate

dim/2, which can be used in two modes, either to create arrays, or to extract their

dimension. For instance:

?- dim(M, [2, 3]).

M = []([](_341, _342, _343), [](_337, _338, _339))

Note that we introduce here the convention of using the [] functor (of arbitrary

arity) for arrays. The execution engine may in future exploit this by using a more

efficient representation for this particular functor (analogous to optimisations for

the list functor ./2). Observe that this choice of functor also implies that empty

arrays and lists look identical.

3.2 Loops

In the average Prolog program, the vast majority of all recursions represent iterations.

Most of them are iterations over lists, some are iterations over structure/array

indices, and very few are something else. Our approach to loops has been detailed

elsewhere (Schimpf 2002), so we will only summarise here and point out the

usefulness for modelling, especially in connection with arrays.

The ECLiPSe loop construct do/2 can be translated into an auxiliary tail recursive

predicate, plus an invocation of this auxiliary. A call

?- ( fromto(From,In,Out,To) do Body ).

maps into

?- do__1(From, To).
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Table 1. Some common loop iterators

fromto(From,In,Out,To) general accumulator

foreach(Elem,List) list iterator and aggregator

foreacharg(Elem,Array) array iterator

for(I,From,To,[Step]) integer iterator

param(Term) invariant iterator

do__1(Last, Last) :- !.

do__1(In, Last) :- Body, do__1(Out, Last).

Here, Body is an arbitrary, possibly complex subgoal, From and To are terms

shared with the loop’s context, while In and Out are shared with the loop Body.

The basic idea is that a simple tail-recursive predicate is generated, where each

iteration-specifier (in this example the fromto-term) gives rise to one accumulator (one

argument pair). The intuition is that First provides the first accumulator value, Body

maps In to Out, providing an accumulator value for the next iteration, eventually

terminating when Out=To. Importantly, arbitrarily many fromto-specifiers can be

given for a single do-loop, each of them adding one accumulator (which in the

general case requires an argument pair) to the recursive predicate.

While the above is enough to express any deterministic iterative recursion, there

are, of course, some very common patterns like iteration over list elements or

integers, for which one can have intuitive abbreviations (see Table 1).

The do-loop provides the functionalities of iteration, aggregation, and mapping, all

of which can be combined in a single loop. Iteration specifiers determine what is being

iterated over, termination conditions, result accumulation, and fixed parameters. In

Schimpf (2002), we have argued that the proposed loop construct provides better

abstraction, better readability, shorter code, and improved maintainability compared

to the equivalent recursive formulation. At the same time, it can replace many uses

of higher order operators (map, foldl) and has advantages in those cases where

it applies. When used in the context of problem modelling, it usually has a quite

natural declarative reading in terms of quantification over lists, arrays, or index sets.

Loops and arrays: Loops and arrays together allow for a rather compact expression

of matrix models for constraint problems. Figure 3 shows a model for the N queens

problem. Note that, because a loop introduces a local variable scope, we use the

param() iterator to indicate values that pass unchanged through the iterations.

3.3 Structures

One of the well-known concerns regarding software engineering with Prolog is that

using data structures other than lists is problematic. The plain Prolog concept is

actually rather elegant: The functionality of structures or tuples is not provided

by a separate language construct – instead uninterpreted function symbols assume

this role. While this simplicity is conceptually appealing, it turns out to be a real
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queens_array(N, Board) :-

dim(Board, [N]),

Board :: 1..N,

( for(I,1,N), param(Board,N) do

( for(J,I+1,N), param(Board,I) do

Board[I] #\= Board[J],

Board[I] #\= Board[J]+J-I,

Board[I] #\= Board[J]+I-J

)

).

Fig. 3. N queens constraint model with loops and arrays.

limitation for practical programming, mainly because structure components are

identified by position only:

(1) The programmer has to remember positional field with its meaning. References

to numeric field positions make the code hard to maintain.

(2) Whenever the structure is matched in the code, the arity of the structure has to

be known, in addition to the relevant field numbers.

(3) If the definition of the structure changes, as fields are added or removed, the

programmer needs to update all occurrences of structure templates in the source,

and check all field position numbers.

As a consequence, structures are underused in most Prolog programs. The folklore

workaround for problem 1 has been to write an access predicate for every structure

type, for example,

employee_arg(emp(N,_,_),name,N).

employee_arg(emp(_,A,_),age,A).

and manipulate the structure exclusively via these access predicates, replacing the

generic arg/3. So code like p(emp(N,A,_)) :- ... would have to be written as

p(Emp) :- employee_arg(Emp,name,N), employee_arg(Emp,age,A), ...

The consistent use of access predicates in lieu of pattern matching is tedious and

requires great discipline. It also obscures the code for the compiler: without inter-

procedural analysis, a compiler will be unable to do indexing on the argument,

since the structure no longer occurs in the clause code. Very likely, the programmer

will have to add extra cuts. Moreover, the argument position number might be

required in contexts other than just the arg/3 predicate. For example, in a system

that provides a sorting predicate that can sort on a structure argument, one would

write sort(2, =<, Emps, EmpsByAge) to sort a list of employee-structures by age.

Having such magic numbers in the code is clearly a bad practice.

Our solution is simply to provide syntactic sugar in such a way that all the

required patterns can be written independently of both the structure’s arity and the

order and numbering of the fields. Table 2 shows some examples of this syntax. The

obvious first step is to introduce field names, which is done via a declaration like

:- local struct(emp(name,age,salary))1. This would declare a structure with

1 Here, “local” refers to module system visibility – structure declarations can be local or exported.
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Table 2. Examples of structure syntax and their translation to canonical code

:- local struct(emp(name,age,salary)). % Translation:

p(emp{age:A,salary:S}) :- ... => p(emp(_,A,S)) :- ...

Emp = emp{salary:Sal} => Emp = emp(_,_,Sal)

arg(name of emp, Emp, Name) => arg(1, Emp, Name)

sort(age of emp, =<, Emps, EmpsByAge) => sort(2, =<, Emps, EmpsByAge)

update_struct(emp, [salary:NewSal], => Old = emp(A1,A2,_),

Old, New) New = emp(A1,A2,NewSal)

name “emp” and three fields called “name”, “age”, and “salary”. Then we need a

better syntax for the situations where the structure as a whole occurs in the code (be

it for the purpose of matching against an existing structure or for constructing a new

structure). We introduce new syntax, such as emp{age:A,salary:S}, and replace it

during parsing by the corresponding structure according to the declaration.2 The

relevant structure fields are referenced by name. Argument positions that are not

mentioned give rise to anonymous variables. Importantly, the {}-syntax does not

refer to the structure’s arity.

For the circumstances where an argument position number is needed, we reserve

the infix operator of/2 and replace terms of the form fieldname of structname by the

field number taken from the corresponding struct declaration. The sorting example

then becomes sort(age of emp, =<, Emps, EmpsByAge).

As both types of replacements are done at parse time, they apply in whatever

context the constructs appear in the program. Note that we do not propose the use

of field names at runtime: they are preprocessed away at parse time and nothing is

lost in terms of efficiency.

One remaining operation is the change of one or more structure fields, which

(in a language without destructive update) amounts to making a new structure

in which certain fields are modified while all others remain identical. This would

normally require knowledge about all fields and their positions. We introduce a

predicate update struct/4 that encapsulates this knowledge: the last example in

Table 2 shows how an instance of this predicate is expanded into the conjunction

of two unifications. Again, this is usually a compile-time transformation.

Functional languages usually have syntax like structure.field for accessing a

structure field in the context of an expression. In Prolog this is of limited use

because expressions are only evaluated in the context of arithmetic predicates like

is/2. We have therefore not introduced a specific notation. However, in an untyped

language there is no essential difference between a structure and an array. We can

therefore employ our array index syntax, use the field index in its symbolic form,

and write, for instance, YearSalary is 12*Emp[salary of emp].

2 In reality, this is a two-step process: the parser reads emp{age:A} as with(emp,[age:A]), and a
subsequent functor transformation attached to with/2 looks up the structure declaration and constructs
emp( ,A, ).
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To summarise, the point of our transformations is that the source code no longer

contains any mention of either the structure arity or the position numbers of the

fields. It is therefore now possible to simply modify the struct-declaration (reordering

or adding fields) and recompile, without having to change the rest of the program

code. The code also becomes more readable (albeit very slightly longer).

3.4 Numbers

In addition to standard Prolog’s integer and floating point numbers, ECLiPSe

supports two further data types: rationals and bounded reals. These are fully

integrated into the language, can be mixed with other numeric types in arithmetic

expressions, and have their own syntax with corresponding support in parser and

term writer. Both types can be viewed as alternatives to floating point numbers.

Rationals: Rational numbers can be represented accurately and were used in

two early ECLiPSe implementations of Gauss/Simplex solvers (by P. Lim and

C. Holzbaur, respectively (Holzbaur 1995)). A rational is represented as normalised

numerator/denominator pairs of bignums, and written like 1 3. The implementation

relies on the GMP library (Free Software Foundation 2009), which is also used to

provide unlimited precision integer arithmetic.

Bounded reals: A bounded real is a safe approximation of a real number in the

form of the closed interval between a pair of floating point bounds, written like

0.99 1.01. Operations on this type use safe interval arithmetic, giving accurate

bounds on the results.

The introduction of this number type was a by-product of our work on interval

constraint solvers; see Section 5.1. Its purpose might become clearer by highlighting

the difference between a bounded real number and a variable with an interval

domain. Assume a query succeeds in the following way:

?- p(X, Y).

X = _{1.0..2.5} % an interval domain variable

Y = 1.9__2.1 % a bounded-real constant

yes.

This means that variable X remains unconstrained in the interval [1.0, 2.5], making

every value in this interval a solution. But there is exactly one solution for Y,

guaranteed to lie in the interval [1.9, 2.1], but not known more precisely. The

difference is important in determining whether a computation is finished.

As in Prolog, numbers of the same value but different type (3, 3.0, 3 1, and

3.0 3.0) do not unify in our system. This lack of a canonical representation for

integers has caused problems in the interaction with constraint solvers that regard

integrality as just another constraint: The order in which constraints are propagated

can result in a variable being instantiated to an integer, or to an integral real, and

possibly lead to unexpected failures. In hindsight, at least for the purpose of a

modelling language, having disjoint number types is probably a mistake, especially

since the usual accuracy-based arguments against merging floats and integers apply

neither to rationals nor to bounded reals.
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4 Kernel support for constraints

One aim of ECLiPSe development was to provide an infrastructure for research into

constraint solvers. We did not want to build particular domains or solvers into the

system kernel, but rather develop them in ECLiPSe and deploy them as libraries.

To be able to do so, we needed to identify concepts that are common to classes of

solvers, and implement kernel services to provide the necessary infrastructure. The

most important of these services are

• flexible execution control mechanism (delayed goals, suspensions);

• turning logical variables into constrained variables (attributed variables);

• meta-programming language constructs to support these features (suspension

handling, matching clauses);

• module and library facilities to support clean packaging and the coexistence

of multiple solvers;

• robust support for compile-time preprocessing (macros, inlining, modules);

• abstract interfaces to enable solver-independent components (attribute han-

dlers, generic suspensions, constrained-condition);

• arithmetic support (numeric types, including intervals); and

• support for interfacing external solver software (external handles and related

trailing functionality).

4.1 Data-driven execution control

Coroutining: One of the early attempts at improving the power of logic programming

implementations was the introduction of coroutining: – the ability to delay execution

of program parts until variables are sufficiently instantiated. With this facility, it

is possible to turn inefficient generate-and-test programs into reasonably efficient

backtracking search programs, where tests are executed as soon as they can be

decided. Such facilities date back at least to Prolog-II (Colmerauer 1982) and MU-

Prolog (Naish 1986), and were present in ECLiPSe’s predecessor systems in the form

of wait declarations (ECRC-Prolog) and delay clauses (Sepia).

Coroutining can be considered the first step towards constraint handling by virtue

of allowing

• separation of deterministic constraint setup and nondeterministic search code;

• eager constraint-checking behaviour by waiting for sufficient instantiation;

• automatic interleaving of the search process with constraint processing; and

• simple forms of propagation, such as delaying until only one variable is left in

a goal, and then computing the variable’s value.3

3 We note that to implement the latter technique correctly it is not enough to trigger execution by
instantiation: it must be possible to trigger on variable-to-variable aliasing, since this event can reduce
the number of variables in a goal.
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Fig. 4. Structure of the resolvent.

Suspensions: In order to support constraint propagation more generically, we

decided to reuse the delay/wake machinery for coroutining that we had inherited

from Sepia, but to allow additional trigger conditions for waking. Since such

conditions are solver-specific, and solvers were meant to be definable in libraries,

we decided to separate the shared concept of a “delayed goal” from the various

waking conditions. The abstract machine data type that we introduced to represent

a delayed goal without waking conditions is called a suspension.4

Figure 4 shows the structure of the resolvent, i.e., the collection of goals still to

be satisfied. It consists of an active part (ordered by priorities; see below) and the

currently inactive and suspended part. Goals in the suspended part of the resolvent

are represented by suspensions. A goal enters the suspended part of the resolvent

when it is created via the make suspension/3 built-in, analogously to the way a goal

becomes a part of the active resolvent when created via call/1.

We draw attention to the fact that our system maintains an explicit representation

of the suspended resolvent. If a suspended goal were just a data structure stored

within an attribute, then it would be entirely the programmer’s responsibility to

enforce the goal’s semantics, i.e., to invoke it eventually. If the goal were never

invoked, it would be incorrectly considered true. In our scheme, the abstract

machine keeps track of each delayed goal right from the moment it is created,

independently of its attachment to variables or trigger conditions. Cases of unsolved

subgoals (“floundering”) are therefore always detectable. Further advantages are

that suspensions can be manipulated via generic kernel primitives, and that they can

be displayed in a solver-independent fashion by the top-level and the debugger’s

delayed goal viewer.

Priorities: In a constraint solving system, a single event (such as updating a domain

bound) will typically wake many constraint agents (represented by suspensions) at

once. It is helpful to have some control over the order in which they are actually

executed, since they may exhibit vastly different performance characteristics: Con-

straints with few variables will generally propagate faster, linear-time propagators

faster than quadratic ones, and so forth. We therefore associate suspensions with

priorities, which determine the execution order after waking. A simple system with 12

priority levels is used. Goals that wake up with higher priority can interrupt currently

running goals with lower priority. High-priority goals can also be used for tracing

and debugging, and for creating data-driven animated visualisations. Although

4 To our knowledge the name is used in SICStus with a related but different meaning.
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Fig. 5. Hierarchy of the three generic and some library-defined waking conditions.

the scheme imposes some overhead, we have found the functionality worthwhile.

Recently, other Constraint Programming systems have also implemented priorities

(Schulte et al. 2009).

Waking conditions: The usual (though not the only) way to provide for waking of

suspensions is to associate them with conditions that occur within a specified set of

variables. Three of these conditions are pre-defined by the ECLiPSe kernel:

Instantiation is the most obvious one. With this condition, a delayed goal gets woken

when at least one of the variables in a specified set becomes instantiated.

Binding subsumes instantiation, but also includes aliasing of variables. It is required

in a case like the sound difference predicate X ~= Y, in other systems known

as dif(X,Y). As written, such a goal will delay because it is not decidable. But

unifying of X with Y should wake it and lead to failure, even without instantiation.

When suspended under the binding condition, a goal will wake when any two

variables in the specified set are unified, i.e., whenever the number of variables in

the set is reduced. Thus, dif/2 can be written as

dif(X,Y) :- (X==Y -> fail ; suspend(dif(X,Y), 3, [X,Y]->bound)).

Here, the suspend/3 built-in creates a suspension of priority 3 for dif(X,Y), and

associates as waking condition any binding within the variable set {X,Y}.
Constraining is unique to ECLiPSe and is an abstract condition indicating that a

variable was constrained in some way. The concrete meaning is defined by the

libraries that implement the constrained variables. The abstract condition makes

it possible to write generic, solver-, and domain-independent tools, such as the

following predicate that eagerly prints a message whenever a variable becomes

further constrained during computation:

report(X) :-

write(constrained(X)), suspend(report(X), 1, X->constrained)).

Other waking conditions can be defined by libraries, using generic built-ins for

manipulating suspension lists and attributed variables (Section 4.2). Figure 5 shows

the hierarchy of generic conditions together with examples of library-defined ones:

the interval solver library(ic) defines four waking conditions: lower and upper

domain-bound changes, creation of a hole in the domain, and type restriction

from real to integer. All these conditions further constrain the variable and are
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thus subsumed by the constrained condition. The repair library, on the other hand,

implements a waking condition called tentative change, which is not considered as

constraining the variable. Finally, it is possible to have waking conditions that are

not related to variables but instead to certain points in execution. One such example

is the success of the subgoal in an all-solutions predicates like findall/3, where we

want to make sure that no goals are left delayed.

Suspension states and demons: During execution, a suspension data structure may

be attached to multiple waking conditions (typically related to variables). Since we

have a two-stage waking process of (1) scheduling for priority-based execution, and

(2) actual execution from the front of the priority-queue, we need to take care

of multiple redundant waking. This is implemented by having stateful suspensions

indicating whether they are in the suspended, scheduled, or already executed state.

Another original enhancement of the suspension system that was introduced for

the needs of constraint propagation was the concept of demons: While a goal that

simply waits for the instantiation of one variable will only be suspended once and

woken once, a goal that performs a task like domain-bound propagation may be

woken many times, each time re-suspending as exactly the same goal with the same

variables. To better support this requirement, we introduced predicates that remain

in the suspended resolvent even after having been woken. Declaratively, this can be

viewed as these predicates having an implicit (and thus efficient) self-recursive call.

4.2 Implementing constrained variables

ECLiPSe’s predecessor system Sepia had delay-variables, to which delayed goals

were attached by the system in an opaque way. This was replaced by an open and

more flexible mechanism, namely attributed variables (Holzbaur 1992), which are a

generic way to attach (meta) information to a logical variable. Examples of such

information are

• lists of goals to be woken on certain variable-related events (suspension lists);

• unary constraints on the variable, like type or domain;

• link to the representation of the variable in an external solver; or

• information with no effect on semantics, like debugging information or variable

name.

We typically use coarse-grained attributes: A module (often a constraint solver)

defines no more than one attribute, but the attribute itself will normally be a

compound data structure.

Since attributes are usually meant to modify the semantics of the variables they

are attached to, they affect a range of generic operations in the basic Prolog system,

unification being only the most obvious one. We believe that ECLiPSe is unique in

the degree to which it extends the basic Prolog semantics to attributed variables.

As soon as an attribute definition is loaded into the system, it optionally installs

handlers and hooks, which the generic system operations can use on encountering a

variable with a new attribute. The operations whose semantics can be extended in

this way are listed below.
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Unification: An attribute handler is invoked immediately after an attributed variable

has been unified with a non-variable or another attributed variable. The handler

must first check whether the unification is allowed (by considering, for example, the

domain information within the attribute). If so, goals associated with the variable

have to be woken if their respective waking conditions apply. In case of variable–

variable unification, a new attribute for the resulting variable may have to be

computed.

Unifiability and subsumption testing: Specialised handlers can be provided to com-

pare domains and thus extend the system’s generic operations for unifiability testing

(not unify/2) and subsumption testing (variant/2 and instance/2).

Term copying: This handler enables the copy term/2 built-in to give a meaningful

result for attributed variables. Typically, any unary constraint (such as the domain)

on the variable would be reflected in the copy.

Anti-unification: This is an interface supporting Generalised Propagation (Section

5.3) (Le Provost and Wallace 1993) by defining its fundamental operation: anti-

unification computes the most specific generalisation of two terms, as precisely

as allowed by the expressiveness of a particular attribute. For example, given the

availability of finite-domain attributes, two integers can be generalised into a variable

whose domain ranges over these two integers.

Constraining: We discussed above the generic constrained waking condition. In order

to define what it means for a particular type of attributed variable to become “more

constrained”, the implementations of operations on the corresponding attribute

must notify the system accordingly. For instance, the interval constraint solver can

constrain variables by excluding domain values in various ways, and should therefore

notify the system on these occasions.

Bounds access: The system defines the built-in predicates set var bounds/3 and

get var bounds/3 to provide a generic way to access numeric variable bounds.

The built-ins obtain their information via a handler predicate defined together with

the attribute. This can be used for solver communication, such as querying the

propagation results of other solvers or broadcasting new bounds to others.

Attribute-specific waking conditions: New waking conditions are made available

simply by allocating a slot for a corresponding suspension list within an attribute.

To delay a goal under the new condition, the system simply inserts a suspension into

this list. An interval variable, for instance, has one suspension list associated with

changes to the lower bound, and another for changes to the upper bound. These

lists are in addition to the pre-defined lists for instantiation, aliasing, and general

constraining (Fig. 5). The primitive solver operations for changing variable bounds

are responsible for scheduling the goals from the appropriate list(s): a lower bound

change, for instance, should schedule the lower bound list as well as the constrained

list. Once a suspension list is scheduled for execution, its member goals will start

executing according to their priorities; see Section 4.1.
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4.3 Preprocessing, or getting term-expansion right

Most Prolog systems implement the term-expansion facility. This is a powerful way

of rewriting terms during compilation, and has many useful applications. However,

its design is too simplistic in several respects. There are at least three contexts in

which one may want to transform an input term: (1) when it occurs as a clause during

compilation, (2) when it occurs as a goal during compilation, and (3) when it occurs

during general I/O (when it is a data structure that needs to be translated to/from

some internal representation). The traditional term-expansion mechanism makes it

hard to distinguish (1) and (2), and is not able to do (3) because it is only applied

during compilation, not term-reading in general. Other shortcomings are the lack of

cooperation with the module system and the problem of safely combining different

expansions: term-expansion clauses are global, and committed to the first one that

succeeds. The clauses themselves have no knowledge about the module context

in which they occur, and thus cannot be selective in their transformations. Some

implementations have added goal expansions to partly address these problems. We

have opted for a different, more disciplined mechanism: transformations are always

associated with functors, and their visibility is controlled by the module system.

Moreover, according to the three categories mentioned above, there are three types

of input transformations, plus corresponding output transformations. The different

types are described below. Since the transformations are independent of each other,

a single functor can have more than one associated transformation.

Clause expansion: An example is the declaration for grammar rules:

:- export macro((-->)/2, trans_grammar/3, [clause]).

It says that whenever a clause with top-level functor (-->)/2 is encountered

during compilation, in a module where this transformation has been imported,

it must be transformed by the transformation predicate trans grammar/3. The latter

takes as arguments the original clause plus its context module, and returns a

transformed clause. Apart from being applied more selectively, this is similar to

term-expansion.

Goal expansion: Goal expansions are declared like

:- inline(p/1, trans_p/3).

meaning that occurrences of p/1 goals will be expanded using the transformation

predicate trans p/3. This takes as arguments the original goal and its context

module, and returns a transformed goal. Unlike in other cases, there is no visibility

specification for this expansion: its visibility is linked to the visibility of the p/1

predicate, i.e., the transformation will be applied in all modules where p/1 is

visible, or even when qualified calls to p/1 are made (e.g., m:p(X)). This ensures

that goal transformations always match the corresponding predicate definitions,

which is of special importance in the case where different definitions and different

goal expansion rules for the same predicate name coexist in different libraries.

Goal expansions are used widely in ECLiPSe, for example, for implementing is/2,
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for compile-time preprocessing of constraints, and for the do-loop transformation

(Section 3.2).

General input macro: A general term macro declaration looks like

:- local macro(foo/1, trans_foo/2, [term]).

It means that every time a foo/1 term is read (even as a sub-term) in a module context

where this declaration is visible, it is transformed by the predicate trans foo/2. This

transformation is done by the parser, not only in the context of the compiler, but

whenever a predicate of the read/1 family is invoked from within the right module

context. This type of transformation is used internally to implement structure syntax

(Section 3.3). Transformations are done in a bottom-up fashion, so any arguments

of foo/1 are already transformed when trans foo/2 receives the term for processing.

Macros can be declared local or exported.

Output transformations: The symmetric counterparts of the above three input trans-

formations are output transformations: they are of type clause, goal or term, and

are also associated with a functor:

:- local portray(foo/1, trans_foo/2, <type>).

These allow an internal representation to be turned back into an external represen-

tation before output. Since this a term-to-term mapping, it can be performed before

arbitrary term output predicates. This is more flexible than the traditional portray/1

hook, which produces output directly (and has rightly been omitted from the ISO

standard, but without having been replaced by a better alternative).

4.4 Destructive updates and timestamps

The usefulness of attributed variables would be quite limited without destructive

updates. Even if destructive updates were unavailable on the language level, they

would be needed for implementation-level data structures. Obvious examples are

updating a variable’s domain, or modifying a suspension list, both stored inside an

attribute. On the abstract machine level, these all amount to replacing one non-

variable value with another – an operation that does not occur in pure Prolog. In

order to allow this in the presence of backtracking, we have to extend the trailing

mechanism, such that it allows resetting the content of a location to an arbitrary

previous value. This change, however, creates the new problem of multiple redundant

trailing of the same location: a location can be modified arbitrarily many times, but

only the value that was current when the previous choicepoint was created must be

restored. The first published solution (Aggoun and Beldiceanu 1990) to this problem

involves keeping choicepoint-related timestamps together with the trailed locations.

These timestamps indicate whether a location has already been trailed since the

last choicepoint was created. In ECLiPSe we use two related techniques: if we have

control over the layout of the trailed data structure, then we add a timestamp field

to it. As the timestamp, we use the global stack pointer at the time of the last

choicepoint creation. To force this to be unique, we make sure that at least one
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global stack cell is allocated along with every choicepoint. In case we cannot add

a timestamp to the data (e.g., in the setarg/3 predicate, which destructively updates

an argument of an arbitrary Prolog structure), we use the address of the old value

as an indication of its age, and trail only if it is older than the last choicepoint. The

new value is forced to have an address that represents the age of the binding, if

necessary by allocating an auxiliary global stack cell and adding an indirection. The

technique is similar to a class of techniques proposed by Noyé (1994).

4.5 Interfacing external solvers

We have successfully connected external solver libraries to ECLiPSe, such as

the mathematical programming system COIN-OR (Lougee-Heimer 2003) and the

constraint library Gecode (Schulte et al. 2009). To be efficient enough, these interfaces

must be low-level interfaces. They are typically written in C/C++, use dynamically

linked libraries, and require direct access to solver data structures on one hand, and

ECLiPSe’s abstract machine data structures on the other. They are supported by the

following kernel features.

Low level programming interface: This interface allows direct access to the abstract

machine’s data representation. Apart from interfacing external solvers, it is also

used for connecting other software, such as databases, or to implement procedural

algorithms more efficiently than would be possible in Prolog.

The interface exposes a subset of the operations used to implement the ECLiPSe

runtime system itself, and consists of macros, type definitions, and interface functions.

It is powerful and efficient, but requires detailed knowledge about the internal

architecture and concepts. A low-level interface exists for the C programming

language and, with wrapper classes, for C++. It is bi-directional as it enables the

implementation of external predicates in C/C++, and also allows ECLiPSe goals to

be constructed and executed from C/C++.

External data handles: Recurring problems in interfacing general software to a

Prolog-like system are the handling of backtracking and garbage collection. While

Prolog data structures are discarded from the stacks on backtracking, or removed

by the garbage collector when they are no longer accessible, the same has to be

arranged explicitly for data allocated by interfaced software. We achieve this by

having a special Prolog-side data type (called a handle), which refers to the external

data structure. In addition, every handle is associated with a method table, which

lists methods specific to the data structure that is being pointed to, among them a

method for releasing the storage. When the handle is discarded, the external object

is automatically freed.

Handles cannot be simple tagged pointers directly to external data because the

Prolog abstract machine will blindly make copies of such tagged pointers, making

it difficult to keep track of whether the data are still referenced. Our solution is to

introduce an indirection: an external object is referenced only once from a dedicated

global stack cell (called an anchor), which in turn can have arbitrary references from

other Prolog objects (Fig. 6). When the garbage collector detects that the global
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Fig. 6. External data handles.

stack anchor has become garbage, it invokes the external object’s free-method.

The object must also be freed when the anchor is popped on backtracking – we

achieve that with a special trail entry that on backtracking leads to invocation of

the free-method. Should the anchor become garbage before backtracking, the trail

entry becomes redundant and is removed by the garbage collector together with the

anchor itself.

Apart from deallocation, we also need to consider the case where the external

object gets modified in the course of computation. If the Prolog side backtracks to a

state before the external modification was made, the modification will typically have

to be undone. We do this by trailing pointers to user-defined C/C++ “undo-

functions”, which will then be invoked on backtracking. As with the trailing

of destructive updates, the technique has to be combined with a timestamping

mechanism to be scalable.

5 Library examples

For the constraint application programmer, working with ECLiPSe involves prob-

lem modelling using an extended Prolog; choosing solver libraries appropriate for

particular problem domains; considering libraries for generic techniques, or for

specific solver hybridisation methods; and implementing search heuristics, solver

cooperation, or problem-specific propagation by using ECLiPSe as a programming

language. This section presents some typical libraries that the system provides as

building blocks to support these tasks.

5.1 A “Native” solver: interval constraints

The interval solver library(ic) provides unified handling of continuous and integer

domains. Its conceptual computation domain is the real numbers, plus infinities.

Numbers can be constrained to be integral, and constraints can range over a

mixture of integral and non-integral variables. A wide range of constraints is

supported, including linear and nonlinear arithmetic operations, and a number of

symbolic constraints such as alldifferent/1. The functionality subsumes that of a

finite domain solver. The code in Figure 3 uses this library.

The solver is implemented natively, with much of the code written at the ECLiPSe

language level. Interval variables are implemented as attributed variables, and their

bounds are represented as a pair of floating point numbers. The kernel’s interval
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arithmetic is used, keeping rounding errors under control. Integer variables can have

additional bitmaps to represent holes in their domain, and bitmap operations are

accelerated using functions interfaced through the low-level C interface.

Most of the constraints are implemented using AC-3 style propagators (Mack-

worth 1977), which recompute domains after changes. The propagators themselves

are simply delayed goals with suitable waking conditions. The solver defines new

waking conditions appropriate for its domain variables: min (lower bound change),

max (upper bound change), hole (non-bound domain reduction), and type (imposition

of integrality). As the general mechanism of attributes and suspensions is used for

implementing constraint behaviour, there is no need for additional low-level support.

The following illustrates how to implement geq(X,Y), a simple X � Y constraint,

where X and Y are variables or integers:

geq(X, Y) :-

ic:get_max(X, XH), ic:get_min(Y, YL),

ic:impose_min(X, YL), ic:impose_max(Y, XH),

( var(X),var(Y) -> suspend(ge(X,Y), 0, [X->ic:max,Y->ic:min])

; true ).

We use a suspension that wakes when either the upper bound of X or the lower bound

of Y is narrowed. Any change in bound is propagated to the other variable using

library primitives: the value for the bound that may have changed is obtained

by get max/get min, then that bound is imposed on the other variable using

impose min/impose max. The interested reader is referred to the documentation

provided with ECLiPSe for more details.

As no hidden mechanism is used, and assuming the solver exports a small number

of fundamental primitives, such as access to domain bounds, a user can implement

additional constraints on the ECLiPSe level. This is particularly interesting, given the

large number of potentially useful “global” constraints (Beldiceanu et al. 2005), and

we have been fortunate enough to receive external contributions of such constraints

packaged as ECLiPSe libraries for distribution.

The interval solver also makes extensive use of the preprocessing facilities (goal

expansion; Section 4.3) for compile-time transformations of constraints. For example,

we normalise arithmetic expressions and expand the constraint X#>=5*(X+Y)+2 into

its internal form ic:ic_lin_con(6, 1, [2*1, 5*Y, 4*X]). When printed, the

internal form is translated back into readable form via an output transformation.

5.2 An external solver interface: Eplex

The motivation for interfacing to an external solver comes from the wish to take

advantage of existing software: comparisons have shown that a state-of-the-art MP

solver can be 1–3 orders of magnitude faster than one purpose-written for CLP

systems (Shen and Schimpf 2005). Such external solvers typically provide an API in

a popular imperative language such as C/C++.

ECLiPSe’s library(eplex) (Shen and Schimpf 2005) is a common interface to

several state-of-the-art MP solvers, such as CPLEX (www.ibm.com), Xpress-MP
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(www.fico.com), and COIN-OR (Lougee-Heimer 2003). It allows the optimisation

of problems involving linear constraints over continuous and integer variables by

an external solver. The simplest mode of use consists in modelling a problem

in ECLiPSe, passing it to the external solver, and returning the results. But more

importantly, the interface allows a tight integration of the external solver’s operation

with the Prolog side’s data-driven propagation and backtracking-based search

framework. Each MP problem can then be regarded as being represented by a

single compound constraint, and problem-solving can be triggered in a data-driven

way. A problem can be repeatedly modified (by adding more constraints to it,

and/or updating the variable bounds) and re-solved, with backtracking returning a

problem to its previous state.

The eplex library is written in both ECLiPSe and C, using the low-level interface

described in Section 4.5. Attributed variables and suspensions are used to provide

the constraint-like data-driven behaviour: A demon suspension that invokes the

MP solver is created, and woken whenever the specified triggering conditions are

met. The MP solver is represented by an external data handle, and each ECLiPSe

variable involved in an MP problem is linked to the solver through its attribute.

The interface is fully dynamic: any change made to a problem after setup (e.g.,

adding constraints, changing variable bounds) is reflected in the external solver. In

order to maintain the logical behaviour of the whole system, any such changes are

undone on backtracking. Implementation-wise, this relies heavily on our trailing and

timestamping facilities (Sections 4.5 and 4.4).

5.3 A higher level technique: generalised propagation

The Generalised Propagation solver library(propia) (Le Provost and Wallace 1993)

interprets program annotations and extracts deterministic information from arbitrary

disjunctive sub-problems. It is very useful for prototyping unusual and problem-

specific constraints that would otherwise need extensive reformulation into standard

constraints. It is an example of a library that purely relies on the generic system

interface to attributed variables (the concepts of constrainedness and generalisation),

and can therefore cooperate with any domain-oriented solver.

5.4 An orthogonal paradigm: repair-based search

The repair and tentative libraries implement techniques that differ radically from

the framework of domain solvers, being rather closer to Local Search techniques:

tentative values are attached to variables, and the amount of constraint violation

is measured. By varying the tentative values, a local search procedure can reduce

constraint violations, and find better solutions (Van Hentenryck and Michel 2005).

There are many ways of combining this with constraint propagation and tree search,

one successful example being unimodular probing (El Sakkout and Wallace 2000).

Interestingly, we were able to implement this paradigm using the same underlying

techniques as the other solvers. We use attributes to attach tentative values to

variables, and we are able to use attribute handlers and suspended demons to
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update violation counts, conflict sets, and tentative invariants in an incremental

fashion. The common architecture facilitates the implementation of hybrid schemes

that combine propagation with Local Search.

6 Programming larger applications

ECLiPSe has been used to implement a number of large applications, many involving

constraint-solving. Such applications are characterised by the following:

Size: Typically moderately large amounts of ECLiPSe code, some of it concerned

with actual problem modelling, but much of it performing general data processing

tasks: hundreds of predicates, dozens of modules, tens of thousands of lines

of code. Although this does not reach the dimensions of very large industrial

software (partly due to the greater compactness of Prolog code), it goes beyond

what is common in academic use, and highlights the limitations of plain Prolog

with respect to larger scale software engineering.

Interfacing requirements: Interfacing with a software environment, for example,

retrieving data from a database, producing results in the form of web pages,

and interacting via graphical user interfaces. Frequently, such requirements also

come in rather arbitrary form, such as “must be a Java application”.

Quality requirements: Code must be designed, written, tested, documented, and

maintained to certain standards.

These issues are in part addressed by the language extensions that we have discussed

earlier, such as the module system (Section 2.1) and data structure declarations

(Section 3.3). Our approach to addressing the host software interfacing requirements

involves a high-level, language-independent communication scheme that has been

described elsewhere in detail (Shen et al. 2002). The main ways to achieve code quality

are through training, methodology, and tools, which we review in the following.

Methodology: Solving large-scale combinatorial optmisation problems presents ad-

ditional challenges as compared to standard software development. ESPRIT project

22165 (CHIC-2), in which ECLiPSe served as a platform, produced a high-level

methodology (Gervet 2001). Concrete technical development guidelines were for-

mulated by Simonis (2003). These were built on more basic training and tutorial

material, such as Cheadle et al. (2003), Apt and Wallace (2007), and Simonis (2010).

Development environment: Apart from supporting the build process and interactive

execution, the development environment provides tools that give information about

the state of an executing program. The main ones are the tracer and the data

inspector.

The tracer combines the classical port-oriented box model (Byrd 1980) (enhanced

with goal stack display and filtering capabilities) with source-oriented viewing

and breakpointing facilities. The tracer’s architecture is layered: During program

execution, low-level trace events are generated by the abstract machine emulator

and combined with debug information that the compiler has inserted into the code.
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Fig. 7. Source processing.

A second layer maps the low-level events into box-model events and reconstructs a

full call stack. A third layer presents this information via a user interface.

Whenever execution is halted, the current state can be inspected through a

tree-browser that allows to traverse and display all data structures associated

with the current goal or its ancestors. This tool has proven indispensable when

dealing with complex nested data structures in large programs. With coroutining

and constraints, an additional important tool is the delayed goals viewer, which

displays the suspensions and their state.

The debugging tools have a choice of user interfaces: a traditional command-line

interface, as well as GUIs in Tcl/Tk and in Java. The tools are independent of the

rest of the development environment, and can be attached to any running (even

embedded) ECLiPSe engine via a stream-based protocol.

Structured documentation: We support structured comment/2 directives as a way

to formally add documentation to source code. These directives can relate to a

whole module, to predicates, or to data structures. For instance, for predicates the

comment directive contains fields like a detailed description, mode information,

summary, arguments, example usages, and so on. Although devised independently,

our solution is similar to the LPdoc system of Ciao Prolog (Hermenegildo 2000), as

the documentation is provided in the form of directives. One difference is that we do

not define our own mark-up language for formatting text, but rely on the common

HTML format.

Comment directives are processed in two steps: First they are extracted from

the source file by the icompile tool, together with other directives that describe

the module’s exported interface. The information is put into an ECLiPSe interface

information (eci) file. The rationale for this is that this file can be distributed together

with a precompiled (eco) file in place of the module source code (Figure 7). In a

second step, the document library tools process the information in the eci file to

produce reference documentation for modules, for example, in the form of HTML

pages with indexes and cross-links.

Unit testing and code coverage: The test util library provides support for unit testing.

It allows to write simple rules relating a goal with an expected outcome. This library

was initially developed to support the daily automatic test and build of ECLiPSe

itself, but has since been used to test application programs as well. It is supplemented

by a code coverage tool that displays how frequently each code point was executed

during testing. In this way, full test coverage can be ensured.
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Profilers and instrumentation: For performance tuning, we have developed a number

of tools: A timing profiler based on sampling the abstract machine’s program

counter, which works with fully optimised code and displays a flat profile of

the predicates in which time was spent. Another profiler is built on top of the

infrastructure for the box model tracer; it creates a profile in terms of transitions

through box model ports, and needs the code to be compiled in debug mode. An

even more general library provides code instrumentation by source expansion, and

can be used for analysing the use of specific resources, in particular memory.

7 Conclusion

In the long history of ECLiPSe, many good ideas were incorporated, but quite a few

bad decisions were taken as well. Many of them were revised later, although this

might not be surprising, given the lifespan of the system. The usual lessons regarding

software engineering apply, in particular those about defining clean interfaces and

allowing for components to need replacement over time.

Only few of the commercial applications developed with ECLiPSe have been

documented in accessible publications. However, open-sourcing has enabled the

user community to contribute. The contributions so far have been of high quality

and, as expected, largely in the form of libraries. We hope very much that this trend

will continue.

There are many projects for the future, which cannot be listed here – a large system

like ECLiPSe always has construction sites. A quite substantial but worthwhile job

would be to revive the parallel version of the system, which was mothballed almost

15 years ago. On the language level, we want to make the system easier to use for

constraint problem solvers who don’t want to know about the intricacies of Prolog.

We also plan to continue our successful strategy of interfacing third party solver

software, and to strengthen ECLiPSe’s role as a glue system.

We hope that our past work has been original and influential in the wider Prolog

community. We also hope that we have played some role in demonstrating the

benefits of Logic Programming to a wider audience in the world of optimization

and decision support.
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A. Eremin, E. Falvey, T. Frühwirth, C. Gervet, H. Grant, P. Kay, W. Harvey,

A. Herold, C. Holzbaur, L. Li, V. Liatsos, P. Lim, S. Linton, I. Gent, G. Macartney,

D. Miller, S. Mudambi, S. Novello, B. Perez, K. Petrie, S. Prestwich, T. Le Provost,

E. van Rossum, A. Sadler, H. El-Sakkout, J. Singer, H. Simonis, P. Tsahageas,

R. Duarte Viegas, D. Henry de Villeneuve, N. Zhou. ECLiPSe also includes open

source code by R. O’Keefe, J. Fletcher, H. Spencer, the GMP project, and the

Mercury project. Finally, we express our thanks to the anonymous reviewers of this

paper for their helpful suggestions.

References

Aggoun, A. and Beldiceanu, N. 1990. Time stamps techniques for the trailed data in

constraint logic programming systems. In SPLT’90, 8ème Séminaire Programmation en

Logique, 16-18 mai 1990, S. Bourgault and M. Dincbas, Eds. Trégastel, France, 487–510.

Appleby, K., Carlsson, M., Haridi, S. and Sahlin, D. 1986. Garbage Collection for Prolog

Based on WAM. Technical Report R86009B, Swedish Institute of Computer Science, Kista,

Sweden.

Apt, K. R. and Wallace, M. 2007. Constraint Logic Programming Using ECLiPSe. Cambridge

University Press, Cambridge, UK.

Barklund, J. and Bevemyr, J. 1993. Prolog with arrays and bounded quantifications. In

LPAR ’93: Proceedings of the 4th International Conference on Logic Programming and

Automated Reasoning. Springer, Berlin, Germany, 28–39.

Beldiceanu, N., Carlsson, M. and Rampon, J.-X. 2005. Global Constraint Catalog. Technical

Report T2005-06, Swedish Institute of Computer Science, Kista, Sweden.

Bocca, J. 1991. MegaLog – A platform for developing knowledge base management systems.

In Proceedings of Second International Symposium on Database Systems for Advanced

Applications (DASFAA ’91), Tokyo, Japan, April 2–4. Advanced Database Research and

Development Series, vol. 2. World Scientific, Hackensack, NJ, USA.

Byrd, L. 1980. Understanding the control flow of prolog programs. In Proceedings of the

Logic Programming Workshop, Debrecen, Hungary, Jul 1980, S.-A. Tarnlund, Ed. 127–138.

Cabeza, D. and Hermenegildo, M. 2000. A new module system for Prolog. In International

Conference on Computational Logic (CL2000). Lecture notes in artificial intelligence

(LNAI), number 1861. Springer-Verlag, New York, USA, 131–148.

Cheadle, A. M., Harvey, W., Sadler, A. J., Schimpf, J., Shen, K. and Wallace, M. G.

2003. ECLiPSe: A Tutorial Introduction. Technical Report 03-1, IC-Parc, Imperial College

London.

Colmerauer, A. 1982. PROLOG II Manuel de Référence et Modèle Théorique. Technical
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