## **Chapter 1: Introduction**

#### Helmut Simonis

Cork Constraint Computation Centre Computer Science Department University College Cork Ireland

ECLiPSe ELearning Overview

#### Licence

This work is licensed under the Creative Commons Attribution-Noncommercial-Share Alike 3.0 Unported License. To view a copy of this license, visit http:

//creativecommons.org/licenses/by-nc-sa/3.0/ or send a letter to Creative Commons, 171 Second Street, Suite <u>300, San Fr</u>ancisco, California, 94105, USA.



Chapter Overview Chapter Details





2 Chapter Overview





#### What we want to introduce

- Constraint Programming
- Using ECLiPSe Language
- With Saros Eclipse IDE

ork





- 2 Chapter Overview
- 3 Chapter Details



## Constraint Programming (CP)

- Solve hard combinatorial problems
- With minimal programming effort
- Exploit strategies and heuristics
- Understand and control problem solving

#### ECLiPSe Language

- Open source constraint programming language
- Flexible toolkit to develop/use constraints
- Contains different constraint solvers
- Here: Use of finite domains/(mixed) integer programming

Constraint omputation Centre

#### Aims and Outcomes

- Understand what constraint programming is
- How constraint programs can be applied to a problem
- Which application problems are good candidates for CP
- How to write/run/analyze simple ECLiPSe programs

onstraint

#### You should already know about...

- No hard requirements
- Basic understanding of programming assumed •
- Useful to have some background in one of:
  - Network Management
  - Integer Programming
  - Combinatorial Optimization

#### Choices of materials

#### Slides PDF files for computer viewing

- Contains animations of visualization
- Large file sizes

Handout PDF files for printing

- 2 slides per page
- Does not contain all animations

#### Video Video presentation with audio (640x480 pixels)

iPhone Video presentation tuned for iPhone display (480x320 pixels)

Constraint omputation Centre

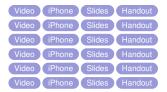
#### Outline










#### Chapters

Introduction (You are here) First Steps - Hello World Application Overview Basic Constraint Reasoning Global Constraints Search Strategies Optimization Symmetry Breaking Choosing the Model **Customizing Search** Limits of Propagation Systematic Development **Visualization Techniques** Finite Set and Continuous Variables Network Applications More Global Constraints



#### More Chapters

Using Mixed Integer Linear Programming A Hybrid Model Comparing Technologies Working with Implications Adding Material Lessons Learned





#### Applications



**Application Overview** SEND+MORE=MONEY Sudoku N-Queens Routing and Wavelength Assignment **RWA - Demand Acceptance 1** RWA - Demand Acceptance 2 RWA - Static Design 2 Balanced Incomplete Block Designs Sports Scheduling **Progressive Party** Costas Arrav SONET/SDH Ring Design Network Applications Car Sequencing Shikaku

Cork

Centre

ъ

#### Outline



2 Chapter Overview





Helmut Simonis

## Introduction

- Aims and Outcomes
- Overview of chapters
- Hyperlinks to all materials

Video iPhone Slides Handout

ъ

Cork Constraint Computation

#### First Steps - Hello World

How to install ECLiPSe and Saros

Helmut Simonis

- Writing a first program
- Running the program
- Where to find information





Constraint computation computation

#### **Application Overview**

- Why constraint programming is interesting
- Solving industrial problems with CP
- Main application areas
  - Assignment
  - Scheduling
  - Network problems
  - Transportation
  - Personnel Assignment

Video iPhone Slides Handout

< < >> < </>

# Basic Constraint Reasoning - SEND+MORE = MONEY

- Finite Domain variables
- CP: Variables + Constraints + Search
- Bounds reasoning on arithmetic constraints
- Simple visualizers



(日)

#### Global Constraints - Sudoku

- Modellimg the Sudoku puzzle
- One model, different behaviours
- Global constraint: alldifferent
- Bounds and domain consistency
- A domain consistent alldifferent



#### Search Strategies - N Queens

- How to search for a solution
- Variable and value choice
- How to avoid deep backtracking
- Partial search strategies



Cork Constraint

## **Optimization - Routing and Wavelength Assignment**

- Optimization
- Graph algorithms library
- Integer Programming with eplex
- Problem decomposition
- Routing and Wavelength Assignment in Optical Networks



# Symmetry Breaking - Balanced Incomplete Block Designs

- Balanced Incomplete Block Designs
- Planning Experiments and Testing Features
- Problems with highly symmetrical structure
- Symmetry Breaking with lex constraints



#### Choosing the Model - Sports Scheduling

- Complex sports scheduling problem
- How to decide which model to use
- Improving reasoning by channeling

Video (iPhone Slides Handout

#### Customizing Search - Progressive Party

- Scheduling Meetings between Teams
- Teams only meet once
- Capacity Limits
- Build customized search routines tailored to problem
- Problem decomposition: decide which problem to solve



#### Limits of Propagation - Costas Array

- Antenna/Sonar Design
- Hard Benchmark Problem
- Naive Enumeration works best
- When clever reasoning doesn't pay off
- Cautionary Tale



#### Systematic Development

- Developing Programs
- Testing
- Profiling
- Documentation





#### **Visualization Techniques**

- How to visualize constraint programs
- Variable Visualizers
- Understanding Search Trees
- Constraint Visualizers
- Complex Visualizations



## Finite Set and Continuous Variables - SONET Design Problem

- Finite set variables
- Continuous domains
- Optimization from below
- Advanced symmetry breaking
- SONET design problem without inter-ring traffic



#### **Network Applications**

- Overview of Network Applications
- Traffic Placement
- Capacity Management
- Network Design
- Using Advanced Techniques



A B A B A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A
A

크 > < 크

Cork Constraint omputation Centre

#### More Global Constraints - Car Sequencing

- New global constraints: gcc and sequence
- Choosing a better search strategy

Video iPhone Slides Handout

orl

# Using Mixed Integer Linear Programming - RWA Demand Acceptance 1

- Mixed Integer Linear Programming in ECLiPSe
- eplex Libary
- Alternative Models for Routing and Wavelength Assignment in Optical Networks



< < >> < </p>

#### A Hybrid Model - RWA Demand Acceptance 2

- Hybridisation by decomposition
- Combination of MIP and FD solver
- Best current solution to routing and wavelength assignment problem





## Comparing Technologies

- Compare static design and demand acceptance versions of RWA
- See impact of objective function
- Compare finite domain, MIP and SAT solutions





## Working with Implications - Shikaku

- Solving a placement problem without specialized constraints
- Decomposition into pattern generation and set partitioning ٥
- Using implications to propagate information ٥

Helmut Simonis





# **Adding Material**

- How to add new chapters
- Copying template files
- Configuring templates
- Adding frames to body
- Integrating with other chapters



< < >> < </>

Cork Constraint omputation Centre

#### Lessons Learned

- New ELearning course for ECLiPSe
- Modelling and programming with constraints
- Based on sample problems solved and explained in detail
- A view on core constraint programming skills
- Strong dependence on visualization to explain behavior



#### To continue

- Branch from here to all materials
- Choose presentation form which suits you