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Common Theme

How can we get better performance out of a given
network?
Make network transparent

Users should not need to know about details
Service maintained even if failures occur

Restricted by accepted techniques available in hardware
Interoperability between multi-vendor equipment
Very conversative deployment strategies
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Reminder: IP Networks

Packet forwarding
Connection-less
Destination based routing

Distributed routing algorithm based on shortest path
algorithm
Routing metric determines preferred path

Best effort
Packets are dropped when there is too much traffic on
interface
Guaranteed delivery handled at other layers
(TCP/applications)
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Disclaimer

Flexible border between CP and OR
CP is ...

what CP people do.
what is published in CP conferences.
what uses CP languages.

Does not mean that other approaches are less valid!
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Multiple Paths

Example Network (Uniform metric 1, Capacity 100)
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Example Traffic Matrix

Only partially filled in for example

A B C D E
A 0 0 10 20 20
B 0 0 10 20 20
C 0 0 0 0 0
D 0 0 0 0 0
E 0 0 0 0 0
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Using Routing
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Using Routing
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Using Routing

Demand BD 20
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Using Routing
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Using Routing
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Resulting Network Load
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Considering failure of R1-E
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Can we do better?

Choose single, explicit path for each demand
Requires hardware support in routers (MPLS-TE)
Baseline: CSPF, greedy heuristic
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Why not just use Multi-Commodity Flow Problem
Solution?

Can not use arbitrary, fractional flows in hardware
MILP does not scale too well
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Modelling Alternatives

Link based Model
Path based Model
Node based Model
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Variants

Demand Acceptance
Choose which demands to select fitting into available
capacity

Traffic Placement
All demands must be placed
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Link-Based Model: Intuition

Decide if demand d is run over link e
Select which demands run over link e (Knapsack)
Demand d must run from source to sink (Path)
Sum of delay on path should be limited (QoS)
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Link Based Model

min
{Xde}

max
e∈E

1
cap(e)

∑
d∈D

bw(d)Xde or min
{Xde}

∑
e∈E,d∈D

bw(d)Xde

st.

∀d ∈ D,∀n ∈ N :
∑

e∈OUT(n)

Xde −
∑

e∈IN(n)

Xde =


−1 n = dest(d)
1 n = orig(d)
0 otherwise

∀e ∈ E :
∑
d∈D

bw(d)Xde ≤ cap(e)

∀d ∈ D :
∑
e∈E

del(e)Xde ≤ req(d)

Xde ∈ {0,1}
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Solution Methods

Lagrangian Relaxation
Path decomposition
Knapsack decomposition

Probe Backtracking
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Lagrangian Relaxation - Path decomposition

[Ouaja&Richards2003]
Dualize capacity constraints
Starting with CSPF initial solution
Finite domain solver for path constraints
Added capacity constraints from st-cuts
At each step solve shortest path problems
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Lagrangian Relaxation - Knapsack decomposition

[Ouaja&Richards2005]
Dualize path constraints
At each step solve knapsack problems
Reduced cost based filtering
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Probe Backtracking

[Liatsos et al 2003]
Start with (infeasible) CSPF heuristic
Consider capacity violation

Resolve by forcing one demand off/on link
Find new path respecting path and added constraints with
ILP

Repeat until no more violations, feasible solution
Optimality proof when exhausted search space

Search space often very small
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Path-Based Model: Intuition

Choose one of the possible paths for demand d
This paths competes with paths of other demands for
bandwidth
Usually too many paths to generate a priori, but most are
useless
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Path-Based Model

max
{Zd ,Yid}

∑
d∈D

val(d)Zd

st.

∀d ∈ D :
∑

1≤i≤path(d)

Yid = Zd

∀e ∈ E :
∑
d∈D

bw(d)
∑

1≤i≤path(d)

he
idYid ≤ cap(e)

Zd ∈ {0,1}
Yid ∈ {0,1}
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Solution Methods

Blocking Islands
Local Search/ Finite Domain Hybrid
(Column Generation)
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Blocking Islands

[Frei&Faltings1999]
Feasible solution only
CSP with variables ranging over paths for demands
No explicit domain representation
Possible to perform forward checking by updating blocking
island structure
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Local Search/Finite Domain Hybrid

[Lever2004]
Start with (feasible) CSPF heuristic
Add more demands one by one

Use repair to solve capacity violations
Use Finite Domain model to check necessary conditions

Determine bottlenecks by st-cuts
Force paths on/off links

Define neighborhood by rerouting demands currently over
violations
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Node Based Model: Intuition

For each demand, decide for each router where to go next
Many routers not used

Treat link capacity with cumulative/diffn constraints
Pure Finite Domain model, no global cost view
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Cisco ISC-TEM

Path placement algorithm developed for Cisco by PTL and
IC-Parc (2002-2004)
Internal competitive selection of approaches
Strong emphasis on stability
Written in ECLiPSe
PTL bought by Cisco in 2004
Part of team moved to Boston
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Problem

What happens if element on selected path fails?
Choose second path which is link (element) disjoint
State bandwidth constraints for each considered failure
case
Problem: Very large number of capacity constraints
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Example

Primary/Secondary path for demand AE
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Which bandwidth to count?

Failed Element No Failure A-R1 R1-E All Others
Capacity for Path Primary Secondary Secondary Primary
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Multiple Path Model

max
{Zd ,Xde,Wde}

∑
d∈D

val(d)Zd

∀d ∈ D, ∀n ∈ N :
∑

e∈OUT(n)

Xde −
∑

e∈IN(n)

Xde =


−Zd n = dest(d)

Zd n = orig(d)

0 otherwise

∀e ∈ E :
∑
d∈D

bw(d) ∗ Xde ≤ cap(e)

∀d ∈ D, ∀n ∈ N :
∑

e∈OUT(n)

Wde −
∑

e∈IN(n)

Wde =


−Zd n = dest(d)

Zd n = orig(d)

0 otherwise

∀e ∈ E, ∀e′ ∈ E \ e :
∑
d∈D

bw(d) ∗ (Xde − Xde′ ∗ Xde + Xde′ ∗Wde) ≤ cap(e)

∀d ∈ D, ∀e ∈ E : Xde + Wde ≤ 1

Zd ∈ {0, 1},Xde ∈ {0, 1},Wde ∈ {0, 1}
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Solution Method

Benders Decomposition [Xia&Simonis2005]
Use MILP for standard demand acceptance problem
Find two link disjoint paths for each demand
Sub-problems consist of capacity constraints for failure
cases
Benders cuts are just no-good cuts for secondary violations
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The Problem

How to provide cost effective, high quality services running
an IP network?
Easy to build high quality network by massive
over-provisioning
Easy to build consumer grade network disregarding Quality
of Service (QoS)
Very hard to right-size a network, providing just enough
capacity
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The Approach

Bandwidth on Demand
Create temporary bandwidth channels for high-value traffic
Avoid disturbing existing traffic

Resilience Analysis
Find out how much capacity is required for current traffic
Provide enough capacity to survive element failures without
service disruption
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Background

Failures of network should not affect services running on
network
Not cost effective to protect connections in hardware
Response time is critical

Interruption > 50ms not acceptable for telephony
Reconvergence of IGP 1 sec (good setup)
Secondary tunnels rely on signalling of failure (too slow)
Live/Live connections too expensive
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Approach

Fast Re-route
If element fails, use detour around failure
Local repair, not global reaction
Pre-compute possible reactions, allows offline optimization

Link protection rather easy
Node protection quite difficult
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Example Problem

k l

c f

j e

ce,cf

20

ce,cf
cf

ce

30

10

Helmut Simonis Network Applications 43

Traffic Placement
Capacity Management

Other Problems

Bandwidth Protection
Bandwidth on Demand
Resilience Analysis

Node j Failure

k l

c f

j e

20,30,40?

20

20,30,40?
20,30?

10?

30

10
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Node j Failure (Result)
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Bandwidth Protection Model

min
{Xfe}

∑
f∈F

∑
e∈E

Xfe

st .



∀f ∈ F :



∀n ∈ N \ {orig(f ),dest(f )} :
∑

e∈IN(n)

Xfe =
∑

e∈OUT(n)

Xfe

n = orig(f ) :
∑

e∈OUT(n)

Xfe = 1

n = dest(f ) :
∑

e∈IN(n)

Xfe = 1

∀e ∈ E : cap(e) ≥



max
{Qfe}

∑
f∈F

XfeQfe

st .


∀o ∈ orig(F) : ocap(o) ≥

∑
f :orig(f )=o

Qfe

∀d ∈ dest(F) : dcap(o) ≥
∑

f :dest(f )=d

Qfe

Xfe ∈ {0, 1}
quan(f ) ≥ Qfe ≥ 0
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Solution Techniques

[Xia, Eremin & Wallace 2004]
MILP

Use of Karusch-Kahn-Tucker condition
Removal of nested optimization
Large set of new variables
Not scalable

Problem Decomposition
Integer Multi-Commodity Flow Problem
Capacity Optimization

Improved MILP out-performs decomposition [Xia 2005]
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Cisco Tunnel Builder Pro

Algorithm/Implementation built by PTL/IC-Parc for Cisco
Not based on published techniques above
In period 2000-2003
Written in ECLiPSe
Embedded in Java GUI
Now subsumed by ISC-TEM
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Planning Ahead

Consider demands with fixed start and end times
Demands overlapping in time compete for bandwidth
Demands arrive in batches, not always in temporal
sequence
Problem called Bandwidth on Demand (BoD)
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Model: BoD

max
{Zd ,Xde}

∑
d∈D

val(d)Zd

st.

T = {start(d)|d ∈ D}

∀d ∈ D,∀n ∈ N :
∑

e∈OUT(n)

Xde −
∑

e∈IN(n)

Xde =


−Zd n = dest(d)

Zd n = orig(d)

0 otherwise

∀t ∈ T, ∀e ∈ E :
∑
d∈D

start(d)≤t
t<end(d)

bw(d)Xde ≤ cap(e)

Zd ∈ {0, 1}
Xde ∈ {0, 1}
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Solution Methods

France Telecom for ATM network [Lauvergne et al 2002,
Loudni et al 2003]
Schlumberger Dexa.net (PTL, IC-Parc)
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Schlumberger Dexa.net

Small, but global MPLS TE+diffserv network
Oil field services
(Very) High value traffic

Well logging
Video conferencing

Bandwidth demand known well in advance, fixed period
Low latency, low jitter required
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Architecture

Provisioning Network

Demand Manager Resilience Analysis

Dexa.net Portal

Customer
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Workflow

Customer requests capacity for time slot via Web-interface
Demand Manager determines if request can be satisfied

Based on free capacity predicted by Resilience Analysis
Taking other, accepted BoD requests into account

Email back to customer
At requested time, DM triggers provisioning tool to

Set up tunnel
Change admission control

At end of period, DM pulls down tunnel
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How much free capacity do we have in network?

Easy for normal network state (OSS tools)
Challenge: How much is required for possible failure
scenarios?
Consider single link, switch, router, PoP failures
Classical solution

Get Traffic Matrix
Run scenarios through simulator
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How to get a Traffic Matrix?

Many algorithms assume given traffic matrix
Traffic flow information is not collected in the routers
Only link traffic is readily available
Demand pattern changes over time, often quite
dramatically
Measuring traffic flows with probes is very costly

From a network consultant:
We have been working on extracting a TM for this
network for 15 months, and we still don’t have a clue if
we’ve got it right.
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Idea

Use the observed traffic to deduce traffic flows
Network Tomography [Vardi1996]

All flows routed over a link cause the observed traffic
Must correct for observation errors
Highly dependent on accurate routing model

Gravity Model [Medina et al 2002]
Ignore core of network
Assume that flows are proportional to product of
ingress/egress size

Results are very hard to validate/falsify
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Model: Traffic Flow Analysis

∀i , j ∈ N : min
{Fij}

/max
{Fij}

Fij

st.

∀e ∈ E :
∑
i,j∈N

re
ij Fij = traf(e)

∀i ∈ N :
∑
j∈N

Fij = extin(i)

∀j ∈ N :
∑
i∈N

Fij = extout(j)

Fij ≥ 0
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Start with Link Traffic
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R3 R4

50

35

15 15

30

55 15

5

15

5

Helmut Simonis Network Applications 59

Traffic Placement
Capacity Management

Other Problems

Bandwidth Protection
Bandwidth on Demand
Resilience Analysis

Setup Model to Find Flows

[AC,AD,BC,BD,AE,BE] :: 0.0 .. 1.0Inf,
AC + AD + AE $= 50, % A R1
0.5*BC + 0.5*BD + BE $= 35, % B R1
0.5*BC + 0.5*BD $= 15, % B R3
AD + 0.5*BD $= 30, % R1 R2
AC + 0.5*BC + AE +BE $= 55, % R1 E
AD + 0.5*BD $= 30, % R2 D
0.5*BC + 0.5*BD $= 15, % R3 R4
AC + 0.5*BC $= 15, % E C
0.5*BC $= 5, % R4 C
0.5*BD $= 10, % R4 D
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Solve for Different Flows

min(AC,MinAC),max(AC,MaxAC),
min(AD,MinAD),max(AD,MaxAD),
min(BC,MinBC),max(BC,MaxBC),
min(BD,MinBD),max(BD,MaxBD),
min(AE,MinAE),max(AE,MaxAE),
min(BE,MinBE),max(BE,MaxBE),
...
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Results of Analysis

C D E
A 10 20 20
B 10 20 20

Problem solved, no?
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Benchmark Problems

Network Routers PoPs Lines Lines/router
dexa 51 24 59 1.15
as1221 108 57 153 1.41
as1239 315 44 972 3.08
as1755 87 23 161 1.85
as3257 161 49 328 2.03
as3967 79 22 147 1.86
as6461 141 22 374 2.65
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TFA Result for Benchmarks

Network Low
Simul (%) High

Simul (%) Obj Time (sec)
dexa 0 2310.65 1190 11
as1221 0.09 8398.64 11556 1318
as1239 n/a n/a n/a n/a
as1755 0.15 6255.31 7482 699
as3257 0.04 12260.03 25760 12389
as3967 0.1 5387.10 6162 500
as6461 0.28 8688.39 19740 8676
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Reduce Problem Size

Pop Level Analysis
Only consider flows between PoPs, not routers
Local area connections typically not bottlenecks
Modelling routing can be tricky
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PoP Level Results

Network Low
Simul (%) High

Simul (%) Obj Time (sec)
dexa 0 1068.37 557 5
as1221 0.24 2964.93 3205 424
as1239 0.63 1401.72 1931 101359
as1755 0.66 1263.28 526 103
as3257 0.30 2028.73 2378 2052
as3967 0.1 1209.37 483 90
as6461 1.47 951.41 481 768
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Increase Accuracy

LSP Counters
In MPLS networks only, provide improved resolution
Implementation buggy, not all counters can be used

Netflow
Collect end-to-end flow information in router
Impact on router (memory)
Impact on network (data aggregation)
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TFA with LSP Counters

Network Low
Simul (%) High

Simul (%) Obj Time (sec)
dexa 30.35 249.71 1190 7
as1221 9.94 685.37 11556 885
as1239 10.74 1151.03 98910 72461
as1755 25.29 269.30 7482 397
as3257 23.77 425.67 25760 5121
as3967 24.47 300.17 6162 275
as6461 19.43 477.44 19740 2683
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PoP TFA with LSP Counters

Network Low
Simul (%) High

Simul (%) Obj Time (sec)
dexa 60.62 145.85 557 3
as1221 28.49 499.16 3205 271
as1239 33.36 211.84 1931 2569
as1755 50.33 169.37 526 46
as3257 36.82 249.16 2378 640
as3967 40.72 182.97 483 36
as6461 34.05 210.93 481 136
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What now?

Choose some particular solution?
Which one? How to validate assumptions?
Massively under-constrained problem

|N|2 variables
|E |+ 2|N| constraints
2|N|2 queries

Ill-conditioned even after error correction
Aggregation helps

We are usually not interested in individual flows
We want to use the TM to investigate something else
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Resilience Analysis

How much capacity is needed to survive all reasonable
failures?
Use normal state as starting point
Consider routing in each failure case
Aggregate flows in rerouted network
Calculate bounds on traffic in failure case
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Model: Resilience Analysis

∀e ∈ E : min
{Fij}

/max
{Fij}

∑
i,j∈N

r̄e
ij Fij

st.

∀e ∈ E :
∑
i,j∈N

re
ij Fij = traf(e)

∀i ∈ N :
∑
j∈N

Fij = extin(i)

∀j ∈ N :
∑
i∈N

Fij = extout (j)

Fij ≥ 0
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Resilience Analysis

Network Low
Simul (%) High

Simul (%) Obj Time (sec) Cases
dexa 68.91 108.25 3503 57 59
as1221 85.75 102.60 14191 2869 153
as1239 92.53 102.64 4499 44205 10
as1755 92.82 105.39 8409 1815 161
as3257 93.69 103.15 31093 39934 328
as3967 91.60 108.79 9090 1635 141
as6461 96.51 103.44 24808 20840 374
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Results over 100 runs

Network lower bound/simul upper bound/ simul
average stdev average stdev

dexa 91.50 0.14 108.28 0.16
as1755 88.65 0.11 106.08 0.056
as3967 94.08 0.073 106.88 0.091
as1221 87.34 0.10 102.05 0.025
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Results with LSP counters

Network Low
Simul (%) High

Simul (%) Obj Time Cases
dexa 97.76 101.33 3503 36 59
as1221 98.15 100.69 14191 1840 153
as1239 99.37 100.38 4499 3974 10
as1755 99.28 100.66 8409 964 161
as3257 99.41 100.44 31093 13381 328
as3967 98.88 101.00 9090 819 147
as6461 99.44 100.52 24808 8006 374
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Results over 100 runs (with LSP Counters)

Network lower bound/simul upper bound/ simul
average stdev average stdev

dexa 99.60 0.029 100.33 0.025
as1755 99.31 0.016 100.63 0.015
as3967 99.41 0.014 100.61 0.014
as1221 98.10 0.025 100.57 0.010
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Perspectives

High polynomial complexity
Possible to reduce number of queries

Small differences between failure cases
Many queries are identical or dominated

Possible to reduce size of problem dramatically
Integrate multiple measurements in one model
Which other problems can we solve without explicit TM?
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Problem

Which links should be used to build network structure?
Link speed is related to cost
Model simple generalization of path finding
Assumptions about routing in target network?
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Model

min
{Xde,Wie}

∑
e∈E

∑
1≤i≤alt(e)

cost(i ,e)Wie

∀d ∈ D,∀n ∈ N :
∑

e∈OUT(n)

Xde −
∑

e∈IN(n)

Xde =


−1 n = dest(d)
1 n = orig(d)
0 otherwise

∀e ∈ E :
∑
d∈D

bw(d)Xde ≤
∑

1≤i≤alt(e)

cap(i ,e)Wie

∀e ∈ E :
∑

1≤i≤alt(e)

Wie = 1

Wie ∈ {0,1}
Xde ∈ {0,1}
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Issues

Real-life problem not easily modelled
Possible choices/costs not easily obtained (outside US)
Choices often are inter-related
Package deals by providers
Some regions don’t allow any flexibility at all
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Problem

How to set weights in IGP to avoid bottlenecks?
Easy to beat default values
Single/equal cost paths required/allowed/forbidden?
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Model

min
{Yid ,We}

max
e∈E

1
cap(e)

∑
d∈D

bw(d)
∑

1≤i≤path(d)

he
id Yid

st.

∀d ∈ D :
∑

1≤i≤path(d)

Yid = 1

∀d ∈ D, 1 ≤ i ≤ path(d) : Pid =
∑
e∈E

he
id We

∀d ∈ D, 1 ≤ i, j ≤ path(d) : Pid = Pjd =⇒ Yid = Yjd = 0

∀d ∈ D, 1 ≤ i, j ≤ path(d) : Pid < Pjd =⇒ Yjd = 0

Yid ∈ {0, 1}
integer We ≥ 1

Pid ≥ 0
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Solution Methods

Methods tested at IC-Parc
Branch and price
Tabu search
Set constraints

Very hard to compete with (guided) local search
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Further Reading

H. Simonis. Constraint Applications in Networks. Chaper 25 in
F. Rossi, P van Beek and T. Walsh: Handbook of Constraint
Programming. Elsevier, 2006.
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Summary

Network problems can be solved competitively by
constraint techniques.
Hybrid methods required, simple Finite Domain models
usually don’t work.
Constraint based tools commercial reality.
Open Problems

How to make this easier to develop?
How to make this more stable to solve?
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