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What we want to introduce

Mixed Integer Linear Programming in ECLiPSe
eplex Libary
Alternative Models for Routing and Wavelength
Assignment in Optical Networks
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Problem Definition

Routing and Wavelength Assignment (Demand Acceptance)

In an optical network, traffic demands between nodes are
assigned to a route through the network and a specific
wavelength. The route (called lightpath) must be a simple path
from source to destination. Demands which are routed over the
same link must be allocated to different wavelengths, but
wavelengths may be reused for demands which do not meet.
The objective is to find a combined routing and wavelength
assignment which maximizes the number of accepted
demands.
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Difference to Previous Problem

Static problem
Accept all demands
Minimize number of wavelengths used
Design problem, minimize cost of network

Demand acceptance problem
Number of wavelengths fixed
Maximize number of accepted demands
Operational problem, maximize use of network
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Example Network (NSF, 5 wavelengths)
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Lightpath from node 5 to node 13 (5 ⇒ 13)
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Conflict with demand 1 ⇒ 12: Use different
frequencies
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Conflict with demand 1 ⇒ 12: Use different path
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Conflict with demand 1 ⇒ 12: Reject demand
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Solution Approaches

Greedy heuristic
Optimization algorithm for complete problem
Decomposition into two problems

Find routing
Assign wavelengths
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Optimization Solutions

Link Based Model
Individual demands
Source aggregation

Path Based Model
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Link Based Model - Individual Demands

Decide for each demand whether it is accepted and which
wavelength is used
Zero/One decision variable yλd
Atmost one wavelength may be used for demand
Decide for each link and wavelength if it is used for demand
Zero/One decision variables xλde

Different demands can not use the same wavelength on
the same link
Maxmize the total number of demands accepted
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Notation

Directed graph G = (N,E)

Nodes n ∈ N
Edges e ∈ E
Given Wavelengths λ ∈ Λ

Demands d ∈ D from source s(d) to sink t(d)

Edges Out(n) leaving node n
Edges In(n) pointing to node n
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Model Variables

All Variables 0/1 Integer
xλde wavelength λ on link e are used for demand d
yλd wavelength λ is used for demand d
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Demand Acceptance Model 1

max
∑
d∈D

∑
λ∈Λ

yλd

s.t.
yλ

d ∈ {0, 1}, x
λ
de ∈ {0, 1}

∀d ∈ D :
∑
λ∈Λ

yλ
d ≤ 1

∀e ∈ E , ∀λ ∈ Λ :
∑
d∈D

xλ
de ≤ 1

∀d ∈ D, ∀λ ∈ Λ :
∑

e∈In(s(d))

xλ
de = 0,

∑
e∈Out(s(d))

xλ
de = yλ

d

∀d ∈ D, ∀λ ∈ Λ :
∑

e∈Out(t(d))

xλ
de = 0,

∑
e∈In(t(d))

xλ
de = yλ

d

∀d ∈ D, ∀λ ∈ Λ, ∀n ∈ N \ {s(d), t(d)} :
∑

e∈In(n)

xλ
de =

∑
e∈Out(n)

xλ
de
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Recognize Problem Structure

Minimize/maximize some linear objective
While satisfying linear equality/inequality constraints
0/1, integer or continuous variables
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Solving the problem

This is a standard MILP problem
MILP = Mixed Integer Linear Programming
ECLiPSe provides an interface to such solvers
eplex library
Works with commercial or open-source MIP/LP solvers
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Main eplex Features used

Variable definition: X :: 0.0 .. 1.0

Linear constraints X+Y $= 1

Integrality constraints integers([X,Y])
Solver setup eplex_solver_setup(min(M))

Optimization call eplex_solve(Cost)
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eplex Instances

We can solve multiple MIP problems at same time
We therefore need to state which problem we want to affect
This is done with eplex instances
Works like a module: route:(X+Y $=1) adds constraint
to instance route

Create, use, cleanup
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Why not use finite domain solver?

For this type of problem, finite domain reasoning is very
weak
Each constraint is treated independently
Interaction through 0/1 variables is limited
No concept of minimizing objective function
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MILP solver basics

Considers all constraints together
In form of continuous relaxation
Use Simplex algorithm to find optimal solution for relaxation
Integer solutions found by forcing values to be integral
By branching and/or by adding constraints (cutting planes)
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Benchmarks

Fixed network structure
nsf 14 nodes, 42 edges

eon 20 nodes, 78 edges
mci 19 nodes, 64 edges

brezil 27 nodes, 140 edges
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Selected Results (100 runs)

Network Dem. λ
Avg
LP

Avg
MIP

Max
Gap

Avg LP
Time

Max LP
Time

Avg MIP
Time

Max MIP
Time

brezil 50 5 50.00 50.00 0.00 1.28 1.34 7.31 8.28
brezil 60 5 60.00 60.00 0.00 1.59 1.67 8.40 10.53
brezil 70 5 69.99 69.99 0.00 1.94 2.05 10.97 13.66
brezil 80 5 79.97 79.97 0.00 2.26 2.52 14.13 19.44
eon 50 5 49.99 49.99 0.00 0.73 0.78 3.41 4.38
eon 60 5 59.95 59.95 0.00 0.89 0.99 4.22 9.56
eon 70 5 69.64 69.64 0.00 1.09 1.41 6.16 17.05
eon 80 5 78.99 78.99 0.00 1.40 1.78 10.45 33.91
mci 50 5 49.77 49.77 0.00 0.58 0.64 2.56 3.64
mci 60 5 59.43 59.43 0.00 0.81 1.11 3.65 6.64
mci 70 5 68.73 68.73 0.00 1.07 1.78 6.29 15.49
mci 80 5 77.29 77.29 0.00 1.65 3.76 11.83 33.38
nsf 50 5 49.86 49.86 0.00 0.43 0.55 1.93 4.52
nsf 60 5 59.14 59.14 0.00 0.75 1.31 3.97 10.05
nsf 70 5 66.70 66.70 0.50 1.48 3.03 8.56 28.14
nsf 80 5 72.67 72.63 0.67 2.78 4.42 14.66 62.55
nsf 90 5 77.07 77.04 0.50 3.89 5.77 15.32 51.00
nsf 100 5 81.26 81.20 0.86 4.81 7.05 20.12 80.81
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Idea

Combine all demands starting same node
Build distribution tree (graph) rooted in source s
Decide whether link/frequency is used for this distribution
graph
Graphs for different source nodes compete for resources
Enforce sufficient conditions to extract routes for individual
demands
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Model Notation

Constants
Psd integer, total number of requested demands from s to d
Ds, set of all destination nodes for demands sourced in s

Variables
ysd integer variable, how many demands from s to d are
accepted (domain 0 to Psd )
xλ

se 0/1 integer variable, frequency λ on link e is used to
transport demands starting in s
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Source Aggregation Model

max
∑
s∈N

∑
d∈Ds

ysd

s.t.
ysd ∈ {0, 1...Psd}, xλ

se ∈ {0, 1}

∀e ∈ E ,∀λ ∈ Λ :
∑
s∈N

xλ
se ≤ 1

∀s ∈ N, ∀λ ∈ Λ :
∑

e∈In(s)

xλ
se = 0

∀s ∈ N,∀d ∈ Ds, ∀λ ∈ Λ :
∑

e∈In(d)

xλ
se ≥

∑
e∈Out(d)

xλ
se

∀s ∈ N, ∀d ∈ Ds :
∑
λ∈Λ

∑
e∈In(d)

xλ
se =

∑
λ∈Λ

∑
e∈Out(d)

xλ
se + ysd

∀s ∈ N,∀n 6= s, n /∈ Ds, ∀λ ∈ Λ :
∑

e∈In(n)

xλ
se =

∑
e∈Out(n)

xλ
se
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And this helps us how, exactly?

MIP Solution does not say which demands are accepted
...nor how they are routed through the network
Needs solutions extraction, for each source
At the same time remove loops from routes
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Source Model Results (100 runs)

Network Dem. λ
Avg
LP

Avg
MIP

Max
Gap

Avg LP
Time

Max LP
Time

Avg MIP
Time

Max MIP
Time

brezil 50 5 50.00 50.00 0.00 0.71 0.77 2.49 5.83
brezil 60 5 60.00 60.00 0.00 0.74 0.80 2.77 7.45
brezil 70 5 69.99 69.99 0.00 0.77 0.84 3.02 8.86
brezil 80 5 79.97 79.97 0.00 0.83 0.95 4.76 10.51
eon 50 5 49.99 49.99 0.00 0.29 0.33 1.00 2.20
eon 60 5 59.95 59.95 0.00 0.31 0.38 1.40 2.94
eon 70 5 69.64 69.64 0.00 0.34 0.42 1.91 4.45
eon 80 5 78.99 78.99 0.00 0.40 0.55 2.90 38.94
mci 50 5 49.77 49.77 0.00 0.24 0.36 0.85 2.13
mci 60 5 59.43 59.43 0.00 0.27 0.38 1.38 2.73
mci 70 5 68.73 68.73 0.00 0.32 0.45 2.08 7.42
mci 80 5 77.29 77.29 0.00 0.42 0.66 2.98 7.66
nsf 50 5 49.86 49.86 0.00 0.13 0.16 0.55 1.23
nsf 60 5 59.14 59.14 0.00 0.17 0.23 0.92 2.55
nsf 70 5 66.70 66.70 0.50 0.22 0.33 1.23 5.97
nsf 80 5 72.67 72.63 0.67 0.29 0.58 1.37 5.42
nsf 90 5 77.07 77.04 0.50 0.33 0.48 5.35 379.00
nsf 100 5 81.26 81.20 0.86 0.35 0.64 1.60 9.91
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