Chapter 18: A Hybrid Model for the Routing and Wavelength Assignment Problem

Helmut Simonis

Cork Constraint Computation Centre Computer Science Department University College Cork Ireland

ECLiPSe ELearning Overview

Helmut Simonis Hybrid Model for RWA

Cork Constraint omputation

Licence

This work is licensed under the Creative Commons Attribution-Noncommercial-Share Alike 3.0 Unported License. To view a copy of this license, visit http:

//creativecommons.org/licenses/by-nc-sa/3.0/ or send a letter to Creative Commons, 171 Second Street, Suite 300, San Francisco, California, 94105, USA.

< < >> < </>

Constraint omputation

Outline

What We Want to Introduce

- Hybridisation by decomposition
- Combination of MIP and FD solver
- Best current solution to routing and wavelength assignment problem

Outline

2 Model

3 Worked Example

4 Results

Problem Definition

Routing and Wavelength Assignment (Demand Acceptance)

In an optical network, traffic demands between nodes are assigned to a route through the network and a specific wavelength. The route (called *lightpath*) must be a simple path from source to destination. Demands which are routed over the same link must be allocated to different wavelengths, but wavelengths may be reused for demands which do not meet. The objective is to find a combined routing and wavelength assignment which maximizes the number of accepted demands.

< < >> < </>

Constraint omputation

Example Network (NSF, 5 wavelengths)

Lightpath from node 5 to node $1\overline{3}$ (5 \Rightarrow 13)

Conflict with demand $1 \Rightarrow 12$: Use different frequencies

Conflict with demand $1 \Rightarrow 12$: Use different path

Conflict with demand $1 \Rightarrow 12$: Reject demand

Outline

3 Worked Example

4 Results

Solution Approaches

- Greedy heuristic
- Optimization algorithm for complete problem
- Decomposition into two problems
 - Route maximal number of demands
 - Assign wavelengths

Solution Approaches

- Greedy heuristic
- Optimization algorithm for complete problem
- Decomposition into two problems
 - Route maximal number of demands
 - Assign wavelengths

Step 1: Route Maximal Number of Demands

- Ignore wavelengths
- Capacity constraints on all links
- Solve as MIP problem
- Source aggregation
- Find DAG to supply (all) demands with shared source
- Maximize number of accepted demands

Notation

- *y_{sd}*, integer number of accepted demands from *s* to *d*
- *z_{se}*, integer capacity used on edge *e* to satisfy demands sourced in *s*
- C, number of available wavelengths, edge capacity
- *P_{sd}*, requested number of demands from *s* to *d*
- T_s, total number of requested demands sourced from s
- D_s, nodes which have a requested demand sourced in s

< ロ > < 同 > < 三 >

Constraint omputation Centre

Model (Step 1)

$$\max \sum_{s \in N} \sum_{d \in D_s} y_{sd}$$

s.t.

$$y_{sd} \in \{0, 1 \dots P_{sd}\}, z_{se} \in \{0, 1 \dots T_s\}$$

$$\forall e \in E : \sum_{s \in N} z_{se} \leq C$$

$$\forall s \in N : \sum_{e \in \ln(s)} z_{se} = 0$$

$$\forall s \in N, \forall d \in D_s : \sum_{e \in \ln(d)} z_{se} = \sum_{e \in \operatorname{Out}(d)} z_{se} + y_{sd}$$

$$\forall s \in N, \forall n \neq s, n \notin D_s : \sum_{e \in \ln(n)} z_{se} = \sum_{e \in \operatorname{Out}(n)} z_{se}$$

Observation

- Optimal cost is upper bound for full problem
- LP Relaxation is also upper bound for full problem
- No 0/1 variables in model
- Source aggregation has massive impact on efficiency
 - Much better than treating each demand on its own
 - Reason 1: Reduced number of variables

Helmut Simonis

 Reason 2: Avoids symmetries due to multiple demands between nodes

Constraint omputation

Finding Accepted Demands

- Solution to MIP does not tell how demands are routed
- Program required to convert source "tree" into sets of paths
- Conversion not deterministic, may allow different solutions
- Solution may contain loops, these need to be removed

Step 2: Assign Wavelengths

- For each accepted accepted demand, find frequency
- All demands routed over a link compete for frequencies
- Graph coloring problem
- Graph given as sets of cliques
- Solve with finite domains
- If solution found, then optimal for complete problem

< ロ > < 同 > < 三 > .

Constraint omputation Centre

Model (Step 2)

- X_d finite domain variable 1..C for each accepted demand
- One alldifferent constraint for each edge
- Many alldifferent constraints are at capacity
- Possible to improve model

イロト イポト イヨト イヨ

Constraint omputation

What Happens If No Solution Found

- Problem infeasible
 - Remove some demand and try again until solution found
 - Possibly sub-optimal solution of high quality
 - Different solution to MIP problem may lead to optimal solution
- No solution found within time limit
 - Try harder!
 - Improve reasoning and/or search technique
 - Special techniques to show infeasibility

Constraint omputation Centre

イロト イポト イヨト イヨ

Solution Approach

Outline

2 Model

4 Results

Demand Matrix (100 Demands)

Centre

・ 御 ト ・ 重

ъ

Accepted Demands (86 Demands)

Comparison

Accepted Demands

Observations

- Accepted demands do not always use shortest path
- Tendency to reject demands with larger minimal distance
- These use more resources
- Not compensated in objective function
- Not fair

< □ > < 同 > < 三 > <

Constraint omputation

Resource Requirements

Graph Coloring Problem

Graph Coloring Solution

- All demands could be assigned to frequencies
- Optimal solution to complete problem

Explaining Infeasibility

Constraint Computation Centre Centre

- Ad-hoc: Find pattern which show infeasibility
 - Find large cliques
 - If clique is larger than number of colors, problem is infeasible
 - This is simple for graphs given
- General explanation techniques
 - Active research area

Explanation Method Used: QuickXPlain

- Find minimal subset of constraints which is infeasible
- Conflict set
- Works when overall problem fails without search
- Requires some trick to be applied here

Assigned Wavelengths

Accepted Demands (86 Demands)

Outline

2 Model

Benchmarks

Fixed network structure

nsf 14 nodes, 42 edges

eon 20 nodes, 78 edges

- mci 19 nodes, 64 edges
- brezil 27 nodes, 140 edges
- Random network structure
 - Sizes from 30 to 100 nodes
 - Edge density 0.25
 - 500 demands, 30 wavelengths

< 🗇 🕨

Constraint omputation

Overall Distribution of Solutions

Туре	Technique	Count
Infeasible	clique	50
	preassign	38
Feasible	credit total	59962
	of that, credit <i>a</i> units	58861
	of that, credit a ² units	940
	of that, credit a ³ units	161
	complete search, BC alldifferent	25
	complete search, GAC alldifferent	12

Cork Constraint Computation Centre

Selected Examples (100 Runs Each)

Network	Dem.	λ	Opt.	Avg LP	Avg MIP	Avg FD	Max Gap	Avg Time	Max Time
brezil	500	15	98	483.86	483.86	483.84	1.00	0.92	1.34
brezil	600	20	100	590.96	590.96	590.96	0.00	1.00	1.34
brezil	700	20	100	672.53	672.53	672.53	0.00	1.19	1.78
brezil	800	25	99	781.39	781.39	781.37	2.00	1.44	11.47
eon	500	20	100	471.56	471.56	471.56	0.00	0.65	0.77
eon	600	25	100	574.80	574.80	574.80	0.00	0.82	1.13
eon	700	30	100	677.35	677.35	677.35	0.00	1.05	1.81
eon	800	35	100	779.17	779.17	779.17	0.00	1.28	1.94
mci	500	25	100	486.38	486.38	486.38	0.00	0.80	2.28
mci	600	30	100	585.18	585.18	585.18	0.00	1.27	29.81
mci	700	35	100	684.00	684.00	684.00	0.00	1.30	3.53
mci	800	40	100	782.86	782.86	782.86	0.00	1.68	5.21
nsf	500	35	100	495.20	495.20	495.20	0.00	0.50	0.60
nsf	600	40	100	588.63	588.63	588.63	0.00	0.66	0.98
nsf	700	45	100	678.44	678.44	678.44	0.00	0.86	1.3600rk
nsf	800	45	100	727.15	727.15	727.15	0.00	0.95	Computation

ヘロト ヘアト ヘヨト ヘ

э

Centre

Compared to MIP Model for Complete Problem

				Hybrid	Model			Full MIP	
Naturali	Dam		0	Avg	Avg	Max	Avg	Avg	Max
Network	Dem.	~	Ορι.	FD	Time	Time	Opt	Time	Time
brezil	500	15	98	483.84	0.92	1.34	483.86	1218.40	14103.84
brezil	600	20	100	590.96	1.00	1.34	590.96	6076.81	87767.95
brezil	700	25	98	695.48	1.01	1.80	695.48	13623.15	78463.89
brezil	800	25	99	781.37	1.44	11.47	781.39	7567.68	15456.50
eon	500	20	100	471.56	0.65	0.77	471.56	352.21	585.45
eon	600	25	100	574.80	0.82	1.13	574.80	1411.67	2877.88
eon	700	30	100	677.35	1.05	1.81	677.35	1727.52	3568.13
eon	800	35	100	779.17	1.28	1.94	779.17	2485.64	4116.11
mci	500	25	100	486.38	0.80	2.28	486.38	1023.16	1664.31
mci	600	30	100	585.18	1.27	29.81	585.18	1621.30	2895.88
mci	700	35	100	684.00	1.30	3.53	684.00	1987.23	3428.41
mci	800	40	100	782.86	1.68	5.21	782.86	2316.88	4402.44
nsf	500	35	100	495.20	0.50	0.60	495.20	82.85	173.19
nsf	600	40	100	588.63	0.66	0.98	588.63	155.90	373.63
nsf	700	45	100	678.44	0.86	1.35	678.44	205.82	586.61
nsf	800	45	100	727 15	0.95	1.56	727 15	173 53	410.97

Increasing Number of Demands

Network Dem.		0	Avg	Avg	Avg	Max	Avg MIP	Max MIP	Avg FD	Max FD	
	Dem.		Ορι.	LP	MIP	FD	Gap	Time	Time	Time	Time
eon	800	30	100	741.78	741.78	741.78	0.00	0.15	0.17	0.83	1.61
eon	900	40	100	880.59	880.59	880.59	0.00	0.14	0.16	1.18	2.17
eon	1000	40	100	950.36	950.36	950.36	0.00	0.15	0.17	1.37	3.42
eon	1100	50	100	1082.61	1082.61	1082.61	0.00	0.14	0.16	1.71	2.83
eon	1200	50	100	1156.38	1156.38	1156.38	0.00	0.15	0.17	2.07	5.92
eon	1300	50	100	1219.82	1219.82	1219.82	0.00	0.16	0.17	2.22	5.24
eon	1400	60	100	1361.47	1361.47	1361.47	0.00	0.15	0.16	2.92	4.94
eon	1500	60	99	1428.78	1428.78	1428.77	1.00	0.15	0.17	4.22	106.97
eon	1600	70	100	1565.90	1565.90	1565.90	0.00	0.15	0.16	3.89	8.48
eon	1700	70	100	1637.47	1637.47	1637.47	0.00	0.16	0.17	4.58	13.59
eon	1800	80	100	1769.86	1769.86	1769.86	0.00	0.15	0.16	5.19	8.81
eon	1900	80	99	1844.46	1844.46	1844.45	1.00	0.15	0.17	7.23	163.41
eon	2000	90	100	1972.66	1972.66	1972.66	0.00	0.15	0.17	6.34	9.61

Random Networks (Edge Density 0.25, 100 Runs Each)

Notwork	Dom		Ont	Avg	Avg	Avg	Avg MIP	Max MIP	Avg FD	Max FD
Network	Deni.		Ορι.	LP	MIP	FD	Time	Time	Time	Time
r30	500	30	100	391.82	391.82	391.82	0.45	0.55	0.12	0.16
r40	500	30	100	424.58	424.58	424.58	1.07	1.23	0.14	0.17
r50	500	30	100	437.69	437.69	437.69	2.13	2.38	0.09	0.13
r60	500	30	100	447.21	447.21	447.21	3.92	4.34	0.08	0.16
r70	500	30	100	453.41	453.41	453.41	6.78	7.50	0.10	0.17
r80	500	30	100	457.65	457.65	457.65	10.75	11.95	0.10	0.17
r90	500	30	100	464.69	464.69	464.69	16.08	17.45	0.08	0.22
r100	500	30	100	466.67	466.67	466.67	22.74	25.22	0.09	0.25

Observations

- MIP and LP relaxation of phase 1 are very good bounds
- Solved to optimality in most cases
- Simple decomposition quite effective
- Good solution even if initial graph coloring infeasible
- Special structure of graph coloring helps FD model

(日)

Constraint omputation

Conclusions

- Combination of MIP and FD solver in problem decomposition
- Each doing what they do best
 - MIP: optimal solution, select items to include
 - FD: find feasible solution, explain infeasibility
- Hybrid model produces very high quality results
- Proven optimality in over 99.85% of problems tested
- Near optimal solutions by relaxation
- Much faster than monolithic MIP solution

< 🗇 🕨

Constraint omputation Contre

More Information

- Rajiv Ramaswami and Kumar N. Sivarajan. Routing and wavelength assignment in all-optical networks. IEEE/ACM Trans. Netw., 3(5):489–500, 1995.
- Dhritiman Banerjee and Biswanath Mukherjee. A practical approach for routing and wavelength assignment in large wavelength-routed optical networks. *IEEE Journal on Selected Areas in Communications*, 14(5):903–908, June 1996.

More Information

 Brigitte Jaumard, Christophe Meyer, and Babacar Thiongane.
 II P formulations for the routing and wavelength assid

ILP formulations for the routing and wavelength assignment problem: Symmetric systems.

In M. Resende and P. Pardalos, editors, *Handbook of Optimization in Telecommunications*, pages 637–677. Springer, 2006.

Brigitte Jaumard, Christophe Meyer, and Babacar Thiongane.

Comparison of ILP formulations for the RWA problem.

Optical Switching and Networking, 4(3-4):157–172, 2007

omputation Centre

イロト イポト イヨト イヨト

More Information

Ulrich Junker.

Quickxplain: Conflict detection for arbitrary constraint propagation algorithms.

In *IJCAI'01 Workshop on Modelling and Solving problems* with constraints (CONS-1), Seattle, WA, USA, August 2001.

More Information

Helmut Simonis.

Constraint applications in networks.

In F. Rossi, P. van Beek, and T. Walsh, editors, *Handbook* of *Constraint Programming*. Elsevier, 2006.

Helmut Simonis.

A hybrid constraint model for the routing and wavelength assignment problem.

CP 2009, Lisbon, September 2009.

http://4c.ucc.ie/~hsimonis/rwa.pdf

イロト イポト イヨト イヨ

More Information

Solving the static design routing and wavelength assignment problem.

CSCLP 2009, Barcelona, Spain, June 2009.

